
November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

Nov/Dec 2019 57

November/December 2021

Open Channel SSD

Building FreeBSD Communities

27 Years with the Perfect OS

WIP/CFT:OccamBSD

2022 Editorial Calendar
• Software and System Management

(January-February)

• ARM64 is Tier 1 (March-April)

• Disaster Recovery (May-June)

• Science, Systems, and FreeBSD (July-August)

• Security (September-October)

• Observability and Metrics (November-December)

LETTER
from the Foundation

Justin Gibbs • Founder of the FreeBSD Foundation,
President and Treasurer of the FreeBSD
Foundation Board

Daichi Goto • Director at BSD Consulting Inc.
(Tokyo)

Dru Lavigne • Author of BSD Hacks and
The Best of FreeBSD Basics

Michael W Lucas Author of more than 40 books including
Absolute FreeBSD, the FreeBSD
Mastery series, and git commit murder

•

Kirk McKusick • Lead author of The Design and
Implementation book series

Hiroki Sato • Director of the FreeBSD Foundation
Board, Chair of AsiaBSDCon, and
Assistant Professor at Tokyo
Institute of Technology

Robert N. M. Watson • Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge

Advisory Board
Anne Dickison • Marketing Director, FreeBSD Foundation

John Baldwin • Member of the FreeBSD Core Team and
Chair of FreeBSD Journal Editorial Board

Tom Jones • FreeBSD Developer, Internet Engineer
and Researcher at the University of
Aberdeen

Allan Jude • CTO at Klara Inc., the global FreeBSD
Professional Services and Support
company

George Neville-Neil • Past President of the FreeBSD Foundation
Board, and co-author of The Design
and Implementation of the FreeBSD
Operating System

Ed Maste • Senior Director of Technology,
FreeBSD Foundation and Member
of the FreeBSD Core Team

Benedict Reuschling • FreeBSD Documentation Committer
and Member of the FreeBSD Core Team

Mariusz Zaborski • FreeBSD Developer

FreeBSD Journal (ISBN: 978-0-615-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-5142 • fax: 720/222-2350
email: info@freebsdfoundation.org

Copyright © 2021 by FreeBSD Foundation. All rights reserved. This magazine may not be
reproduced in whole or in part without written permission from the publisher.

Publisher •
Editor-at-Large •

Design & Production •
Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Reuter & Associates

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

J O U R N A L
®

S&W PUBLISHING LLC

Editorial Board

PO BOX 3757 CHAPEL HILL, NC 27515-3757

3FreeBSD Journal • November/December 2022

Dear Readers,
As we embark on the 10th year of publishing

FreeBSD Journal, I could not be prouder of the invest-
ment we’ve made to produce this high-quality publi-
cation for you. When reflecting on the past year’s is-
sues, the first thing that stands out to me is the quality
of the Journal’s content which is written by noteworthy
experts in their fields and on a volunteer basis. We are
also thankful for the outstanding, volunteer editorial
and advisory boards that plan future topics, wrangle
authors, and make sure we provide the most helpful
and timely content to readers around the globe.

The FreeBSD Journal delivers informative and in-
teresting content for folks in our community and be-
yond with a fresh issue every two months. It reaches
anyone interested in Unix, operating systems, system
administration, research, product development and
more. The FreeBSD Foundation funds this profession-
ally produced publication and makes it widely available
because we view it as an investment for anyone who
uses what they learn from it to further advance the
FreeBSD operating system and the community.

Finally, I want to thank you for enthusiastically
reading each issue! We hope you’ve enjoyed FreeBSD
Journal’s articles and columns this past year and we
look forward to continuing it for years to come.

We wish you a wonderful year-end, however you
celebrate this holiday season.

Deb Goodkin
Executive Director
FreeBSD Foundation

4FreeBSD Journal • November/December 2022

November/December 2022

 5 Writing Custom Commands
in FreeBSD’s DDB Kernel Debugger

 By John Baldwin

 13 DTrace: New Additions
to an Old Tracing System

 By Domagoj Stolfa

 22 Certificate-based Monitoring with Icinga
 By Benedict Reuschling

 36 activitymonitor.sh
 By Tom Jones

 42 Pragmatic IPv6 (Part 4)
 By Hiroki Sato
 3 Foundation Letter

By Deb Goodkin

 53 We Get Letters
By Michael W Lucas

 56 Conference Report: EuroBSDCon
By Kyle Evans

 59 Practical Ports: Prometheus Installation & Setup
By Benedict Reuschling

 66 Book Review: Kill It with Fire: Manage Aging
 Computer Systems (and Future Proof Modern Ones)

By Marianne Bellotti, reviewed by Tom Jones

 68 Events Calendar
By Anne Dickison

Observability and Metrics

5FreeBSD Journal • November/December 2022

DDB is an interactive kernel debugger that can be used to inspect system state and
control the running kernel. DDB was first developed as part of the Mach oper-

ating system. It was later ported to 386BSD from which it was inherited by various operating
systems including FreeBSD, NetBSD, and OpenBSD. This article focuses on the implemen-
tation of DDB in FreeBSD.

DDB runs on the system console, and system execution is suspended while the debug-
ger is active. This permits inspection of the system in a consistent state. DDB can be en-
tered manually, but DDB is typically used after a kernel panic. FreeBSD’s kernel can be
configured to enter DDB after a kernel panic permitting a user or system administrator to
examine the system state before rebooting. Debugging kernels built from FreeBSD’s main
branch do this by default.

 DDB provides many features common to debuggers. It supports run control such as sin-
gle stepping and breakpoints, and also supports hardware watchpoints on platforms with
suitable hardware support. DDB includes several commands to display information about a
system including stack traces and memory dumps.

 Unlike many other debuggers, DDB does not understand type information and is not
able to pretty-print structures or evaluate members of structures or unions in expressions.
However, DDB can be extended by defining new commands. New commands can even be
implemented in kernel modules which can be loaded after boot.

DDB Execution Context
DDB executes in a special context which differs from the normal kernel execution con-

text in several ways:
• When DDB is active, the system is paused and borrows the execution context of the

currently executing thread on each CPU. The normal kernel scheduler does not func-
tion in this context and the borrowed threads on each CPU are not permitted to con-
text switch. This means that code execution in this context must not sleep or block on
locks.

• If a fault or trap occurs during execution of a DDB command, the current thread will use
longjmp() to resume execution in DDB’s main loop.

• DDB accesses console devices directly for console input and output.

BY JOHN BALDWIN

Writing Custom Commands
in FreeBSD’s DDB Kernel Debugger

1 of 8

6FreeBSD Journal • November/December 2022

 Due to these unique behaviors, implementations of DDB commands should adhere to
the following guidelines:

• Commands should avoid side effects. If a fault occurs during command execution,
there is no way to undo any side effects. The safest approach is to avoid side effects
when possible.

• Commands should not use locks. Since execution is paused on all CPUs, the state of
most data structures in the system will not be changing, so locks are not needed to syn-
chronize with other CPUs. In addition, acquiring a lock is a side effect that will not be
unwound if a command faults while holding a lock. In exceptional cases, where a com-
mand wishes to modify system state in a safe way, a command may use try locks. One
command which does this currently is the kill command which can send a signal to a
process.

• Commands should avoid complicated APIs. Higher level APIs often modify system state
or contain other side effects such as acquiring locks.

• Most commands in DDB inspect system state without modifying it and output a hu-
man readable description of some portion of system state. Many of these commands
are pretty-printers which print information about a specific data structure or list of
structures.

• Commands must use DDB’s APIs for console input and output. Mostly this means using
db_printf() for output instead of printf().

DDB provides a simple API for console output. The db_printf() function is similar to
the normal kernel printf() and supports all of the same format specifiers. This function
writes directly to console devices bypassing the system log device.

 In addition, db_printf() includes simple pager support. Each time a newline is output
to the console, db_printf() checks if the output should be paused. If so, db_printf()
outputs a prompt on the console permitting the user to control how many lines are dis-
played before the next pause. Once the user has responded to the prompt, db_printf()
returns. If the user requests the current command to quit (stop generating output), db_
printf() sets the global variable db_pager_quit to a non-zero value. If a command gen-
erates output in a loop (for example, using a loop to walk a linked-list of data structures), the
command should check db_pager_quit in each loop iteration and break out of the loop
early if it is set.

Command Functions
Most DDB commands follow a simple syntax described in ddb(4):

command[/modifier] [address[,count]]

When a user enters a command at DDB’s prompt, DDB parses this command line. The
address and count fields are treated as expressions which can contain references to named
symbols and many C arithmetic operators. The command and modifier fields are treated
as simple strings. DDB uses the command field to locate a pointer to a C function. This C
function is invoked to execute the command.

 The functions implementing DDB commands use the following signature:

void fn(db_expr_t addr, bool have_addr, db_expr_t count, char *modif)

2 of 8

https://man.freebsd.org/ddb/4

7FreeBSD Journal • November/December 2022

The addr argument contains the address the command should operate on. This can ei-
ther be an explicitly-provided address or the address used with the previous command. The
have_addr argument is true if the address was provided explicitly. The count argument
contains the value of the count field. If the count field was not specified, count is set to -1.
The modif argument is a pointer to a C string containing the modifier field. If a modifier
was not specified, then modif will point to an empty string.

Command functions are associated with command names via internal tables main-
tained by DDB. DDB provides helper macros to abstract most of the details of registering
new commands. Each macro accepts two arguments: the first argument is the name of the
command, and the second argument is the name of the C function to associate with the
named command. In addition to registering the linkage in the table, these macros also pro-
vide the C function declaration and should be immediately followed by the function body.
Each macro is associated with a specific command table. The DB_COMMAND macro defines
a new top-level command. The DB_SHOW_COMMAND macro defines a new command in the
“show” table. The DB_SHOW_ALL_COMMAND macro defines a new command in the “show all”
table. For example DB_SHOW_COMMAND(bar, db_show_bar_func) defines a new “show
bar” command. It also defines a new C function, db_show_bar_func, which provides the
implementation of this command. It is best practice, but not required, to name the C func-
tions associated with a command using the pattern db_<command>_cmd.

 Listing 1 is the source to a simple command named “double”. This command multiplies
the address provided by the user by 2 and outputs the result. Listing 2 shows some use cas-
es of this command. The output from the third case may be surprising, as 32 times 2 is cer-
tainly not 100. The reason for this behavior is that DDB parses integer values with a default
base of 16 (controlled by DDB’s internal $radix variable). In base 16, 32 evaluates to the
decimal value of 50.

DB_COMMAND(double, db_double_cmd)
{
 if (have_addr)
 db_printf(“%u\n”, (u_int)addr * 2);
 else
 db_printf(“no address\n”);
}

Listing 1: Source for the “double” command

db> double
no address
db> double 4
8
db> double 32
100

Listing 2: Sample output for the “double” command

Commands with Custom Syntax
DDB commands do not have to use the simple syntax given above. Command functions

can choose to support other syntaxes. Commands request this by passing an additional flag

3 of 8

8FreeBSD Journal • November/December 2022

when registering commands. A separate set of macros accept command flags as a third
argument: DB_COMMAND_FLAGS, DB_SHOW_COMMAND_FLAGS, and DB_SHOW_ALL_COMMAND_
FLAGS.

Two flags are available to control command line parsing. CS_MORE indicates that a com-
mand mostly follows the simple syntax, but that the command supports more than one ad-
dress. When this flag is specified, the main loop of DDB will still parse the command line as
normal, but it will not discard any remaining tokens from its lexer before invoking the com-
mand function. This allows the command function to parse additional options on the com-
mand line. The second flag, CS_OWN, indicates that the command function performs all of
the parsing itself. When this flag is specified, the main loop of DDB stops parsing the com-
mand line after reading the name of the command. The command function uses DDB’s
lexer to parse the rest of the command line. Regardless of which flag is specified, the com-
mand function must call db_skip_to_eol() to discard remaining tokens from the current
command line before returning.

DDB provides a few functions to parse command line arguments. db_expression()
parses an arithmetic expression. This can consume multiple words of input and supports the
full DDB expression syntax including symbol resolution and various C operators. If no more
command line arguments were available, db_expression() returns 0. If an expression was
successfully parsed, then db_expression() returns a non-zero value and stores the re-
sult of the expression in the value pointed to by its sole argument. If db_expression()
encounters a syntax error while parsing an expression, it prints a message and aborts the
current command via longjmp(). Command functions should avoid any side effects while
calling db_expression() since they can’t be unwound if the user provides invalid input.

Two other functions provide a lower level interface to DDB’s lexer. db_read_token()
parses the next token from the command line and returns a constant identifying the type
of token parsed. The constants are named t<TYPE> and are defined in <ddb/db_lex.h>.
Most of the constants are associated with C operators and other special tokens, but a few
are useful for custom commands. tEOL is returned when the end of the command line is
encountered. tEOF is returned for invalid input such as a number that contains invalid char-
acters. tIDENT is returned when a word (identifier) is parsed. A copy of the word is saved in
the global variable db_tok_string. tNUMBER is returned when a numeric value is parsed.
The value is saved as an integer in the global variable db_tok_number. Note that DDB’s lex-
er assumes that any word beginning with a decimal digit is a number, and that any word be-
ginning with an alphabetic character, underscore, or backslash is an identifier. db_unread_
token() inserts a single token to be returned by the next call to db_read_token(). The
value passed to db_unread_token() is one of the t<TYPE> constants. Normally this func-
tion is used to put back the token just read from db_read_token() if the returned token
was invalid or unexpected.

DDB provides two additional functions to handle parsing errors. db_error() prints out a
caller-supplied message, flushes the lexer state, and invokes longjmp() to abort the current
command and return to DDB’s main loop. db_flush_lex() just flushes the lexer state dis-
carding the current command line. db_flush_lex() can be used if a more detailed error
message is desired or to unwind additional state if longjmp() is undesirable.

Listing 3 is the source to a command named “sum”. This command computes a sum of all
of the expressions given on the command line. It uses the CS_MORE flag and uses db_ex-
pression() in a loop to parse additional expressions from the command line. Listing 4

4 of 8

9FreeBSD Journal • November/December 2022

shows some sample output from this command. Note that in the third case, db_expres-
sion() parsed the expression “9 * 3” and returned the value 27 to the loop in db_sum_
cmd().

DB_COMMAND_FLAGS(sum, db_sum_cmd, CS_MORE)
{
 long total;
 db_expr_t value;

 if (!have_addr)
 db_error(“no values to sum\n”);

 total = addr;
 while (db_expression(&value))
 total += value;
 db_skip_to_eol();
 db_printf(“Total is %lu\n”, total);
}

Listing 3: Source for the “sum” command

db> sum 1
Total is 1
db> sum 1 2 3
Total is 6
db> sum 9 * 3 4
Total is 31

Listing 4: Sample output for the “sum” command

Listing 5 contains the source to a “show softc” command. This command accepts the
name of a device as a single command line argument. If the device is found, the command
prints out the value of the pointer to the device’s softc structure. This structure contains
the per-device information maintained by the device’s driver. This command uses the
CS_OWN flag to request full control of command line parsing. It uses db_read_token() to
fetch the device name from the command line. If a valid device name is given, a tIDENT to-
ken will be returned with the device name saved in db_tok_string. Listing 6 shows some
sample output for this command.

DB_SHOW_COMMAND_FLAGS(softc, db_show_softc_cmd, CS_OWN)
{
 device_t dev;
 int token;

 token = db_read_token();
 if (token != tIDENT)
 db_error(“Missing or invalid device name”);

5 of 8

10FreeBSD Journal • November/December 2022

 dev = device_lookup_by_name(db_tok_string);
 db_skip_to_eol();
 if (dev == NULL)
 db_error(“device not found\n”);
 db_printf(“%p\n”, device_get_softc(dev));
}

Listing 5: Source for the “show softc” command

db> show softc 4
Missing or invalid device name
db> show softc foo0
device not found
db> show softc pci0
0xfffff800039380f0

Listing 6: Sample output for the “show softc” command

Custom Command Tables
A DDB command table contains a list of commands. Additional tables can be defined

by a special command in an existing table. This permits building a tree of command tables.
Commands that define new tables do not specify a function to use as their command han-
dler. Instead, tables must define and initialize a variable of type struct db_command_table
which will contain a linked-list of commands belonging to the table. A pointer to this table is
associated with the command entry in the parent table. This variable should be named us-
ing the pattern db_<name>_table. At the time of writing, there are not nicely abstracted
macros similar to DB_COMMAND which permit defining new tables. Instead, new tables must
be defined using an “internal” macro _DB_SET. Commands belonging to this table must ei-
ther be defined by the “internal” macro _DB_FUNC or by defining a new helper macro simi-
lar to DB_SHOW_COMMAND which wraps _DB_FUNC.

Listing 7 contains the source for a “demo” table along with two commands belonging to
this table. The listing starts by defining a db_demo_table variable to contain the list of DDB
commands belonging to the new table. The _DB_SET invocation adds the “demo” com-
mand to the top-level table similar to DB_COMMAND. Note that the third argument to _DB_
SET (which normally contains a pointer to the function handler) is NULL, but that the last ar-
gument to _DB_SET contains a pointer to the new table. The rest of the listing defines two
simple commands belonging to this new table. The second and third arguments to _DB_
FUNC are similar to the two arguments given to DB_COMMAND. The fourth argument identi-
fies the parent table the new command belongs to. The fifth argument contains flags such
as CS_MORE or CS_OWN, and the final argument should be NULL. The first argument to both
_DB_SET and _DB_FUNC should be the name of the parent table with a leading underscore
and any spaces replaced by underscores. If the parent table is the main table, use “_cmd”.
Listing 8 shows sample output for these commands.

/* Holds list of “demo *” commands. */
static struct db_command_table db_demo_table = LIST_HEAD_INITIALIZER(db_demo_table);

6 of 8

11FreeBSD Journal • November/December 2022

/* Defines a “demo” top-level command. */
_DB_SET(_cmd, demo, NULL, db_cmd_table, 0, &db_demo_table);

_DB_FUNC(_demo, one, db_demo_one_cmd, db_demo_table, 0, NULL)
{
 db_printf(“one\n”);
}

_DB_FUNC(_demo, two, db_demo_two_cmd, db_demo_table, 0, NULL)
{
 db_printf(“two\n”);
}

Listing 7: Source for the “demo” table commands

db> demo
Subcommand required; available subcommands:
one two
db> demo one
one
db> demo two
two

Listing 8: Sample output for the “demo” table commands

Pager-Aware Command
Our last sample command provides an example of honoring DDB’s output pager. Most

pager operations such as continuing for a page or for a single line are handled internally by
the pager implementation in db_printf(). However, if the user requests that the pager
stop, the global variable db_pager_quit is set to a non-zero value as noted earlier. Com-
mands which generate output in a loop should check this variable and abort any loops if it is
set. Listing 9 contains an abbreviated sample command which checks db_pager_quit. The
command is an implementation of the Internet “chargen” service. It generates lines of out-
put to the screen in a continuous loop until the user terminates the loop by requesting an
exit via the pager. The main takeaway from this listing are the last two lines of the main loop
which break out of the loop if db_pager_quit is set.

DB_COMMAND(chargen, db_chargen_cmd)
{
 char *rs;
 int len;

 for (rs = ring;;) {
 …
 db_printf(“\n”);
 if (db_pager_quit)

7 of 8

12FreeBSD Journal • November/December 2022

 Break;
 }
}

Listing 8: Abbreviated source for the “chargen” command

Conclusion
DDB provides a fairly simple framework for adding new commands. New commands

can even be added post-boot by loading kernel modules containing new commands. There
are many examples of custom commands in FreeBSD’s source tree which can also be used
as a reference when developing new commands. These can be found by searching for
DB.*_COMMAND or db_printf. In addition, a kernel module containing all of the commands
from this article can be found at https://github.com/bsdjhb/ddb_commands_demo.

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Concord, California with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

8 of 8

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://github.com/bsdjhb/ddb_commands_demo

13FreeBSD Journal • November/December 2022

DTrace is a software tracing framework built into FreeBSD that allows users to
inspect and modify the currently running system in real time. It is high-

ly extensible and was originally built for Solaris, but has since been ported many times to
other environments such as FreeBSD, macOS, Windows and Linux. This article will focus on
DTrace usage in FreeBSD with examples and give a summary of recent developments in the
DTrace space on FreeBSD.

DTrace in Short
Operating systems are very complicated pieces of software which have many compo-

nents. A single tracing system attempting to support tracing of nearly the entire OS can be
overwhelming given their complexity. In order to simplify this as well as to account for future
extensions, DTrace introduces the notion of a provider. Providers live in the kernel as kernel
modules by default in FreeBSD and are responsible for implementing the necessary func-
tionality to instrument a particular component of the OS. They expose DTrace probes which
are names for locations in the OS code that can be dynamically instrumented with script-
able routines written in the D programming language. Some example providers shipped with
FreeBSD include the function boundary tracing provider (fbt.ko) — responsible for instru-
mentation of kernel function entry and exit points, the profile provider (profile.ko) which
provides probes associated with a fixed time-based interrupt specified by the script-writer,
the PID provider (fasttrap.ko) which implements fbt but for user processes and the li-
braries they link to and various others. While deep knowledge of DTrace is not required in
order to understand this article, those wishing to know more about DTrace may want to
check out the user guide1, specification2, FreeBSD Handbook Page³, whitepaper⁴, book⁵ and
various FreeBSD wiki pages that can be found such as the list of one-liners⁶. Furthermore, a
number of previous FreeBSD Journal editions featured articles on DTrace7,8,9.

Simple Examples
Probes are specified via a provider:module:function:name 4-tuple. Each of the en-

tries can be globbed or left blank to mean “everything”. We use an example toy snooper
script as an introduction to D. The script tells us which programs users are running. Note
that we specify the -x quiet option to avoid additional information that DTrace would
otherwise output.

BY DOMAGOJ STOLFA

DTrace:
New Additions to
an Old Tracing System

1 of 9

https://illumos.org/books/dtrace/preface.html#preface
https://github.com/opendtrace/documentation
https://docs.freebsd.org/en/books/handbook/dtrace/
https://www.cs.princeton.edu/courses/archive/fall05/cos518/papers/dtrace.pdf
https://www.brendangregg.com/dtracebook/
https://wiki.freebsd.org/DTrace/One-Liners

14FreeBSD Journal • November/December 2022

dtrace -x quiet -n 'proc:::exec { printf(“user = %u, gid = %u: %s\n”, uid, gid,
stringof(args[0])); }'
user = 1001, gid = 1001: /usr/sbin/service
user = 1001, gid = 1001: /bin/kenv
user = 1001, gid = 1001: /sbin/sysctl
user = 1001, gid = 1001: /sbin/env
user = 1001, gid = 1001: /bin/env
user = 1001, gid = 1001: /usr/sbin/env
user = 1001, gid = 1001: /usr/bin/env
user = 1001, gid = 1001: /etc/rc.d/sendmail
user = 1001, gid = 1001: /bin/kenv
user = 1001, gid = 1001: /sbin/sysctl
user = 1001, gid = 1001: /bin/ls

As we can see, D is very similar to C in its syntax aside from a couple of special forms
of syntax specific to it. Unlike C, it does not support loops so any form of looping must be
done by manually unwinding the loop. In the above example we can access the user and
group id through uid and gid built-in variables.

DTrace also supports aggregating the trace results together in various ways. For example,
we can count up the system calls each program is doing:

dtrace -n 'syscall:::entry { @syscall_agg[execname, pid] = count(); }'
dtrace: description 'syscall:::entry ' matched 1148 probes
 sh 46569 7
 sh 46570 7
 syslogd 703 16
 sshd 848 17
 devd 501 20
 ntpd 771 24
 sh 46565 93
 dtrace 46568 138
 ps 46570 254
 sshd 46564 27517
 ls 46569 35755

Using @ as a prefix to a variable makes it an aggregate variable. @syscall_agg is
indexed by two keys, however one can keep adding keys. The aggregation output for
@syscall_agg should be read as:

execname pid count

Our final example will be one with stack traces. DTrace allows the user to gather stack
traces both in the kernel and userspace using stack() and ustack() routines respective-
ly. Furthermore, DTrace can be extended with language-specific stack unwinders. One such
example is the jstack() action, which provides the user a legible backtrace from a Java
program. In our example, we focus on stack():

2 of 9

15FreeBSD Journal • November/December 2022

dtrace -x quiet -n 'io:::start { @[stack()] = count(); }'
 zfs.ko`zio_vdev_io_start+0x2f5
 zfs.ko`zio_nowait+0x15f
 zfs.ko`vdev_mirror_io_start+0xfd
 zfs.ko`zio_vdev_io_start+0x1eb
 zfs.ko`zio_nowait+0x15f
 zfs.ko`arc_read+0x14aa
 zfs.ko`dbuf_read+0xc84
 zfs.ko`dmu_tx_check_ioerr+0x84
 zfs.ko`dmu_tx_count_write+0x191
 zfs.ko`dmu_tx_hold_write_by_dnode+0x64
 zfs.ko`zfs_write+0x500
 zfs.ko`zfs_freebsd_write+0x39
 kernel`VOP_WRITE_APV+0x194
 kernel`vn_write+0x2ce
 kernel`vn_io_fault_doio+0x43
 kernel`vn_io_fault1+0x163
 kernel`vn_io_fault+0x1cc
 kernel`dofilewrite+0x81
 kernel`sys_writev+0x6e
 kernel`amd64_syscall+0x12e
 1

 zfs.ko`zio_vdev_io_start+0x2f5
 zfs.ko`zio_nowait+0x15f
 zfs.ko`zil_lwb_write_done+0x360
 zfs.ko`zio_done+0x10d6
 zfs.ko`zio_execute+0xdf
 kernel`taskqueue_run_locked+0xaa
 kernel`taskqueue_thread_loop+0xc2
 kernel`fork_exit+0x80
 kernel`0xffffffff810a35ae
 1

This D script counts up all of the kernel stack traces that lead to I/O on a block device.
We omit the aggregation name as we only have one aggregation in this script and our key
is stack() — a built-in DTrace action returning an array of program counters which are
later resolved to symbols when printing results. DTrace can also gather stacks using the
profile provider in order to gather on-CPU stack traces, making it possible to generate
Flame Graphs10.

New Developments
dwatch

A new tool called dwatch was developed by Devin Teske (dteske@freebsd.org) and up-
streamed to FreeBSD 11.2. dwatch makes DTrace much easier to use for common use-cas-

3 of 9

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
mailto:dteske@freebsd.org

dwatch supports filtering

based on jails, groups,

processes and many other

features that make it

worthwhile to learn.

16FreeBSD Journal • November/December 2022

es than the dtrace command line tool. Going back to our toy snooping example, one can
simply run:

dwatch execve

to get nicely filtered output with more information than our simple snooper shown above.

dwatch execve
INFO Watching 'syscall:freebsd:execve:entry' ...
2022 Nov 24 18:46:53 1001.1001 sh[46565]: sudo ps auxw
2022 Nov 24 18:46:53 0.0 sudo[46920]: ps auxw
2022 Nov 24 18:46:55 1001.1001 sh[46565]: ls
2022 Nov 24 18:47:01 1001.1001 sh[46565]: ls -lapbtr
2022 Nov 24 18:47:09 1001.1001 sh[46924]: kenv -q rc.debug
2022 Nov 24 18:47:09 1001.1001 sh[46924]: /sbin/sysctl -n -q kern.boottrace.enabled
2022 Nov 24 18:47:09 1001.1001 sh[46565]: env -i -L -/daemon HOME=/ PATH=/sbin:/
bin:/usr/sbin:/usr/bin /etc/rc.d/sendmail onestop
2022 Nov 24 18:47:09 1001.1001 env[46565]: /bin/sh /etc/rc.d/sendmail onestop
2022 Nov 24 18:47:09 1001.1001 sh[46924]: kenv -q rc.debug
2022 Nov 24 18:47:09 1001.1001 sh[46924]: /sbin/sysctl -n -q kern.boottrace.enabled

Furthermore, dwatch supports filtering based on jails, groups, processes and many oth-
er features that make it worthwhile to learn for even the most seasoned DTrace users. All
along the dwatch tower11 is an excellent talk that introduces dwatch and goes over its fea-
tures in detail. Similarly, the dwatch(1) man page in FreeBSD has a lot of good examples for
those interested to try out.

CTFv3
Compact C Type Format (CTF) is a format used to

encode C type information in FreeBSD ELF binaries. It
allows DTrace to know C type layouts for target binaries
(processes, the kernel) so that scripts written by users
can refer to those types and explore them. In the past
DTrace only supported a total of 2^15 C types in a sin-
gle binary encoded as CTF due to the way that CTFv2
was implemented. This limitation was a source of many
bug reports in FreeBSD relating to DTrace. In March of
this year, Mark Johnston (markj@freebsd.org) commit-
ted changes which switches DTrace to use CTFv3 in-
stead which raises not only the number of C types that
can be manipulated by DTrace, but also various other limits in CTF.

kinst – A New DTrace Provider for Instruction-level Tracing
A 2022 Google Summer of Code project successfully completed by Christos Margiolis

(christos@freebsd.org) and mentored by Mark Johnston (markj@freebsd.org) implement-
ed and upstreamed instruction-level tracing to FreeBSD. The provider that implements this

4 of 9

https://papers.freebsd.org/2018/bsdcan/teske-all_along_the_dwatch_tower/
https://papers.freebsd.org/2018/bsdcan/teske-all_along_the_dwatch_tower/
https://papers.freebsd.org/2018/bsdcan/teske-all_along_the_dwatch_tower/
mailto:markj@freebsd.org
mailto:christos@freebsd.org
mailto:markj@freebsd.org

17FreeBSD Journal • November/December 2022

functionality is called kinst. It reuses parts of the fbt mechanism and extends it to instru-
ment arbitrary points of a kernel function, rather than just the entry and exit points.

Kernel developers reading this might already see the potential of kinst when it comes
to analyzing call stacks from certain branches in a function. As a result finding bugs and
performance issues in FreeBSD could be made easier and faster. For a demonstration, we
consider scenarios resembling the following C-style pseudo-code:

if (__predict_false(rarely_true)) {
 return (slow_operation());
} else {
 return (get_from_cache());
}

In this example, we focus on a particular function in the FreeBSD kernel that has behavior
similar to this. The simplified and stripped down version of it is:

void
_thread_lock(struct thread *td)
{
 ...
 if (__predict_false(LOCKSTAT_PROFILE_ENABLED(spin__acquire)))
 goto slowpath_noirq;
 spinlock_enter();
 ...
 if (__predict_false(m == &blocked_lock))
 goto slowpath_unlocked;
 if (__predict_false(!_mtx_obtain_lock(m, tid)))
 goto slowpath_unlocked;
 ...
 _mtx_release_lock_quick(m);
slowpath_unlocked:
 spinlock_exit();
slowpath_noirq:
 thread_lock_flags_(td, 0, 0, 0);
}

It’s immediately noticeable that there are two slow paths: slowpath_unlocked and
slowpath_noirq. In the two slow paths, either spinlock_exit() or thread_lock_
flags_() is called, whereas _mtx_release_lock_quick() is just an atomic compare-and-
swap instruction on amd64. In order to use kinst to identify the call stacks which end up in
the slow paths, we first need to disassemble the function in some way. One possible way of
doing so is using kgdb in FreeBSD (pkg install gdb):

kgdb
(kgdb) disas /r _thread_lock
Dump of assembler code for function _thread_lock:

5 of 9

18FreeBSD Journal • November/December 2022

...
0xffffffff80bc7dcc <+124>: 5d pop %rbp
 0xffffffff80bc7dcd <+125>: e9 4e 72 09 00 jmp 0xffffffff80c5f020
<witness_lock>
 0xffffffff80bc7dd2 <+130>: 48 c7 43 18 00 00 00 00 movq $0x0,0x18(%rbx)
 0xffffffff80bc7dda <+138>: e8 e1 43 4e 00 call 0xffffffff810ac1c0
<spinlock_exit>
 0xffffffff80bc7ddf <+143>: 8b 75 d4 mov -0x2c(%rbp),%esi
...
 0xffffffff80bc7df2 <+162>: 41 5d pop %r13
 0xffffffff80bc7df4 <+164>: 41 5e pop %r14
 0xffffffff80bc7df6 <+166>: 41 5f pop %r15
 0xffffffff80bc7df8 <+168>: 5d pop %rbp
 0xffffffff80bc7df9 <+169>: e9 82 00 00 00 jmp 0xffffffff80bc7e80
<thread_lock_flags_>

In this case, we can take the instructions at offset +138 and +169, which are the function
calls to spinlock_exit() and thread_lock_flags_(). Using those offsets, we can now
write our DTrace script:

dtrace -n 'kinst::_thread_lock:138,kinst::_thread_lock:169 { @[stack(),
probename] = count(); }'
...
 0xcf566bb0
 kernel`ipi_bitmap_handler+0x87
 kernel`0xffffffff810a48b3
 kernel`vm_fault_trap+0x71
 kernel`trap_pfault+0x22d
 kernel`trap+0x48c
 kernel`0xffffffff810a2548
 138 8

Those familiar with DTrace might notice that this could have easily been implemented
using speculative tracing instead of needing to use kinst. However, one can easily imagine
scenarios where the “slow path” or its equivalent is not a simple function call or where the
same function call might be present in all of the branches.

kinst also has other implications on the DTrace ecosystem on FreeBSD. Historically,
there has been a problem with instrumentation of inlined functions in the kernel using fbt.
The mechanisms used to implement kinst could help extend fbt in order to support reli-
able tracing of inlined functions.

Ongoing work
DTrace and eBPF – a Comparison

Mateusz Piotrowski (0mp@FreeBSD.org) has been working on the performance analy-
sis of DTrace on FreeBSD and how it compares to eBPF on Linux. Some of the results were
presented12 this year at EuroBSDcon 2022. This work could lead to interesting results which

6 of 9

mailto:0mp@FreeBSD.org
https://github.com/freebsd/freebsd-papers/pull/112

19FreeBSD Journal • November/December 2022

could serve as a basis for further optimization of DTrace. This would make enabling instru-
mentation on performance-critical systems less disruptive.

HyperTrace
HyperTrace is a framework built on top of DTrace which allows the user to apply DTrace-

like tracing techniques using the D programming language to tracing virtual machines. It
grew out of the CADETS project at the University of Cambridge in the UK. As a simple ex-
ample, we look at our original snooper script and extend it to use HyperTrace:

dtrace -x quiet -En 'FreeBSD-14*:proc:::exec { printf(“%s: user = %u, gid = %u:
%s\n”, vmname, uid, gid, stringof(args[0])); }'
scylla1-webserver-0: user = 0, gid = 0: /usr/sbin/dtrace
scylla1-webserver-0: user = 0, gid = 0: /sbin/ls
scylla1-webserver-0: user = 0, gid = 0: /bin/ls
scylla1-client-0: user = 0, gid = 0: /usr/sbin/sshd
scylla1-client-0: user = 0, gid = 0: /bin/csh
scylla1-client-0: user = 0, gid = 0: /usr/bin/resizewin
scylla1-client-0: user = 0, gid = 0: /usr/sbin/iperf
scylla1-client-0: user = 0, gid = 0: /usr/bin/iperf
scylla1-client-0: user = 0, gid = 0: /usr/local/bin/iperf
host: user = 0, gid = 0: /bin/sh
host: user = 0, gid = 0: /usr/libexec/atrun
scylla1-client-0: user = 0, gid = 0: /bin/sh
scylla1-client-0: user = 0, gid = 0: /usr/libexec/atrun
scylla1-client-1: user = 0, gid = 0: /bin/sh
scylla1-client-1: user = 0, gid = 0: /usr/libexec/atrun
scylla1-client-2: user = 0, gid = 0: /bin/sh
scylla1-client-2: user = 0, gid = 0: /usr/libexec/atrun
scylla1-client-3: user = 0, gid = 0: /bin/sh
scylla1-client-3: user = 0, gid = 0: /usr/libexec/atrun
scylla1-webserver-0: user = 0, gid = 0: /bin/sh
scylla1-webserver-0: user = 0, gid = 0: /usr/libexec/atrun

We modified the script in order two new things: the prefix of where each of the process-
es was executed using the built-in variable vmname and a 5th tuple entry in the probe spec-
ification: FreeBSD-14*. This allows the user to specify which target machines (VMs) to in-
strument and can be controlled through command-line flags to support name resolution
via things like the OS version or the machine’s hostname.

Similar changes can be made to our block I/O example:

dtrace -x quiet -En 'scylla1-*:io:::start { @[vmname, immstack()] = count(); }'
...
 scylla1-webserver-0
 devstat_start_transacti+0x90
 g_disk_start+0x316
 g_io_request+0x2d7
 g_part_start+0x289

7 of 9

20FreeBSD Journal • November/December 2022

 g_io_request+0x2d7
 g_io_request+0x2d7
 ufs_strategy+0x83
 VOP_STRATEGY_APV+0xd2
 bufstrategy+0x3e
 bufwriteL+0x80
 vfs_bio_awrite+0x24f
 flushbufqueues+0x52a
 buf_daemon+0x1f1
 fork_exit+0x80
 fork_trampoline+0xe
 aio_process_rw+0x10c
 aio_daemon+0x285
 fork_exit+0x80
 fork_trampoline+0xe
 fork_trampoline+0xe
 10598
 scylla1-client-0
 g_disk_start+0x316
 g_io_request+0x2d7
 g_part_start+0x289
 g_io_request+0x2d7
 g_io_request+0x2d7
 ufs_strategy+0x83
 VOP_STRATEGY_APV+0x9e
 bufstrategy+0x3e
 bufwriteL+0x3e
 vfs_bio_awrite+0x24f
 flushbufqueues+0x52a
 buf_daemon+0x1f1
 fork_exit+0x80
 fork_trampoline+0xe
 fork_trampoline+0xe
 aio_process_rw+0x10c
 aio_daemon+0x285
 fork_exit+0x80
 fork_trampoline+0xe
 fork_trampoline+0xe
 10605

Here a new DTrace action immstack() is used which works similar to stack() but sym-
bol resolution happens in the kernel rather than during time of printing output.

HyperTrace works by aiming to execute the entire D script on the host kernel rather than
running DTrace inside the guest, while each of the guests is responsible for instrumenting
itself and issuing a synchronous hypercall (akin to a system call in an OS) to the host when
the probe is executed on the guest. This kind of design enables keeping global state across

8 of 9

9 of 9

21FreeBSD Journal • November/December 2022

all of the guests and host in one place — increasing the overall expressiveness of D when it
comes to tracing VMs. The work is still in progress and can be viewed on GitHub13.

Further Reading
1. https://illumos.org/books/dtrace/preface.html#preface
2. https://github.com/opendtrace
3. https://docs.freebsd.org/en/books/handbook/dtrace/
4. https://www.cs.princeton.edu/courses/archive/fall05/cos518/papers/dtrace.pdf
5. https://www.brendangregg.com/dtracebook/
6. https://wiki.freebsd.org/DTrace/One-Liners
7. https://freebsdfoundation.org/wp-content/uploads/2014/05/DTrace.pdf
8. https://issue.freebsdfoundation.org/publication/?m=29305&i=417423&p=14&ver=html5
9. http://www.onlinedigeditions.com/publication/?m=29305&i=536657&p=4&ver=html5
10. https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
11. https://papers.freebsd.org/2018/bsdcan/teske-all_along_the_dwatch_tower/
12. https://github.com/freebsd/freebsd-papers/pull/112
13. https://github.com/cadets/freebsd

DOMAGOJ STOLFA is a Research Assistant at the University of Cambridge working on
dynamic tracing of virtualized systems. He has been working with bhyve and DTrace on
FreeBSD and contributing patches since 2016. Domagoj is also a teaching assistant on the
Advanced Operating Systems courses at the University of Cambridge, teaching operating
systems concepts with FreeBSD using DTrace and PMCs.

https://github.com/cadets/freebsd
https://illumos.org/books/dtrace/preface.html#preface
https://github.com/opendtrace
https://docs.freebsd.org/en/books/handbook/dtrace/
https://www.cs.princeton.edu/courses/archive/fall05/cos518/papers/dtrace.pdf
https://www.brendangregg.com/dtracebook/
https://wiki.freebsd.org/DTrace/One-Liners
https://freebsdfoundation.org/wp-content/uploads/2014/05/DTrace.pd
https://issue.freebsdfoundation.org/publication/?m=29305&i=417423&p=14&ver=html5
http://www.onlinedigeditions.com/publication/?m=29305&i=536657&p=4&ver=html5
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html
https://papers.freebsd.org/2018/bsdcan/teske-all_along_the_dwatch_tower/
https://github.com/freebsd/freebsd-papers/pull/112
https://github.com/cadets/freebsd

22FreeBSD Journal • November/December 2022

Icinga is the successor to the popular Nagios host and service-monitoring software.
With the aim of being a drop-in replacement with backwards compatibility to Nagios,
Icinga also provides a couple of new features. This article describes how to set up a cen-
tral Icinga host to monitor endpoint systems using certificates in a top-down configura-

tion sync fashion.
Top-down describes the way that the checks (disk

full, load-avg too high, etc.) execute on the remote
machines. In top-down monitoring, the central Icin-
ga host called parent is responsible for synchronizing
the configuration files to the monitored nodes called
child nodes. No manual restart after a configuration
change is required on these child nodes, as syncing,
validation, and restarts happen automatically. Checks
execute directly on the child node scheduler in regu-
lar intervals. Hosts are organized in a global zone and each host (parent and children) is de-
fined as an endpoint in it. Each child will have to verify that it is part of the monitoring zone
by creating a certificate signing request in a ticket which the parent will then verify and sign.
This creates trust that the machines communicate in an encrypted way and that the moni-
toring data received on the parent is not manipulated in transit.

The setup described here uses FreeBSD as parent to monitor another FreeBSD host
as child. Of course, other operating systems such as Linux or Windows are possible in the
same way, but not covered as part of this already long description. Although the setup is de-
scribed to run on the host itself to reduce complexity, the author has it happily running in a
jail—so far without issues.

Preparation
We assume that all our hosts are installed, can find each other on the same network, and

have a basic SSH connection going on between them. Our central monitoring server will
be called monitor.example.org and the client we’re going to set up later is called client.
example.org (you see my creative naming choices right there). The prompts used in front
of the commands will indicate on which host this command is to be executed. Let’s start
with preparing our central monitoring host (the parent).

Ensure that clocks on the machines are synchronized. This is important for proper genera-
tion of certificates later. This is typically done using monitor# ntpdate -b pool.ntp.org.

On this central FreeBSD host, we want to use the latest version of Icinga and other pack-

BY BENEDICT REUSCHLING

This article describes
how to set up a central
Icinga host to monitor
endpoint systems using
certificates.

Certificate-based
 Monitoring
 with Icinga

1 of 14

23FreeBSD Journal • November/December 2022

ages, instead of the quarterly ones. Edit /etc/pkg/FreeBSD.conf and change the word
quarterly to latest in the line starting with url:. Save and exit afterwards. To update the pack-
age repository with the newer packages, run:

monitor# pkg update

PostgreSQL Setup
Before installing the required software packages (including PostgreSQL as the backend

database and nginx for the webserver to host the Icingaweb2 monitoring interface), we’re
creating a ZFS dataset for the postgres database first to get populated when the packages
extract. If you don’t run ZFS, this also works fine with regular directories.

The following commands create a new dataset on our example pool called mypool a
/var/db/postgres/data. Non-existent datasets on that path are also created using the
-p parameter. Next, access time is deactivated as we don’t need it here and it saves some
I/O by not updating timestamps of files at every write. With newer ZFS 2.0, we also use
the zstd compression on the dataset. As Postgres writes data in chunks of 8k, we set the
ZFS recordsize to match for best performance. With logbias set to throughput, we in-
struct ZFS to optimize synchronous writes from the database for efficient resource use. The
mountpoint is set to overlap the existing /var/db/postgres path. When the package gets
installed, it is put on that dataset instead of the regular /var/db directory. Note: we don’t fo-
cus on further tuning of the PostgreSQL database here. Go to https://pgtune.leopard.in.ua/
and enter the values of your PostgreSQL host to get configuration recommendations to put
into the postgresql.conf file.

monitor# zfs create -p mypool/var/db/postgres/data
monitor# zfs set atime=off mypool/var/db
monitor# zfs set compression=zstd mypool/var/db
monitor# zfs set recordsize=8k mypool/var/db/postgres
monitor# zfs set logbias=throughput mypool/var/db/postgres
monitor# zfs set mountpoint=/var/db/postgres mypool/var/db/postgres

Now it is time to install the required packages. Easily done using pkg install, including au-
tomatic dependency resolution:

monitor# pkg install icinga2 icingaweb2-php74 postgresql13-server nginx \
ImageMagick7-nox11 php74-pecl-imagick-im7

Note: at the time of this writing, these package versions were the latest available. Check to
make sure that is still the case by going to www.freshports.org to see if there are newer pack-
age versions listed. PHP, in particular, may have gotten a version bump in the meantime.

Some of these services need entries in /etc/rc.conf to start when the system boots.
These include the following:

monitor# sysrc sshd_enable=yes
monitor# sysrc icinga2_enable=yes
monitor# sysrc postgresql_enable=yes

2 of 14

https://pgtune.leopard.in.ua/
http://www.freshports.org

24FreeBSD Journal • November/December 2022

Note that the services have not started yet, as some configuration is required before that
can happen. Along with the postgres package came the system user and group of the same
name, which is why setting permissions on /var/db/postgres is possible now.

monitor# chown -R postgres:postgres /var/db/postgres

The PostgreSQL database cluster is initialized next by running initdb as the postgres
user with UTF-8 as encoding. Note that the postgres user needs to execute these com-
mands, although there is now a way to do this via the service command (sometimes I’m old
fashioned).

monitor# su postgres
postgres@monitor$ initdb -D /var/db/postgres/data -E UTF8”

After a successful initialization of the database cluster, the server is started using pg_ctl:

postgres@monitor$ pg_ctl start -D /var/db/postgres/data

Next up is the creation of the Icinga role and database, which will later load some initial
tables and sequences that form the monitoring backend.

postgres@monitor$ createuser -drs icinga
postgres@monitor$ createdb -O icinga -E UTF8 icinga

Entries in pg_hba.conf (in the data directory) like the following allow the just created Ic-
inga user access to the database via localhost (no need to expose it to the network for Icin-
ga to work properly):

 local icinga icinga md5
 host icinga icinga 127.0.0.1/32 md5

Load database schema definition for Icingaweb2 as well as those for the IDO (Icinga data
objects) into the database now:

postgres@monitor$ psql -U icinga \
 -d icinga < /usr/local/share/icinga2-ido-pgsql/schema/pgsql.sql

Log out of the postgres user and continue the rest of the setup. On the Icinga side, fea-
tures control the functionality of the monitoring system. This includes which database back-
end is used. To enable PostgreSQL as the backend for the IDO, run the following command:

monitor# icinga2 feature enable ido-pgsql

In some cases, not all files and directories are owned by the Icinga system user. Running
chown over the main icinga2 directory ensures the permissions are properly set.

3 of 14

25FreeBSD Journal • November/December 2022

monitor# chown -R icinga:icinga /usr/local/etc/icinga2

This concludes the database part of the setup. We’ll continue with the webserver setup.
Although nginx is used here, other webservers like Apache2 are also perfectly fine to use.
The Icinga documentation shows the necessary steps for that, too.

Nginx Setup
Icinga’s web interface (aptly named Icingaweb2 since it is version 2) is a PHP application to

manage hosts and services from the comfort of your browser. Events concerning any failed
checks are also shown there and you can acknowledge problems or define downtimes at a
central location. To configure the PHP fastCGI process manager (php-fpm) to handle re-
quests coming from the webserver, enable the following options located in /usr/local/
etc/php-fpm.d/www.conf:

monitor# cd /usr/local/etc/php-fpm.d
monitor# sed -i “” 's/^;listen = 127.0.0.1:9000/listen = /var/run/php5-fpm.sock/’
www.conf
monitor# sed -i “” 's/^;listen.owner/listen.owner/' www.conf
monitor# sed -i “” 's/^;listen.group/listen.group/' www.conf
monitor# sed -i “” 's/^;listen.mode/listen.mode/' www.conf

This basically uncomments lines that are in the file already to activate them and replac-
es the listen directive to use the local php5 socket instead of opening a port on the host for
it. The major webserver configuration is done in the nginx.conf file located in /usr/local/
etc/nginx, where we reference the fastCGI socket, among other things. The following
configuration block is inserted after the commented #access_log line.

location ~ ^/icingaweb2/index\.php(.*)$ {
 fastcgi_pass unix:/var/run/php5-fpm.sock;
 fastcgi_index index.php;
 include fastcgi_params;
 fastcgi_param SCRIPT_FILENAME /usr/local/www/icingaweb2/public/index.php;
 fastcgi_param ICINGAWEB_CONFIGDIR /usr/local/etc/icingaweb2;
 fastcgi_param REMOTE_USER $remote_user;
}

location ~ ^/icingaweb2(.+)? {
 alias /usr/local/www/icingaweb2/public;
 index index.php;
 try_files $1 $uri $uri/ /icingaweb2/index.phpis_argsargs;
}

Note that this does not contain an SSL section to keep this tutorial simple. It is definitely
recommended (and pretty much standard practice nowadays) to generate a certificate for
the webserver and configure port 443 for the secure channel configuration. The web is full
of tutorials for it and services like Let’s Encrypt make the process easy and convenient.

4 of 14

26FreeBSD Journal • November/December 2022

When the packages were installed, a file containing PHP settings meant for production
use was created in /usr/local/etc/php.ini-production. These settings are fine for our
purposes, and we activate them by copying them to be our new php.ini file:

monitor# cp /usr/local/etc/php.ini-production /usr/local/etc/php.ini

With this file as a base PHP configuration, we only have to replace the timezone informa-
tion in it. I use this sed one-liner to place my installation within central Europe. Use whatever
fits your location best:

monitor# cd /usr/local/etc
monitor# sed -i “” s,;date.timezone =,date.timezone = Europe/Berlin, php.ini

We replaced the regular sed divider / with a comma here to not confuse it with the sep-
arator between region and city. See, I’ll smuggle some sed tricks into my tutorials for you
as well. Thank me later... Oh by the way, this is all that is needed for the basic serving of icin-
gaweb2 to end-users. We will now focus our attention on the Icinga configuration.

Icinga Monitoring Setup
Icinga uses various ways to monitor systems and is quite flexible about different monitor-

ing environments and needs. For example, a host may not be available all the time (roam-
ing user) or not have a direct connection to the central monitoring host. In the latter cas-
es, satellite systems can relay monitoring data and check results from a different network
or subnet to the central instance. In the setup that we use here, the central instance (called
master) controls the execution of checks on the monitored systems. Trust is established by
certificates exchanged between the master and clients. A zone defines either a geograph-
ic location (Europe, Africa, etc.) where monitoring happens or some other kind of logical
grouping that makes sense in our monitoring context. For example, a whole plant, office,
server room, rack, etc. could each form their own zone. Surely, a DNS zone is also possible,
whatever is most useful to monitor as a whole or based on some common criteria.

First, we generate the master certificate, which we will use to monitor the central in-
stance itself and as a base of trust for adding other monitored clients further down this tu-
torial. The setup is typically interactive, but here we pass all the necessary parameters on the
command line:

monitor# icinga2 node setup --master --zone “my-zone” \
 --cn monitor.example.com \
 --listen monitor.example.com,5665 --disable-confd”

Here, the certificate for our central host monitor.example.com is generated and we in-
struct Icinga to not populate the conf.d subdirectory in /usr/local/etc/icinga2. We
are going to create those files ourselves anyway.

Both the zone and cn are up to you to name based on your local requirements. Port
5665 should be open on your firewall to allow contacting the clients and sending the check
result back. Next, we change into the directory /usr/local/etc/icinga2 and create a
couple of files and directories:

monitor# cd /usr/local/etc/icinga2

5 of 14

27FreeBSD Journal • November/December 2022

monitor# mkdir conf.d

We define an API user that has the permissions to generate a ticket through which the
monitored clients request becoming part of the monitoring zone. The master will then allow
or deny the ticket request and sign the client certificate with its own to establish a secure,
trusted connection between the two.

The api-users.file contains the following:

object ApiUser “client-pki-ticket” {
 password = “randomstringthatmustbechanged”
 permissions = [“actions/generate-ticket”]
}

Definitely change the password line to a random string consisting of random numbers
and characters, the longer the better. Next, a zones subdirectory in the /usr/local/etc/
icinga2 directory is created that holds all the information to distribute to all members of
this zone. Typical examples are check information and monitoring intervals that the clients
will receive from the central monitoring instance. That way, the clients need no extra local
configuration, and the system administrator needs only to change the central zone config-
uration, which will then propagate securely to all the hosts. Since our zone is called my-zone
(creativity is clearly my thing), we create a subdirectory that holds only the relevant informa-
tion for clients in that zone. Other zones can be completely different, yet the monitoring
configuration is located at a central place instead of each host that makes up the zone.

monitor# mkdir -p /usr/local/etc/icinga2/zones.d/my-zone

Our zones contain various information: the hosts to monitor, what to monitor (i.e., which
checks to execute on each host), the monitoring intervals (how often), etc. We’re starting
with defining the central monitoring master in a file called /usr/local/etc/icinga2/
zones.d/my-zone/hosts.conf. For our master, it looks like this:

object Host “monitor.example.com” {
 import “generic-host” // import generic settings for all hosts
 address = “monitor.example.org”
 vars.os = “FreeBSD”

 //follow convention that host name == endpoint name
 vars.agent_endpoint = name
}

Each host is defined as a host object and an address where it is reachable on the net-
work. We also define a variable by which we can filter out specific hosts in Icingaweb2 for
grouping purposes or define checks only for certain hosts matching these criteria. This is
shown later.

The import “generic-host”-line is where we reference a template. Templates help us
apply common settings to all hosts without having to redefine them for each host add-
ed to the file. For example, each host should have the same check interval (how often it is

6 of 14

28FreeBSD Journal • November/December 2022

checked) and other similar settings. It makes this file smaller by avoiding repetitions and dif-
ferent hosts may use other template settings or override them with their own that are only
valid for this special system.

The templates.conf file is located within the zones.d/my-zone directory and looks
like this:

template Host “generic-host” {
 max_check_attempts = 5
 check_interval = 2m
 retry_interval = 30s
 enable_flapping = true
 check_command = “hostalive” //check is executed on the master
}

template Service “generic-service” {
 max_check_attempts = 5 // re-check 5 times before HARD state
 check_interval = 2m
 retry_interval = 1m
 enable_flapping = true
}

Two templates are defined here for generic hosts and services. In total, hosts and ser-
vices are checked five times before an alert is generated. This is to avoid occasional packet
loss or slow reacting equipment or processes, but that are generally working. The check_
interval defines how many times the checks are executed, while the retry_interval
defines when to check again after one check did not return in an OK-state. Definitely play
around with these intervals to fit your monitoring needs. Remember that the more often
you monitor, the more traffic is generated, and the data returned by the checks needs to be
stored in the database, gradually making it bigger the longer you monitor.

A flapping state can happen when a host or service seems to be available, then next time
it is unavailable, then available again and so on (changing rapidly between states, without
seeming to become stable). Icinga is capable of detecting those states by comparing the
last known state with the current one over a period of time. These flapping states are not
enabled by default but are valuable information for someone debugging a problem that
only happens during certain load times or busy activity. An erratic host behaving that way
shows up in Icinga and should be investigated further for the root cause. The problem may
also originate in the network itself, so rule out any other influences that might be responsi-
ble. A check_command defines which check from the ones Icinga provides needs to run by
default. The hostalive command is basically a ping in disguise, checking to see if a host is
reachable. The reason that this is only defined in the generic-host template is because ser-
vices usually define a different check_command that fits the service and can’t be easily gen-
eralized with a template.

Now that we have templates for common functionality in place, it is time to define which
checks our monitoring should run and on which hosts. They are defined in the zones.d/
my-zone/services.conf file. Here is my definition to check the disk space:

7 of 14

29FreeBSD Journal • November/December 2022

apply Service “disk” {
 import “generic-service”
 check_command = “disk”

// Specify remote agent as command execution endpoint, fetch host custom variable
 command_endpoint = host.vars.agent_endpoint

// Only assign where a host is marked as agent endpoint
 assign where host.vars.agent_endpoint
}

Applying a service means assigning it to a particular target, either a host or the result of
an expression. In this example, we define that all hosts that are defined as endpoints should
have the disk check running. The execution of the check is happening on the host itself,
called an active check. A passive check would be running on the central monitoring in-
stance, trying to reach the remote system, run the check, and fetch the result. Both active
and passive checks can be defined for a host or target. Both have their pros and cons, but in
a simple monitoring setup such as this, it is a good start to use the services that come with
Icinga.

Icinga provides these common services as checks: disk, load, users, swap, procs, ping, and
ssh. These provide a good initial basis for monitoring to see if swap space is low, the disk is
filling up, the load is extremely high, or that there are suddenly 200 users logged in (which
may or may not be normal).

A special check is to test whether our remote endpoint system is still available within the
defined zone. For that, we can extend the services.conf file we just created to contain
the following agent health check:

apply Service “agent-health” {
 check_command = “cluster-zone”

 display_name = “cluster-health-” + host.name

// Follow convention: agent zone name is FQDN same as host object name.
 vars.cluster_zone = host.name

 assign where host.vars.agent_endpoint
}

In addition to running the cluster-zone check command (which we don’t have to know
too much about to use it), we also see how a different check description is displayed in
the Icingaweb2 interface by defining display_name. With this, we can see at a glance the
name of the monitored system, prefixed by the string “cluster-health”.

The internal Icinga database (IDO) may also fail, so it is good to monitor it as well (re-
member to watch the watchers). Even though newer Icinga versions are doing away with the
IDO altogether, replacing it with a database on its own, small installations are perfectly fine
to still use the IDO. The checks for our IDO based on PostgreSQL are defined like this (again
in services.conf):

8 of 14

9 of 14

30FreeBSD Journal • November/December 2022

object Service “ido” {
 check_command = “ido”
 vars.ido_type = “IdoPgsqlConnection”
 vars.ido_name = “ido-pgsql”
 host_name = NodeName
}

We don’t even need to apply this to any host, as this check only runs where the Icinga
IDO database is installed (the central monitoring instance). The assignment host_name =
NodeName takes care of that, since NodeName is defined as the name of the host by default
doing the checks and collecting the results. The plugin periodically checks the IDO data-
base and emits (upon successful execution) information about the IDO:

Connected to the database server (Schema version: ‘1.14.3’). Queries per second:
4.633 Pending queries: 21.000. Last failover: 2022-03-23 16:05:05 +0100.

Moving on to a different file zones.d/my-zone/dependencies.conf is where we de-
fine (you guessed it) dependencies for a service. This allows us to say certain services de-
pend on the functionality of other services (and their check results) and form a logical unit.
A typical example would be a web application consisting of a database and a webserver. If
the database fails, the application running on the webserver does not work properly, so it
makes sense to define a dependency between the two. Thus, if the database checks fail, Ic-
inga will also mark the webserver (or the application if that is also monitored somehow) as
failed. This helps in determining the impact an outage has. If a service comes back online,
other dependent services also need to be checked (or restarted) to ensure continued func-
tionality. Otherwise, the checks may report all green again, but the application may have
suffered from the loss of the database and may need manual intervention to fix.

Here, we show the dependency of the agent-health check for services only:

apply Dependency “agent-health-check” to Service {
 parent_service_name = “agent-health”

 states = [OK] // Fail if parent service state switches to NOT-OK
 disable_notifications = true

// Automatically assign all agent endpoint checks as child services on the
// matched host
 assign where host.vars.agent_endpoint

// Avoid self reference from child to parent
 ignore where service.name == “agent-health”
}

We see how flexible Icinga is with its domain specific language using common pieces like
“apply” together with placeholders (like Host, Service or Dependency) to define what

10 of 14

31FreeBSD Journal • November/December 2022

and how the monitoring should take place. The agent-health checks trigger if a state oth-
er than OK (like or “FAILED” or “UNREACHABLE”) is detected. To not define this for every
single host we have, and not forget it for any new hosts added later, we use the assign key-
word again to apply this to all hosts defined as an endpoint.

Groups of hosts or services help to keep an overview of systems with common tasks
or criteria, like webservers, database servers, front-end hosts, firewalls, etc. This is what
groups.conf defines, but is optional when the infrastructure to monitor is small or too di-
verse for any commonalities:

object HostGroup “FreeBSD-servers” {
 display_name = “FreeBSD Servers”
 assign where host.vars.os == “FreeBSD”
}

Remember the object Host “monitor.example.com” definition in hosts.conf above?
We defined a local variable vars.os. We can now filter on the value of this variable using
the “assign where” statement. Tools that automatically add entries for new hosts in the
infrastructure to hosts.conf may also hold the information about what operating system
is used (among others), hence Icinga groups these systems in the Icingaweb2 display. Ser-
viceGroups are defined similarly. That way, a report may contain the number of systems that
are periodically checked for certain services. Webservers may run different checks than da-
tabase servers, but as service groups, it is easy to either apply them to new hosts as a whole
or define a mixture of both to form a whole new monitoring target.

The last file that I want to show is the users.conf file that holds all the information
about users that Icinga understands and notifies when some checks fail. A basic definition
may look like this:

object UserGroup “icingaadmins” {
 display_name = “Icinga Admin Group”
}

object User “icingaadmin” {
 display_name = “Icinga 2 Admin”
 groups = [“icingaadmins”]
 email = “icinga@localhost”
}

object User “Helpdesk” {
 email = “ticket@example.org”
 display_name = “The Friendly Helpdesk Folks”
 groups = [“icingaadmins”]
}

Users may be part of other groups as in this example where the Helpdesk user is part of
the Icinga Admin Group. Individual users may be assigned to only a certain host or a set of
services (experts in their field), but not to the overall infrastructure that is monitored.

11 of 14

32FreeBSD Journal • November/December 2022

Notification rules define who is contacted when and by which method (email by default,
but pagers, SMS, and even various instant messengers are possible). Escalations to a differ-
ent group after a certain amount of time can happen when a problem has not been dealt
with (or at least acknowledged), to define certain service-level agreements or for paying
(our impatient) customers.

Other files make up the Icinga monitoring and all are well defined in the documentation.
For now, let’s start all the services to get our basic monitoring infrastructure going. Espe-
cially after all the extra files are added, Icinga needs to know about them, so we restart that
particular service:

monitor# service postgresql restart
monitor# service php-fpm start
monitor# service nginx start
monitor# service icinga2 restart

The Icingaweb2 service is configured via the web browser for which a token is needed
because we don’t want a random stranger driving by our freshly installed monitoring by ac-
cident to misconfigure it. The token is generated and emitted with the following command:

monitor# icingacli setup token create --config=/usr/local/etc/icingaweb2
monitor# chown -R www:www /usr/local/etc/icingaweb2

The token is now readable from the browser and when pasted into the web form, the
remaining setup steps for Icingaweb2 can happen. Fill in the details like the database users
we created and other information like the admin user and its password. At the end, the
Icingaweb2 login will be presented, and you can access all your monitored hosts and ser-
vices from this central place.

Adding New Host Endpoints
After the initial excitement about Icinga’s functionality you may be wondering how to

add more objects to monitor. We will demonstrate this with a new host and show all the
steps necessary to include it into our monitoring.

On a freshly installed host (we use FreeBSD here) called client.example.org, install the
icinga2 package.

client# pkg install icinga2

Since this is a certificate-based authentication between this host and the central Icinga
monitoring instance, we need to ensure that the directory holding the certificates exists and
has the right ownership:

client# mkdir /var/lib/icinga2/certs
client# chown icinga:icinga !$
client# chown -R icinga:icinga /usr/local/etc/icinga2

Next, we enable the icinga2 service to start at system bootup:

12 of 14

33FreeBSD Journal • November/December 2022

client# sysrc icinga2_enable=yes

A client certificate is generated next using the “icinga2 pki” subcommand. While this
command is interactive, we can also provide all necessary parameters directly on the com-
mand line to ease automation later when adding hundreds of hosts. Note that this has to
run on the central monitoring instance.

monitor# icinga2 pki new-cert --cn client.example.org \
 --key /var/lib/icinga2/certs/client.example.org.key \
 --csr /var/lib/icinga2/certs/client.example.org.csr”

The file ending in .csr is the certificate signing request, which is now used in combina-
tion with the previously generated master key to create a new signed client certificate
(example.org.crt).

monitor# icinga2 pki sign-csr \
 --csr /var/lib/icinga2/certs/client.example.org.csr \
 --cert /var/lib/icinga2/certs/client.example.org.crt”

When we ran “icinga2 node setup --master” at the beginning of this article to
generate the master certificate to sign the others, a file called monitor.example.org.crt
was created in /var/lib/icinga2/certs/. Transferring this to the client in a secure way is
necessary to validate the server certificate. There are various ways to do this, depending on
how much you trust the client and any users connected to it, as well as the network (or me-
dium) between the two.

monitor# scp /var/lib/icinga2/certs/monitor.example.org.crt \
 client.example.org:/var/lib/icinga2/certs/

Next, import the certificate into the client and tell Icinga to trust it.

client# icinga2 pki save-cert --trustedcert \
 /var/lib/icinga2/certs/monitor.example.org.crt \
 --host client.example.org”

A new ticket is created for the client on the monitoring server to establish a trust relation-
ship. Essentially, the client asks to be part of the monitoring infrastructure. These requests
may be generated automatically and signed at a later time (after a review by a human or
third entity).

monitor# icinga2 pki ticket --cn client.example.org

Note the resulting ticket output on the commandline (in our case 4f76d2ec-
da535753e9180838ebffbcbca242fe61), we’ll need it in this next step on the client. It will take
the generated ticket from the central monitoring instance and generate configuration files
just like we did manually when we set up our monitor. The zone relationship is established,

13 of 14

34FreeBSD Journal • November/December 2022

making the monitor a parent of the client, establishing trust between them. Additionally, we
tell the client to accept commands and configuration changes sent to it by the monitor. This
is optional and clients may also choose to make their own configuration choices, indepen-
dent of the host. Having the configuration on the central server and controlling the config-
uration of each client there eases the burden of keeping them in sync on every monitored
host. When changing a setting like a new monitoring interval, it only needs to be set once
and the clients will apply the changes coming from the monitor locally.

client# icinga2 node setup --ticket 4f76d2ecda535753e9180838ebffbcbca242fe61 \
 --cn client.example.org --endpoint monitor --zone client.example.org \
 --parent_zone my-zone --parent_host monitor.example.org \
 --trustedcert /var/lib/icinga2/certs/monitor.example.org.crt \
 --accept-commands --accept-config --disable-confd”

Before we start our Icinga instance, we need to verify that all files were written correctly
and conform to Icinga’s logic. To do that, we tell the Icinga daemon to perform a configura-
tion check with the following command:

client# icinga2 daemon -C

If there are any errors, Icinga tries to help pinpoint the file and line in question. Typical er-
rors may be providing the wrong names for the parent or zone. Once the validation is com-
plete, a new entry for this new client needs to be added on the monitoring server to include
it in future check executions. On monitor.example.org, edit

/usr/local/etc/icinga2/zones.d/my-zone/hosts.conf

and add the following lines of configuration, ensuring that this is placed before the central
hosts object definition:

object Host “client.example.org” {
 import “generic-host” // import generic settings for all hosts
 display_name = “My Client Host”
 address = “client.example.org”

 vars.os = “FreeBSD”
//follow convention that host name == endpoint name
 vars.agent_endpoint = name
}

Host objects are fairly simple to define and don’t contain any new fields that we have not
yet seen from our previous edits when we added the central server itself. As before, we also
need to define that this host is an endpoint (no further monitoring clients are below it and
that it is not a parent of another host) as well as the zone it belongs to. Typically, these en-
tries are placed before the line containing 'object Zone “director-global” {' and
look like this:

14 of 14

35FreeBSD Journal • November/December 2022

object Endpoint “client.example.org” {
// client connects itself
 host = “client.example.org”
 log_duration = 0
}

object Zone “client.example.org” {
 endpoints = [“client.example.org”]
 parent = “my-zone” // Establish zone hierarchy
}

In the zone object, we only need to define the name of our endpoint, referencing the
host definition we did earlier in the file. The parent zone is the one that was generated when
we created the monitor certificate. There should already be entries for it in the file by the Ic-
inga configuration. The log duration entry as endpoint attribute instructs the endpoint how
long to store a replay log of all check results on the client if the connection to the parent is
lost. Once the connection is reestablished, the client will replay the log and all the data will
be sent to the parent. Since the parent schedules all the checks to be run on the monitored
systems, setting this to zero is fine.

We’re done wading through configuration files on both hosts. The only thing left is to
start the icinga2 service on the client and on the server to read the configuration changes
we made.

client# service icinga2 start
monitor# service icinga2 restart

The new client should now appear in the Icingaweb2 overview as pending. When the next
scheduled check interval happens, the client is contacted in a secure way (since they ex-
changed certificates, remember?) checks are executed, and results delivered to the central
host.

Congratulations, you can now enjoy monitoring your infrastructure for common services
and add new hosts to it. Make sure to check out the Icinga configuration for various moni-
toring-related information and further ways of configuring your Icinga installation to fit your
needs.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and
member of the documentation engineering team. In the past, he served on the FreeBSD
core team for two terms. He administers a big data cluster at the University of Applied Sci-
ences, Darmstadt, Germany. He’s also teaching a course “Unix for Developers” for under-
graduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

https://www.bsdnow.tv/

36FreeBSD Journal • November/December 2022

At EuroBSDCon in Vienna this year, I spoke about my work examining the performance
of QUIC on FreeBSD and Linux

One core part of my measurement approach was CPU saturation during a net-
work transfer that is using all the available CPU cycles for a sender. I used CPU saturation
two ways, the first was to detect if the CPU was the bottleneck in the system. If it wasn’t the
bottleneck, then I needed to be sure that the network was the bottleneck, and not some
other component I wasn’t trying to measure. And second, once I had controlled for CPU
saturation and made sure another bottleneck wasn’t at
play, I could use the actual CPU usage for a test to es-
timate how fast the system could send if it could satu-
rate the network card with UDP. This was really helpful,
as with all my measurements, my network interfac-
es can only manage ~6Gbit/s with UDP traffic in any
form on any of the tested operating systems. But this
doesn’t saturate the CPU, instead it runs at about 70%
utilization. With good CPU measurements, I could in-
vent a metric to optimistically predict what the proces-
sor could do if the network interface wasn’t getting in
the way.

My EuroBSDCon presentation was based on yet un-
published academic work, and it seemed a good idea
to find a well-reasoned approach to looking at CPU performance during a network test.
Some of my tests were inspired by work that Fastly did to compare the computational effi-
ciency of QUIC compared to TCP. While Fastly seems to have established a great testbed,
the only mechanism I could figure out from their writing was to “eyeball” top.

This wasn’t really good enough for publishing results or for accurate evaluation of thou-
sands of test results. If looking at top wasn’t good enough, maybe I could, instead, figure
out how top does its own looking and reimplement that?

How Does top Estimate CPU Utilization?
top is probably the first tool we go to when we wonder what is happening on a system.

Even with its universal usefulness, top is a very simple program that actually draws things

BY TOM JONES

It seemed a good idea

to find a well-reasoned

approach to looking

at CPU performance

during a network test.

Tom Once Again,
 Does Stupid Things
 with a Computer:
 activitymonitor.sh

1 of 6

37FreeBSD Journal • November/December 2022

nicely on the screen and it has some abstractions on the machine to make the code a little
more portable. The CPU utilization interface is provided by FreeBSD in the form of two sy-
sctl nodes:

$ sysctl hw.ncpu
4
$ sysctl kern.cp_time
kern.cp_time: 3832370 11408 3650627 44926 2061043745
$ sysctl kern.cp_times
kern.cp_times: 1080959 3035 954019 4354 515101995 1062132 2823 815176 1143
515263088 960320 3419 980090 37760 515162773 728956 2131 901334 1668 515510273

The first node kern.cp_times, returns 5 values for the processor which report the to-
tal time since boot for time spent in user, nice, system, interrupt and idle. kern.cp_times
reports the same 5 values of the each of the processors in the system. By using kern.cp_
times with hw.ncpu, we can break down this list. By working with both sysctls we get the
total system time usage since boot and the per-processor time usage since boot.

Usage since boot can be helpful in understanding what the machine has been up to and
it is useful to see how the system usage is changing over short periods of time. top on start-
up displays the total system time breakdown, but once it refreshes (by default after 1 sec-
ond), it then shows how these fields have changed over that second.

Plotting
With the ability to very easily reproduce what top does, I wondered if I could grab the sys-

tem CPU utilization periodically and plot it out. I figured I could include these plots next to
throughput plots to show that between tests, the host was almost entirely idle, and it satu-
rated the expected single core when the test was running.

2 of 6
activitymonitor.sh

38FreeBSD Journal • November/December 2022

Over the years, I have had different go-to tools when it comes to plotting, but with this
work, I got tired of custom things and wanted simplicity. I could have plotted out the utiliza-
tions with the easiest method—a spreadsheet, but I thought something that gave me a little
more control would be nice.

In other recent work, I have used web-based tooling for plots. The c3js library gives nice
interactive charts but struggles when there are a lot of data points (more than the low 10s of
thousands). Given that I was also going to look at network usage, the amount of data spread
out over a minute of recordings was going to be a lot.

When thinking about tooling, I recalled a recent article I had written for Klara Systems
on inetd. When writing that article, I created my own simple inetd service that implemented
the datetime service with a shell script.

Could I deliver my CPU usage information live from the host using inetd?

activitymonitor.sh
This leads us to activitymonitor.sh, a hacky creation that abuses all good norms to give

simple plots in a web browser.
activitymonitor.sh is a single shell script that consists of three parts:
• A script run by inetd.
• A basic html page.
• Some javascript to update a live page.
inetd is an Internet service runner. The full history and features of inetd fall a little outside

the scope of this short article, but inetd was used for on-demand launch applications when
hosts were too small to have waiting services hanging around in memory. inetd handles lis-
tening for traffic. When connections are received or datagrams arrive (for UDP based pro-
tocols), inetd launches either a built-in handler or a specified program. The program is given
reads from the Internet connection on standard in. Any writes to standard out are sent out
over the network. This is a really simple interface, but powerful enough to implement plain
text server protocols.

A Small Script
The small script is quite simple. It has two main components and then a blob of data ap-

pended to it which is the web page and javascript.
First, the shell script deals with being a guest of inetd and parsing the http headers. The

input to the script will be the HTTP headers the client sends when making its request.

Read client headers, we only really care if one is data.json.
h=””
while read -t 1 h
do
 log $h

 if echo $h | grep -q “data.json”;
 then
 page=”data.json”
 contenttype=”application/json”
 else
 fi
done

3 of 6
activitymonitor.sh

https://klarasystems.com/articles/modern-inetd-in-freebsd/
https://klarasystems.com/articles/modern-inetd-in-freebsd/

39FreeBSD Journal • November/December 2022

echo “HTTP/1.0 200 OK”
echo “Content-Type: $contenttype”
echo

The script uses the read built-in command with a timeout, meaning the script will con-
sume all the input on the socket until there is a 1-second gap between incoming lines
before proceeding. This read timeout is the rate-limiting mechanism. The headers are
checked to see if the data url is being requested, if not then it delivers the base html page.

The data url path of the script is where we gather up interesting data about the host. ac-
tivitymonitor.sh implements most of the default interface of top. To do so, it gathers up the
required information using FreeBSD base commands and then encodes them into a JSON
blob delivered to the requester.

if[“$contenttype” == “text/html”]
then
 indexstart=$((cat -n $0 | grep -e 'INDEX START'\
 | awk '{print $1}' | tail -n 1+1))
 sed -n”$indexstart”',$p' $0
elif[“$contenttype” == “application/json”]
then
 psout=$(ps -ax -o \
 “user,pid,%cpu,cpu %mem,vsz,rss,state,command”\
 --libxo json)
 vmstatout=$(vmstat –libxo json)
 netstatout=$(netstat -bi –libxo json)

 # kern.cp_time(s) gives us 5 numbers for the system:
 # user nice system interrupt idle
 # kern.cp_times gives us hw.ncpu entries for those 5 values
 totalcputime=$(sysctl -n kern.cp_time)
 percputime=$(sysctl -n kern.cp_times)
 ncpu=$(sysctl -n hw.ncpu)
 loadavg=$(sysctl -n vm.loadavg)
 lastpid=$(sysctl -n kern.lastpid)
 hostname=$(sysctl -n kern.hostname)

 system=$(printf ‘{“hostname”:”%s”,
 “cp_time”:”%s”, “cp_times”:”%s”, “ncpu”:”%s”,
 “loadavg”:”%s”, “lastpid”:”%s”}’ “$hostname”
 “$totalcputime” “$percputime” “$ncpu”
 “$loadavg” “$lastpid”)
 log $system

 physmem=$(sysctl -n hw.physmem)
 pagesize=$(sysctl -n hw.pagesize)

4 of 6
activitymonitor.sh

40FreeBSD Journal • November/December 2022

 pagecount=$(sysctl -n vm.stats.vm.v_page_count)
 wirecount=$(sysctl -n vm.stats.vm.v_wire_count)
 activecout=$(sysctl -n vm.stats.vm.v_active_count)
 inactivecount=$(sysctl -n vm.stats.vm.v_inactive_count)
 cachecount=$(sysctl -n vm.stats.vm.v_cache_count)
 freecount=$(sysctl -n vm.stats.vm.v_free_count)

 memory=$(printf '{“physmem”:”%s”, “pagesize”:”%s”,
 “pagecount”:”%s”, “wirecount”:”%s”,
 “activecout”:”%s”, “inactivecount”:”%s”,
 “cachecount”:”%s”, “freecount”:”%s” }’
 “$physmem” “$pagesize” “$pagecount”
 “$wirecount” “$activecout” “$inactivecount”
 “$cachecount” “$freecount”)

 log $totalcputime
 # deliver the data json
 printf '{“system”:%s, “memory”:%s, “ps”:%s,
 “vmstat”:%s, “netstat”:%s}'“$system”
 “$memory” “$psout” “$vmstatout” “$netstatout”

fi
exit # don’t continue into the web page

The first set of information the script collects comes from FreeBSD tools that have libxo
support. Libxo is a very powerful FreeBSD feature—base tools with support can give output
in JSON natively. We grab the output of ps, vmstat and netstat. This lets us display pro-
cesses, vm system information, and network statistics such as interface rates.

The second set in the script is concerned with getting information directly from the sy-
sctl interface. Right now, we get the kern.cp_time(s), number of cpus, hostname, load aver-
age and base statistics about memory. Each of these has to be bundled into a JSON object
by hand by using printf.

All of this information is then built into a JSON object which the script prints out after a
simple response header. inetd then feeds back into the connecting socket and returns to
the client as the body of the http response.

A Basic Web Page
The activitymonitor.sh script embeds a tiny webpage within itself which it delivers if the

data url isn’t requested. The page has a header, some canvases to give the javascript some-
where to draw plots, and a pre block for the top-style process list. It also embeds the javas-
cript that causes all the magic to happen.

The html page (and javascript) is appended to the end of the shell script and marked with
a 'INDEX START' tag. activitymonitor.sh searches itself for this tag and takes everything af-
ter the tag as content to deliver, using sed to cut it up.

Some Javascript
The javascript does all the heavy lifting to parse out information from the data and to

5 of 6
activitymonitor.sh

41FreeBSD Journal • November/December 2022

give us a user interface. It pulls out and processes the kern.cp_times values and calculates
deltas we need to draw the plots.

The main functional thing it does other than drawing is to request data from the data
side of activitymonitor.sh. Once the basic web page has loaded, the script will kick off a task
to fetch the '/data.json' url.

When data successfully arrives it pulls in the fields it needs to from the JSON result and
merges in new data to calculate what should be displayed.

Finally, at the end it calls getdata again to start off this task. Because of the read time-
out in activitymonitor.sh, this will happen with a 1-second gap between results.

This is a Bad Idea
activitymonitor.sh was a fun little project that got away from me and almost became a

usable tool. The CPU plots helped me understand that the FreeBSD scheduler moves pro-
cesses between CPUs very eagerly and helped me devise a measurement strategy that
would account for this.

While a fun project, it is not something that should be used by anyone in the real world.
Instead, it is an example of the power of composability of the tools in the FreeBSD base sys-
tem. Other than sysctl, all the tools we use natively output JSON and can be fed into power-
ful user interface languages.

This native support for JSON makes it easy to consume output from standard tools and
lets automation occur with the data a human would consume trivially. This gives us power
to build systems that are machine readable with the same data we read on the screen. It is a
small enhancement beyond the traditional UNIX interfaces, but an incredibly powerful one.

activitymonitor.sh is available here
inetd configuration such as the following is required:

http-alt stream tcp nowait tj /home/tj/code/activitymonitor.sh
activitymonitor.sh

TOM JONES wants FreeBSD-based projects to get the attention they deserve. He lives
in the North East of Scotland and offers FreeBSD consulting.

6 of 6
activitymonitor.sh

https://gist.github.com/adventureloop/a66c7904dfbf3749449c22966e2229e5

42FreeBSD Journal • November/December 2022

As mentioned in earlier columns, IPv6 looks similar to IPv4 except for the address for-
mat. However, these two protocols work independently, and of course, there are fea-
tures specific to each protocol. This column will take a look at IPv6’s unique charac-

teristics based on multiple addresses and its practical use, and NDP, Neighbor Discovery
Protocol, which is responsible for the L2-to-L3 address resolution and discovery of hosts and
routers on the same network.

Many IPv6 Addresses on Your Box
When you use IPv6 on your FreeBSD box, you will usually get multiple addresses like this:

% ifconfig vlan100
vlan100: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

options=80003<RXCSUM,TXCSUM,LINKSTATE>
ether a4:ba:db:e0:ae:33
inet6 2001:db8:fb5d::1prefixlen64
inet6 fe80::a6ba:dbff:fee0:ae33%vlan100 prefixlen 64 scopeid 0x6
inet6 fe80::ffff:2:7b%vlan100 prefixlen 64 scopeid 0x6
inet6 fe80::ffff:2:35%vlan100 prefixlen 64 scopeid 0x6
inet 192.168.100.1 netmask 0xffffff00 broadcast 192.168.100.255
groups: vlan
vlan: 100 vlanproto: 802.1q vlanpcp: 0 parent interface: lagg0
media: Ethernet autoselect
status: active
nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>

This is a live example from one of the author’s boxes. The /etc/rc.conf contains the
following:

ifconfig_vlan100_ipv6="inet6 2001:db8:fb5d::1/64"
ifconfig_vlan100_alias0="inet6 fe80::ffff:2:7b/64"
ifconfig_vlan100_alias1="inet6 fe80::ffff:2:35/64"

1 of 10

BY HIROKI SATO

Pragmatic IPv6
(Part 4)

43FreeBSD Journal • November/December 2022

You can see four IPv6 addresses in the output of ifconfig(8). The 2001:db8:fb5d::1
is a GUA1, and the other three are LLAs2. In /etc/rc.conf file, only two LLAs are explicitly
specified. Why do we have four?

Automatically-configured LLA
Remember that the following will happen when an ifconfig_IF_ipv6 is specified:
• The IFDISABLED flag is removed, and
• an LLA based on the L2 address of the interface will be automatically configured.
More precisely, all IPv6-capable interfaces have AUTO_LINKLOCAL flag by default in the

kernel level, and it will configure an LLA when the interface is becoming “up”. The rc.d(8)
scripts will add IFDISABLED flag when no ifconfig_IF_ipv6 is specified to prevent the
interface from configuring an LLA. This is a seatbelt for people who want IPv4 only. As long
as you have no ifconfig_IF_ipv6 line, the interface will get no IPv6 address. The auto-
matically configured LLA is an L33 address, so one on the same network can try to access
your box over IPv6 TCP or UDP. For this reason, the LLA is not configured unconditionally.

Note that an LLA is mandatory if you want to use an IPv6 GUA. Unlike IPv4, you always
have to configure an LLA. This is the reason why there is the AUTO_LINKLOCAL flag by de-
fault and the kernel configures one. While you can remove the LLA manually, various odd
behaviors will occur.

Modified EUI-64 Format Interface Identifiers
Let’s see the automatically-configured LLA again. The prefix is always fe80::/64. The IID

is filled by using the L2 address. If you are using Ethernet, it is the IEEE 802 48-bit MAC, also
known as Ethernet MAC address. The Ethernet MAC address is 48-bits long. You can find
“ether” keyword in the output of the ifconfig(8) command:

ether a4:ba:db:e0:ae:33
inet6 fe80::a6ba:dbff:fee0:ae33%vlan100 prefixlen 64 scopeid 0x6

The IID looks similar to the MAC address but not the same. This is called “modified EUI-
64 format interface identifier” and is generated from the 48-bit MAC address. The genera-
tion algorithm4 is simple. Let’s compare the IID to the MAC address octet-by-octet5:

The IID is 64-bit long, so two octets must be filled. The “0xff” and “0xfe” in the center
of the IID are always added. In other words, if the IID has 0xfffe at the center, it is gener-
ated by an EUI-48 MAC address. There is one more difference—the first octet has slightly
been changed. The first and second bits (from the LSB⁶) of the first octet in the MAC ad-
dress have the following meanings:

first bit: “individual”(0) or “group”(1),
second bit: “universal”(0) or “local”(1).
The “individual” means unicast (i.e., 1-to-1 communication), and the “group” means mul-

ticast or broadcast (1-to-n communication). When using a real hardware NIC, not a virtual
one, it has a unique MAC address assigned by the vendor. In this case, the address is univer-

2 of 10

44FreeBSD Journal • November/December 2022

sally unique, and the second bit of the octet is 0. However, in the modified EUI-64 format,
the second bit is specified as an inverted value of the MAC address. So, in most cases, the
second bit of the first octet is 1. The first octet, “0xa4” in this example, is changed in the
following way. The bit array of the hexadecimal value “0xa4” is “10100100”. The second bit
from the rightmost bit in the array will be inverted, and you will get “0xa6” in the IID:

Currently, on FreeBSD, the automatic LLA and GUAs set by SLAAC use this algorithm.
There are two topics you have to be aware of. One is the reason why the second bit is
flipped, and another is a problem with the generated IIDs.

Problems of Modified EUI-64 IID
The reason for inverting the second bit is to make it easy to configure an address manu-

ally. The MAC address on a real hardware NIC has a “universal” bit, so the first octet of the
generated IID will never be “0x00.” Using this fact, you can configure an IID that does not
conflict with automatically-configured ones. For example, “0:0:0:1” or “::1” is an address
you can choose because the first octet is 0x00. If this inversion were not defined, you would
have to use something like “0200:0:0:1.”

Although the modified EUI-64 IID is popular in IPv6 implementations, privacy is an issue.
As you can imagine, the MAC address in the generated address can be used to track your
network activity. While the IPv6 address space is enormous for address scanning, the EUI-
64 IID address space is smaller than that. RFC 7721, “Security and Privacy Considerations for
IPv6 Address Generation Mechanisms,” has extensively discussed the security and privacy
aspects of the algorithm.

There are two algorithms to mitigate them. RFC 8981, “Temporary Address Extensions
for Stateless Address Autoconfiguration in IPv6,” defines “temporary address.” The tempo-
rary address is an automatically-configured IPv6 address by SLAAC with a random IID and
is valid for a short period of time. This is intended for the source address when initiating an
outgoing session. It is difficult for an outside entity to predict the IID that is employed for
temporary addresses. FreeBSD partially supports this extension, and you can enable it by
setting the following sysctl variable:

sysctl net.inet6.ip6.use_tempaddr=1

After enabling this, two addresses will be configured by SLAAC:

ifconfig vlan84
vlan84 : flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> metric 0 mtu 1500

options=80003<RXCSUM,TXCSUM,LINKSTATE>
ether a4:ba:db:e0:ae:33
inet6 2001:db8:fb5d:8001::42 prefixlen 64

3 of 10

45FreeBSD Journal • November/December 2022

inet6 fe80::a6ba:dbff:fee0:ae33%vlan84 prefixlen 64 scopeid 0x7
inet6 fe80::ffff:2:7b%vlan84 prefixlen 64 scopeid 0x7
inet6 fe80::ffff:2:35%vlan84 prefixlen 64 scopeid 0x7
inet6 2001:db8:fb5d:8001:a6ba:dbff:fee0:ae33 prefixlen 64 autoconf
inet6 2001:db8:fb5d:8001:7c36:33b7:b967:382f prefixlen 64 autoconf
temporary groups: vlan
vlan: 84 vlanproto: 802.1q vlanpcp: 0 parent interface: lagg0 media:
Ethernet autoselect
status: active
nd6 options=23<PERFORMNUD,ACCEPT_RTADV,AUTO_LINKLOCAL>

Note that the vlan84 is a different interface from vlan100 in the previous example.
You can see two addresses with the “autoconf” keyword. SLAAC and a modified EUI-64
IID generate the first one, and the second one has a random IID and is labeled with “tem-
porary.” The temporary address will be automatically changed once in 24 hours by default.
Note that if you already have a SLAAC address and then enables the use_tempaddr vari-
able, you need to remove the SLAAC address first.

This extension is useful to some extent, but the current FreeBSD implementation has the
following problem:

• You cannot control the generation of temporary addresses per-interface basis. When
enabled, all of the interfaces accepting Router Advertisement will have a temporary
address.

• The address generation algorithm is based on an old specification in RFC 4941, not in
RFC 8981.

There are also several pitfalls when you try to use it. This topic will be covered in lat-
er columns. At this moment, you should learn that the modified EUI-64 IID is popular, and
FreeBSD uses it when autoconfiguration is performed. The auto-configured address is a
normal address that can be used for TCP or UDP communication. Thus, you might want to
be aware that someone on the same network segment can try to access your box using the
address.

Another algorithm is a stable IPv6 interface identifier proposed in RFC 7217, “A Method
for Generating Semantically Opaque Interface Identifiers with IPv6 Stateless Address Au-
toconfiguration (SLAAC).” This is a drop-in replacement of the modified EUI-64 IID and a
solution to security and privacy issues due to the MAC address used. FreeBSD has not sup-
ported this yet, but the author is working on the implementation. This will also be covered in
the later columns.

Non-Unicast Addresses
When an IPv6 address is configured, your FreeBSD box actually has more addresses. Try

ifmcstat command like this:

% ifmcstat -i vlan84 -f inet6
vlan84 :

inet6 fe80::a6ba:dbff:fee0:ae33%vlan84 scopeid 0x7
mldv2 flags=2 <USEALLOW > rv 2 qi 125 qri 10 uri 3
 group ff02::1:ff67:382f%vlan84 scopeid 0x7 mode exclude
 mcast-macaddr33:33:ff:67:38:2f

4 of 10

46FreeBSD Journal • November/December 2022

 group ff02::202%vlan84 scopeid 0x7 mode exclude
 mcast-macaddr 33:33:00:00:02:02
 group ff02::1:ff02:35%vlan84 scopeid 0x7 mode exclude
 mcast-macaddr 33:33:ff:02:00:35
 group ff02::1:ff02:7b%vlan84 scopeid 0x7 mode exclude
 mcast-macaddr 33:33:ff:02:00:7b
 group ff02::1:ffe0:ae33%vlan84 scopeid 0x7 mode exclude
 mcast-macaddr 33:33:ff:e0:ae:33
 group ff01::1%vlan84 scopeid 0x7 mode exclude
 mcast-macaddr 33:33:00:00:00:01
 group ff02::2:a17e:3d85%vlan84 scopeid 0x7 mode exclude
 mcast-macaddr 33:33:a1:7e:3d:85
 group ff02::2:ffa1:7e3d%vlan84 scopeid 0x7 mode exclude
 mcast-macaddr 33:33:ff:a1:7e:3d
 group ff02::1%vlan84 scopeid 0x7 mode exclude
 mcast-macaddr 33:33:00:00:00:01
 group ff02::1:ff00:42%vlan84 scopeid 0x7 mode exclude
 mcast-macaddr 33:33:ff:00:00:42

Addresses after the keyword “group” are ones assigned to the interface vlan84. You can
even try to send a ping to the addresses and get a response:

% ping6 ff02::1:ff67:382f%vlan84
PING6 (56=40+8+8 bytes) fe80::a6ba:dbff:fee0:ae33%vlan84 --> ff02::1:
ff67:382f%vlan84
16 bytes from fe80::a6ba:dbff:fee0:ae33%vlan84, icmp_seq=0 hlim=64
time=0.073 ms
16 bytes from fe80::a6ba:dbff:fee0:ae33%vlan84, icmp_seq=1 hlim=64
time=0.044 ms
16 bytes from fe80::a6ba:dbff:fee0:ae33%vlan84, icmp_seq=2 hlim=64
time=0.054 ms
ˆC
--- ff02::1:ff67:382f%vlan84 ping6 statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/std-dev=0.044/0.057/0.073/0.012ms

However, they were not in the output of the ifconfig command. What are they?

Well-Known Addresses and Their Application
You can see that all of the addresses have the same prefix “ff00::/12”. Do you remem-

ber that in the last column, ping6(8) utility was used with the address “ff02::1” to check if
the IPv6 communication works or not? “ff02::1%vlan84” is listed in the sixth entry.

An address with the prefix “f000::/4” is an IPv6 multicast address. It is used for 1-to-n
communication. When you send a ping to this address, you may receive one or more re-
sponses. The prefix determines whether the address is multicast or not and the scope to
which the address belongs. And the purposes of each address are also defined. All of the
well-known multicast addresses and their application can be found in “IPv6 Multicast Ad-
dress Space Registry”⁷.

5 of 10

47FreeBSD Journal • November/December 2022

Let’s see the address listed in the above example. An address with “ff01::/16” is an in-
terface-local multicast address, and one with “ff02::1/16” is a link-local multicast address.
You always need the %zoneid part.

“ff02::1” is the all-nodes address whose scope is link-local. This means that all IPv6-ca-
pable nodes on the same network have this multicast address. If you send a ping to
“ff02::1%vlan84”, you will get a lot of responses from the network on vlan84. A multicast
address does not belong to a single node. Thus, we usually say that a host “joins” the ad-
dress. All IPv6-capable hosts automatically join the all-nodes multicast address. There is no
need to configure it. This is why you can always use “ff02::1” as a tool to check if there is
an IPv6 node on the interface. “ff02::2” is the link-local all-routers address. This is not in-
cluded in the output of ifmcstat command because this machine is not configured as an
IPv6 router. If you send a ping to “ff02::2%vlan84,” you can check if there is a router on
vlan84.

“ff01::1” is the interface-local all-nodes address. The “interface-local” means an isolated
group where only the interface belongs. You will receive a response from the same interface
by sending a ping to this address.

“ff02::202” is the multicast address which the rpcbind(8) deamon uses.
Of course, these addresses are not only for the ping6(8) utility. They are used when

ICMPv6 or some other 1-to-n communication is required. If all IPv6 nodes need to receive
it, “ff02::1” is used. If all IPv6 routers need to do it, “ff02::2” is used. Therefore, most local
ICMPv6 control messages will be delivered using a combination of an LLA on the host and
these well-known multicast addresses.

Let’s see more concrete examples. What is remaining? The following addresses are still
unclear:

ff02::1:ff67:382f%vlan84 scopeid 0x7 mode exclude
ff02::1:ffe0:ae33%vlan84 scopeid 0x7 mode exclude
ff02::1:ff00:42%vlan84 scopeid 0x7 mode exclude
ff02::1:ff02:35%vlan84 scopeid 0x7 mode exclude
ff02::1:ff02:7b%vlan84 scopeid 0x7 mode exclude
ff02::2:a17e:3d85%vlan84 scopeid 0x7 mode exclude
ff02::2:ffa1:7e3d%vlan84 scopeid 0x7 mode exclude

Solicited-Node Multicast Address
The following addresses are called “Solicited-Node Multicast Address”:

ff02::1:ff67:382f%vlan84 scopeid 0x7 mode exclude
ff02::1:ffe0:ae33%vlan84 scopeid 0x7 mode exclude
ff02::1:ff00:42%vlan84 scopeid 0x7 mode exclude
ff02::1:ff02:35%vlan84 scopeid 0x7 mode exclude
ff02::1:ff02:7b%vlan84 scopeid 0x7 mode exclude

A Solicited-Node Multicast Address is one with the prefix ff02:0:0:0:0:1:ff00::/104.
This means it ranges from ff02::1:ff00:0 to ff02::1:ffff:ffff. These five addresses
start with this prefix.

6 of 10

48FreeBSD Journal • November/December 2022

What is the purpose and how is the IID configured? The objective is NDP, Neighbor Dis-
covery Protocol⁹.

Neighbor Discovery Protocol
NDP is one of the core protocols of the IPv6 protocol suite and is responsible for the fol-

lowing functionalities seen in IPv4:
• ARP (L2-L3 address translation)
• ICMP Router Discovery⁹
and the following IPv6-specific features:
• DAD (Duplicate Address Detection)
• SLAAC (StateLess Address AutoConfiguration)
Before diving into the details, let’s see the IID of the address format of a Solicited-Node

Multicast Address. This address is generated from a unicast address. To understand the cor-
respondence, compare the output of ifconfig and ifmcstat command:

inet6 2001:db8:fb5d:8001:7c36:33b7:b967:382f prefixlen 64 autoconf temporary
ff02::1:ff67:382f%vlan84 scopeid 0x7 mode exclude

inet6 2001:db8:fb5d:8001:a6ba:dbff:fee0:ae33 prefixlen 64 autoconf
ff02::1:ffe0:ae33%vlan84 scopeid 0x7 mode exclude

inet6 2001:db8:fb5d:8001::42 prefixlen 64
ff02::1:ff00:42%vlan84 scopeid 0x7 mode exclude

inet6 fe80::ffff:2:35%vlan84 prefixlen 64 scopeid 0x7
ff02::1:ff02:35%vlan84 scopeid 0x7 mode exclude

inet6 fe80::ffff:2:7b%vlan84 prefixlen 64 scopeid 0x7
ff02::1:ff02:7b%vlan84 scopeid 0x7 mode exclude

In short, the last three octets of a unicast address are used in the multicast address. For
example, ff02::1:ff67:382f%vlan84 has 0x67, 0x38, and 0x2f. These three octets are
at the last of the unicast address 2001:db8:fb5d:8001:7c36:33b7:b967:382f. So, your
box will have as many link-local multicast addresses as there are unicast addresses. While no
multicast address appears in the output of ifconfig command, they are always automati-
cally configured.

Address Resolution
Let’s move on to how multicast addresses are used in NDP. One of the most crucial func-

tionalities of NDP is L2-L3 address resolution. For IPv4, ARP10 is responsible for this. The big
difference is that ARP is a protocol of L2 network such as Ethernet, not IPv4. To communicate
in IPv4, the source and destination L2 address are required. This address mapping informa-
tion cannot be obtained using IPv4 due to a chicken-and-egg problem. In IPv6, using an LLA
and a Solicited-Node Multicast Address, a host can initiate an IPv6 communication without
knowing the destination address. The all-node address is always available.

7 of 10

49FreeBSD Journal • November/December 2022

Figure 1: An example network with Box A and Box B

More specifically, the address resolution in NDP works in the following way. Figure 1
shows an example network. There are two machines, Box A and Box B.

Figure 2: Timing diagram of Neighbor Solicitation and Neighbor Advertisement

When initiating a communication from A, it needs the L2 address of B. As shown in Fig-
ure 2, Box A sends a “Neighbor Solicitation” (NS) message of ICMPv6. It contains a pair of
the LLA and the MAC address. The destination address of NS is Solicited-Node Multicast
Address. The last three octets in the unicast addresses of A and B is 0:0:1, so the address
will be ff02::1:ff00:0:1. Box B will send back a “Neighbor Advertisement” (NA) message
that contains another pair of the LLA and the MAC address on the Box B side. A knows B’s
LLA and MAC address in this exchange. Note that the Solicited-Node Multicast Address for
A is the same as one for B by chance in this example. It depends on the IID of A and B.

Router Discovery and Autoconfiguration

Figure 3: An example network with Box A, Box B, and Router C

8 of 10

50FreeBSD Journal • November/December 2022

Figure 3 shows another example network when there is a router. NS and NA messages
are also exchanged for L2-L3 address resolution on this network. In addition, a host can dis-
cover the router’s existence.

Figure 4: Timing diagram of Router Solicitation and Router Advertisement

A host can send a “Router Solicitation” (RS) message of ICMPv6 as shown in Figure 4.
The destination address of RS is the all-routers multicast address. The connected routers
will receive the RS and send back a “Router Advertisement” (RA) message. The destination
address of RA is the all-nodes multicast address so that all hosts will receive it. An RA mes-
sage contains network configuration parameters, such as MTU, subnet prefix, default router
address, etc. The host nodes can configure themselves using the information. The default
router address and the subnet prefix are sufficient to make the host ready to communicate
with the IPv6 Internet.

As explained in the past columns, RA is sent by the rtadvd(8) daemon. RS can be sent
by the rtsol(8) utility. The kernel handles NS and NA, so usually you do not need to be
aware of them. Note that the kernel processes RAs only when the interface has the AC-
CEPT_RTADV flag. A router sends RAs periodically even if no RS is received, so you do not
always need to run the rtsol(8) utility.

In this way, IPv6 uses various addresses for each specific purpose. Unlike IPv4, not all ad-
dresses are listed in the output of the ifconfig command. Multicast addresses can be
shown using the ifmcstat command instead. In addition, the author wants to emphasize
that an LLA on an interface is essential for NDP. Without an LLA, IPv6 does not work well.
Actually, IFDISABLED flag, which is used to disable IPv6 communication on the interface,
means disabling all of NDP traffic in the kernel. It blocks the NDP traffic only, but effectively
disables IPv6.

Summary
This column has walked through how multiple addresses work in IPv6. You do not need

to understand these kinds of details for communications using TCP or UDP. However, un-
derstanding of the configured addresses is quite important from the system administrator’s
perspective. You may want to configure additional access control lists or packet-filtering
rules in some cases because an LLA on the box is another address where someone can ac-
cess. On the other hand, blocking communications via LLAs may break NDP.

In the next column, several useful configuration tricks will be covered. They are based
on the knowledge we know so far, and include missing parts such as DNS on IPv6 and
DHCPv6.

9 of 10

51FreeBSD Journal • November/December 2022

Footnotes
1 Global-scope Unicast Address. A routable address that consists of the prefix assigned from

your ISP and the IID, interface identifier, which you have assigned or has been automatical-
ly assigned by SLAAC² or DHCPv6.

2 Link-Local-scope Address. The prefix is always fe80::/64. This is unique only on the link
and not routable.

3 L3 stands for Layer 3 in the OSI reference model. This is a classic abstraction of commu-
nication protocols defined in ISO/IEC 7498. The TCP/IP protocol suite used for Internet
does not fully follow this abstraction model. However, Layer 1, 2, and 3 are still helpful to
understand the layer structure of Ethernet, IP, and UDP/TCP.

4 This algorithm is explained in RFC 4291.
5 An octet means 8-bit long data.
6 Least Significant Bit. The lowest-order bit of a binary value.
7 https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml
8 This is defined in RFC 4861, “Neighbor Discovery for IP version 6 (IPv6)”.
9 RFC 1256, “ICMP Router Discovery Messages.”
10 RFC 826, “An Ethernet Address Resolution Protocol”

HIROKI SATO is an assistant professor at Tokyo Institute of Technology. His research topics
include transistor-level integrated circuit design, analog signal processing, embedded sys-
tems, computer network, and software technology in general. He was one of the FreeBSD
core team members from 2006 to 2022, has been a FreeBSD Foundation board mem-
ber since 2008, and since 2007 has hosted AsiaBSDCon, an international conference on
BSD-derived operating systems in Asia.

10 of 10

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

https://www.iana.org/assignments/ipv6-multicast-addresses/ipv6-multicast-addresses.xhtml

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

Dear Last Worst Hope,

It’s all too much. I’ve cleaned up the servers
and dealt with the outages and stabilized the
environment, but the boss keeps piling on more
work and more work and there’s no way to complete
it all. I can’t quit, but how to I manage all this?

 —Overwhelmed

Dear Overwhelmed,
Helping you begins with rewriting your letter to put the blame where it belongs.
I have performed my duties with the bare minimum of competence, but I don’t under-

stand that the reward for work well-done is more work. My efforts to educate my manager
about the amount of work required for further tasks have failed, either because my com-
munication skills are inadequate or my manager honestly does not see how the amount
of effort is relevant because he is a sociopath rocketing to the C-level. Probably the lat-
ter. I arranged my life with insufficient prescience or flexibility, and now I’m trapped. What
should I do?

There. That’s better.
The problem with computing professionals is that they think of themselves as “prob-

lem solvers.” After all, they make these super complicated machines do complicated
things, like add really big numbers together. Each processor core contains a billion trillion
gazillion transistors, and you command them all! When this horribly complex machine im-
plodes, you fix it! You don’t work with software—you are a professional problem solver.

Problem solver. That’s what the sociopath rocketing to the C-level wants you to think.
Computers are simple. The complexity of the most advance computer is wholly inad-

equate to grasp the intricacies of the simplest virus, and those pale next to the horrors
of corporate politics. Computing professionals are skilled at solving problems in a tightly
constrained environment where the Four Sacred Resources—Processor, I/O, Storage, and
Memory—reign, but those skills cannot model the innumerable resources of reality.

To succeed in the outside world, you must accept the limitations of your skills and re-
ject the constraint of being a problem solver. As long as you dream of yourself that way,
you’ll lose against the illogic of meatspace. You have metrics. You have measurements.
You have all the data that says you’re working hard. Abandon the labels others have
slapped on you. Liberate yourself. Abandon solving problems in favor of strategic failure.

Strategic failure isn’t about bringing the whole system down. Any sysadmin can do that.
It’s not even about timing, although timing is important. It’s about choosing failures that
will embarrass the right people at the right time, and being able to declare with a straight
face, “I only had time to maintain one system, and I chose the mission-critical one.”

1 of 3

53FreeBSD Journal • November/December 2022

by Michael W Lucas

freebsdjournal.org

Yes, your manager will be angry. So what? If you can’t quit, they can’t replace you. Ev-
eryone in a position like yours, in any organization, possesses a unique combination of
skills ranging from the bizarre to the obscene, a brew which is entirely impossible to repli-
cate in any other single person. They only way to develop those skills is to be you, and no-
body will sign up for that. Don’t be arrogant—after all, would anyone competent outside
the tiny, specialized cell of computing let themselves be maneuvered into this situation?
Showing anger and frustration will only get you sent to Human Resources for counseling
about your attitude. A shrug and an indifferent “I allocated my resources in accordance
with guidance from management” will serve you well. Use those words, in accordance
with guidance from management, like roasted garlic. A bit sprinkled here and there will

give your businesslike attitude credibility.
After two or three incidents of properly chosen,

high visibility, irritating but non-devastating strategic
failures, you’ll wind up in meetings with your man-
ager and assorted outsiders who want to know why
you suck so much. Your manager would prefer to
throw you out the nearest airlock, so ignore them.
Concentrate on the others. Be calm. Present every-
one but your manager with the documentation on

how you work. Almost always, merely having the documentation will suffice. Outsiders
won’t ask too many questions, out of a well-reasoned fear that they might learn some-
thing about computers and thus be forcibly transferred to your department.

People will present solutions. You should also offer solutions. One of them should be
your preference, the others, acceptable. If the company wants you to, say, stop aggregating
syslog and netflow data and shut down those systems, that’s fine. You can always answer
trouble tickets with, “Management has declared that I cannot help you with this problem.”

Eventually, they’ll settle on hiring someone. As previously established, whoever they hire
will not be qualified to help you or to manage your systems. Remember Sysadmin Rule
#27: “Competent coworkers are not hired. They are forged. By you.” If you offer to mentor
a junior sysadmin and save the firm tens of thousands of dollars, you improve the odds of
getting help. If you make that offer in front of other people, you improve your image in the
company. Be sure to say that you have specific questions you want to ask applicants.

Talking to job seekers? Ugh. Yes, I know, it’s painful, but you’re going to have to talk to
the survivor daily so you best discard everyone who’ll be painful to work with. No, don’t ask
about binary trees or bubble sorts or any of that other garbage. You want to discard ap-
plicants as quickly as possible, so set up a puzzle. Now that technology has advanced and
CRT monitors are no longer standard, I can finally share my Secret Helpdesk Hiring Puzzle.

I would bring the applicant to an isolated room lit with the worst fluorescent tube in
the building. If I had a chance beforehand, I would establish mood by starting my CD of
“Great Horror Movie Screams” at a nearly subliminal volume and lighting a sample of in-
cense from the Despair Collection. The room contained a desk, a computer, and a CRT
monitor with a twisted and distorted image. I would say “If you worked for me, how would
you fix this? Talk me through it.”

Simple, right?
Swapping out the monitor didn’t work. Neither did swapping out the video card, or the

whole computer. At that point, most applicants said they would ship the whole computer

2 of 3

Yes, your manager
will be angry.
So what?

54FreeBSD Journal • November/December 2022

back to the manufacturer.
The people who realized that the problem involved the computer’s location and shift-

ed it two feet from the magnet I’d taped to the bottom of the desk? They got the job.
You need a puzzle like this, with modern technology and just a whiff of malice. Some-

thing even your boss can understand. The convenient thing about the problem solver la-
bel is that people outside the computing department also believe it. “I set up this typical
problem I have to solve, and only these applicants could solve it,” is instantly credible.

Yes, you’ll spend time training your new flunky—but the reward for work well-done is
more work. Plus, you’ll be training them to handle the work you don’t want to do, and you
already know they have problem solving skills sufficient for the tightly constrained envi-
ronment of computers. This will give you time to solve your real problem and rearrange
your life to be more flexible.

Be careful practicing strategic failure, however. Do it too much, and you’ll find yourself
rocketed to the C-level.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of Absolute FreeBSD, $ git sync murder, and
fifty-odd other books. Letters to ed(1) collects his FreeBSD Journal columns. Learn more
at https://mwl.io.

3 of 3

Pluggable Authentication Modules:
 Threat or Menace?

PAM is one of the most misunderstood parts of systems
administration. Many sysadmins live with authentication
problems rather than risk making them worse. PAM’s very
nature makes it unlike any other Unix access control system.

If you have PAM misery or PAM mysteries, you need PAM
Mastery!

“Once again Michael W Lucas nailed it.” — nixCraft

PAM Mastery by Michael W Lucas
https://mwl.io

55FreeBSD Journal • November/December 2022

freebsdjournal.org

https://mwl.io

56FreeBSD Journal • November/December 2022

In September, I visited the beautiful city of Vienna for EuroBSDCon 2022; many thanks to
my employer, Klara, for covering enough of my travel expenses to make this trip possi-
ble. This was my second BSD conference (and certainly not my last), but it was definitely

the more exciting of the two for a number of reasons. This particular trip was my first flight
across an ocean, a full seven time zones east
of home, and I brought my wife and toddler
along with me. My last conference was
BSDCan 2018, so I was quite excited to
meet—in person—a lot of the folks I’ve
worked with online over the years.

We arrived later in the day, one day before
the dev summit began. Our trip was generally
uneventful until we got stuck on the tarmac
at our last leg, AMS, for an extra two or three
hours. dch@ was kind enough to offer trans-
port from the airport and gave us a brief tour
of the city before dropping us off at Hotel Er-
zherzog Rainer. We were generally exhausted
by the time we got there, so I was quite re-
lieved that I forgot to RSVP for the casual core
dinner that was scheduled for only an hour or
two after we had arrived.

The first day was the FreeBSD develop-
er summit and the associated group dinner. I
met up with some other folks from Klara and
hung out near the back of the room where the summit was held. At the back, I ran into
Eirik Øverby from Modirum, who had some more Apple hardware for me to take home and
add to the literal tower of Apple Silicon hardware for porting, and I also met one of the Ap-
ple engineers, Cosimo Cecchi, who came early and attended the devsummit. We listened
to talks from the FreeBSD Foundation as well as presentations from various developers on
the state of their work (Workflow issues, ALTQ, Netlink, CI). Lunch and coffee breaks scat-
tered throughout the day offered a good hallway track for the early days.

There was a designated chunk of time for hacking groups, but—in all of the pre-travel
chaos—I had apparently left my laptop charger at home, so I took advantage of the time
and went for a walk with my family to pick up a USB-C charger before the devsummit din-
ner. The hosts of the dinner were kind enough to allow my wife and daughter to attend for
which I was very grateful since I was effectively abandoning them half the time we were

BY KYLE EVANS

I visited the beautiful
city of Vienna for
EuroBSDCon 2022.

EuroBSDCon 2022

1 of 3

57FreeBSD Journal • November/December 2022

2 of 3

there. The other attendees were incredibly awesome with our young one, despite her being
a bit cranky at times.

The second day of the developer summit was much like the first, with more talks and
working groups along with more scheduled time for unstructured hacking. jhb@ spent ten
minutes and solved an issue we had—for a lot longer than ten minutes—with PCI on Apple
Silicon, which was simultaneously exciting and depressing. After the devsummit, my family
met me outside of the TU building and we walked around a bit to explore the area.

Day one of EuroBSDCon started off with a very interesting keynote from Frank Kar-
litschek. Next, I attended Taylor R Campbell’s talk on “How I learned to stop worrying and
yank the USB”, in which he discussed many of
the interesting ways he broke and fixed USB
hotplug in NetBSD, and how he fixed those is-
sues in a pretty clean way.

I needed to catch up a branch or two in
one of my local trees, so I wandered over to
Brooks’ session on how to add a system call
in FreeBSD, since I had a decent amount of
knowledge on the topic already. Despite this, it
was still chock full of interesting tidbits about
other ABIs and compatibility concerns.

For the final two talks I attended that day, I
checked out Mateusz’s presentation on mea-
suring performance overhead of tracing and
Allan’s talk on scaling ZFS. I hadn’t spent much
time tracing in the years I’ve worked on oper-
ating systems, but I was still curious as to how
dtrace and ebpf compared for the task, over-
head-wise, in real-world scenarios. I wanted
to attend Ken’s talk on OpenBSD filesystem
blocks, but I got caught up socializing in the
hallway track instead.

My wife and daughter met me outside
again, and this time we hunted down some
döner kebab I had been anxious to try. Disas-
ter struck that night as our young one finally
realized she was jet lagged and barely slept.
On the final day, I rolled onto the locked cam-
pus at around 07:00 after about an hour of
sleep (but not wanting to wake anyone else),
and within 30 minutes or so a staff member
inside the building (security, I think?) noticed that I was standing outside, patiently awaiting
the conference start, and allowed me to enter.

I realized after staring at my laptop for a while that I wasn’t likely going to comprehend
much during the talks, so I admitted defeat and hung out in the lobby for the day, intermit-
tently hacking on various things.

For the final two talks
I attended that day,
I checked out Mateusz’s
presentation on measuring
performance overhead
of tracing and Allan’s talk
on scaling ZFS.

58FreeBSD Journal • November/December 2022

Despite the appearance that I was losing value by not attending talks on the final day,
I feel that I actually gained a lot more from that decision. I ended up meeting a lot of
not-yet-familiar faces I otherwise would not have if I had attended talks. I brought along the
MacBook that Eirik was lending me for the porting cause along, and a couple of us in the
hallway battled with the laptop to get the Norwegian keyboard remapped in software to a
layout that I was more familiar with. macOS’ keyboard mapping does 98% of the job, but
it doesn’t remap what’s easily one of my top-five keys used: tilde/backtick. If you stumble
across this for similar reasons, the answer is to use `hidutil` to finish the job and get your tilde
back.

As the conference wrapped up and we bid one another farewell, I managed to get a list
of family-friendly things to do with our remaining three days in Vienna from krion@, whom
I had met in-person back in Allan’s talk about scaling ZFS. The list was, indeed, full of great
suggestions, though sadly we didn’t get to all of them as the weather didn’t quite cooperate.

My general advice for conferences a longer distance away from “home” is what Allan
Jude had tried to tell me: book your flight a bit earlier to give yourself a day or two before
the conference to try and get your sleep schedule somewhat normalized. It’s hard not to
recommend also booking a couple of days after a conference for tourist activities in case
you end up learning of more exciting sights to see from conference attendees.

KYLE EVANS is a FreeBSD developer currently employed by Klara, Inc. He has been a part of
the FreeBSD project since 2017 working on a wide variety of projects in base.

3 of 3

59FreeBSD Journal • November/December 2022

For a long time, monitoring systems and services running on them has been done as
part of a sysadmin’s job. This serves many purposes:
• is the system generally reachable (Availability),
• answers the question of what did the system do last week on Sunday at 4 a.m.?

(Metrics)
• alerts IT personnel (often at ungodly hours) about unusually high processes and

other events out of the ordinary (Alerting)
Sysadmins typically collect these metrics at a central location for further study and visual-

ization, which helps more than logging into individual systems and running tail -F /var/
log/messages or other logfiles. Finding when a problem started by seeing a spike in CPU
usage or a dramatic decline in available disk space at the beginning of the month is clearly
visible from a graph. When alerts are configured,
notifications are sent about certain events (is the
system reachable at all?) or if certain thresholds are
reached (only 10% free disk space left). All of these
have traditionally been done by software such as
Munin, CheckMK, Nagios or Zabbix among others.

Prometheus is a fairly young monitoring proj-
ect in the open source space. It did become a
well-established solution—mainly in the Kuberne-
tes and Cloud space—but is also usable in other
environments. The setup was surprisingly easy for
me, after having used a combination of telegraf,
InfluxDB, and Grafana for a long time. Grafana is
also used here as well for the visualization of Dash-
boards. InfluxDB, as the name suggests, serves as
the central storage place for the collected metrics from which Grafana pulls the data. Send-
ing the data was done by Telegraf running on each machine, sending its metrics to InfluxDB at
regular intervals (i.e., every 10 seconds).

Prometheus’ architecture is similar: a central Prometheus server for transforming, stor-
ing, and streamlining the received data, with so-called node_exporters collecting the met-
rics on client machines. Again, Grafana uses the Prometheus data and can display them with
some ready-made dashboards to impress your colleagues and be useful at the same time.

BY BENEDICT REUSCHLING

Prometheus Installation
& Setup

PRACTICAL

Prometheus is
a fairly young
monitoring project in
the open source space.

1 of 7

PRACTICAL

60FreeBSD Journal • November/December 2022

Other components include an alert manager to send various configurable notification types
(email, SMS, pager, chat messages) when certain events occur. To query the data, Prometheus
offers its own query language called PromQL that Grafana understands and uses for the
dashboard content. Users can also write their own ad-hoc queries using PromQL, allowing for
quick searches without having to build a dashboard first.

The logic by which metrics are extracted, formatted, and sent is coded into the exporters.
There are several different exporters available for specific software like databases. Applications
like RabbitMQ, GitLab, and Grafana itself allow the export of their own application states into
a Prometheus-compatible format for monitoring. Written in Go, Prometheus is highly scalable
and does not need too many resources when
running.

In this article, we’ll setup a FreeBSD based
Prometheus server and have clients (Linux and
FreeBSD) send system metrics to it via the node_
exporter. We’ll also use Grafana to visualize the
data in an existing dashboard that we are import-
ing for this purpose.

Prometheus Setup
First, we setup the Prometheus instance on a

FreeBSD system. Freshly installed and connected
to the network, we begin by creating the dataset
where Prometheus stores its data in /var/db/
prometheus. A directory is created by the port
automatically, so this step is not strictly necessary.
However, running it on ZFS as a separate dataset with properties like compression is good
practice.

zfs create -o compression=zstd sys/var/db/prometheus
pkg install prometheus node_exporter

To extract system level metrics from the host, we install the node_exporter on our Pro-
metheus host and all other machines we want to monitor. The Prometheus port installs a de-
fault configuration file called prometheus.yml in the /usr/local/etc path. We’re going
to modify it to fit our needs. The syntax for the configuration file is done in YAML, so be extra
careful to avoid tabs and use the proper indentation with spaces.

prometheus.yml:
my global config
global:
 scrape_interval: 15s # Set the scrape interval to every 15 seconds. Default is ev-
ery 1 minute.
 evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1
minute.

2 of 7

Users can also write
their own ad-hoc queries
using PromQL.

PRACTICAL

61FreeBSD Journal • November/December 2022

 # scrape_timeout is set to the global default (10s).

A scrape configuration containing exactly one endpoint to scrape:
Here it’s Prometheus itself.
scrape_configs:
 # The job name is added as a label `job=<job_name>` to any timeseries scraped from
this config.
 - job_name: “prometheus”
 static_configs:
 - targets:
 - mistwood:9090

 - job_name: bdc
 static_configs:
 - targets:
 - mistwood:9100

 # metrics_path defaults to ‘/metrics’
 # scheme defaults to ‘http’.

Before diving into the configuration bits, we enable the prometheus service and the
node_exporter on FreeBSD to start upon boot.

service prometheus enable
service node_exporter enable

Prometheus provides a web-based interface for querying and displaying the metrics ex-
ported by the systems (called targets in Prometheus lingo). I provide an extra argument to the
start of the Prometheus service to define at which port the web interface should be reachable
on my host called mistwood.

sysrc prometheus_args=”--web.listen-address=mistwood:9090”

Once we have that, we can start the prometheus service and the node_exporter
like this:

service prometheus start
service node_exporter start

After a few seconds, the output of

sockstat -l

should have the following lines in it, confirming both services started successfully:

3 of 7

PRACTICAL

62FreeBSD Journal • November/December 2022

User Address Command PID FD PROTO Local Address Foreign

prometheus prometheus 70027 8 tcp4 mistwood:9090 *:*

nobody node_exporter 2950 3 tcp46 *:9100 *:*

First, let’s see if the node_exporter is extracting some metrics. We can do that by point-
ing our browser to the URL of the host running the node_exporter service (mistwood in my
case), adding the port 9100 and /metrics to the end to form this URL: http://mistwood:9100/
metrics

You can see a list of exported metrics in a namespace separated by underscores. Refresh
this page every 10 seconds and you’ll see updated data collected by the node_exporter.
Since we’re already in the browser, we can also check the status of Prometheus. The URL is
very similar but using the port 9090 (no /metrics at the end) to get to the Prometheus web
interface. Go to the Status pulldown and select Targets to see all configured hosts from the
prometheus.yml above. In this example setup, I have extracted pieces of configuration for
our big data cluster (bdc). Of course, you can pick your own labels instead of “bdc” and the
“mistwood” host is also exchangeable.

Prometheus checks if the hosts are reachable. The node_exporter that we added to
the prometheus.yml file with port 9100 is also listed here and can be reached from here
by clicking on the URL as well. Prometheus also checks the availability of the host, indicated
by the UP in the State column of the endpoint.

Tags can be assigned to a certain host group to logically group them together. All host
metrics collected receive this tag and can be filtered later using the PromQL language or di-
rectly within Grafana. My job name here is called bdc and all the machines that belong to
that group are listed under targets. (I abbreviated it here to have only one FreeBSD and one
Linux host in it.)

Before we dive into visualizations with Grafana, we can also create simple graphs from
the Prometheus web interface by going to the Graph tab. At the top, there is an input field.
On the left the blue Execute button, there is smaller one called the metrics explorer. Click
on it and a search field opens, containing all the names of the metrics collected so far. Pick

4 of 7

http://mistwood:9100/metrics
http://mistwood:9100/metrics

PRACTICAL

63FreeBSD Journal • November/December 2022

the one that you want to see. After selecting the metric, click the Graph tab next to Table to
see a visualization of the metric over all your hosts. Click and select a portion to zoom into
that timeframe or use the controls above to zoom out. This is already good to get a quick
overview, but may not be as visually appealing as a full-blown dashboard. We add Grafana to
the mix as it has more capabilities and different ways to display the data in various forms.

At the time of writing this article, Grafana 8 is the current version. Older versions work
just as well, so there is no need to always chase the latest version to get pretty pictures.

pkg install grafana8

Like before, we activate the grafana service to run upon boot and start it right away
with the following two lines:

service grafana enable
service grafana start

Grafana does have a configuration file under /usr/local/etc, but we do not need to
modify it here. Make sure to visit and read the documentation on the Grafana homepage to
change the file for your environment. Wait a little for Grafana to start (check the sockstat
output for a Grafana line listening on port 3000 by default). Browse to the login page for
Grafana on the host that you installed it on with port 3000.

On a fresh installation, Grafana has a default user admin with password admin that needs
to be changed right after the first login to something else. You can also add more users with
different privileges to see only certain dashboards, but right now we need to connect to our
Prometheus metrics first. This is done by adding a data source under the gear icon on the left
(Configuration -> Data Sources). Click the blue button on the left labeled “Add data source”.

5 of 7

64FreeBSD Journal • November/December 2022

We give our datasource a descriptive name and provide the URL that we used earlier to
access the Prometheus web UI on port 9090. At the bottom, click the “Save & Test” button
to check if Grafana can reach your data source. Note: The configuration provided here is
the most basic, which means it is focused on functionality and less on security. In produc-
tion environments, you definitely need to have authentication and encryption of your met-
rics to not give attackers a clue about your infrastructure by reading the metrics. The Pro-
metheus and Grafana webpages both provide documentation on how to do so.

Now that we have a datasource, we want to visualize the data coming from it. We can de-
sign our own dashboards, but my artistic talents go only so far. Other people have put in
time and talent to create beautiful dashboards and provided them for everyone to use at the
Grafana website. You can find them on https://grafana.com/grafana/dashboards/ along with
filters on the left side to only show dashboards based on Prometheus data sources. Filtering
further in the Collector Types pull-down to have Node exporter, the right side of the page au-
tomatically updates based on your filter criteria. Click on one of the search results to see a pre-
view as well as additional information about it. On the right side, copy the dashboard ID to the
Clipboard and change back to your Grafana browser tab.

Go to the dashboards tab on the left and select “Manage”. On the left, there is a button la-
belled “Import”. When clicked, you’re brought to a screen that lets you paste the dashboard ID
you selected earlier and load the dashboard. It’s easy and convenient. Assign the data source
created earlier and finish the import. For your convenience, here are a couple of dashboard
IDs that I use (the last one is even built for FreeBSD use):

• 1860
• 11074
• 4260
You can find the dashboards listed on the Dashboards tab on the left and get to them by

clicking their name. Some have filters at the top to pick a single host to display or select other
criteria like network card or storage media.

Some of the dashboards can be a bit overwhelming in the amount of data they display at
once. I find that an overview dashboard showing me all machines is a good start to see what
is going on. When I identify something out of the ordinary, I drill down into that host with an-

PRACTICAL

6 of 7

https://grafana.com/grafana/dashboards/

PRACTICAL

7 of 7

Write
For Us!
Write

For Us!
Contact Jim Maurer

with your article ideas.
(jmaurer@freebsdjournal.com)

65FreeBSD Journal • November/December 2022

other dashboard that shows me that machine in more detail. Especially the long term trends
that Prometheus provides this way give me a good understanding of whether a certain spike
in memory usage is expected and normal.

For each host that should be monitored, install and start the node_exporter on it.
On the Prometheus host, add the URL to the targets under the static_configs in
prometheus.yml and then restart the prometheus service. That’s fairly straightforward and
is easily automated for a large number of hosts using configuration management tools like
Ansible and others. Try out other node_exporters available on FreeBSD and find a good
dashboard (or create one yourself) that fits your monitoring needs. I find that Prometheus can
show me a lot more metrics than my previous setup. Alerting about certain events is also pos-
sible and there are packages available on FreeBSD to do so. I’ll leave that as a learning exercise
for you.

Prometheus is straightforward to set up and extend with more hosts to monitor. It’s time
for you to steal a little bit of fire from the gods to get better insight into the dark depths of
your hosts and services.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project and
member of the documentation engineering team. In the past, he served on the FreeBSD
core team for two terms. He administers a big data cluster at the University of Applied Sci-
ences, Darmstadt, Germany. He’s also teaching a course “Unix for Developers” for under-
graduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

https://www.bsdnow.tv/

66FreeBSD Journal • November/December 2022

1 of 2

FreeBSD is a legacy system. Wait! Before you start finding things
to throw, it is worth sitting and thinking about how we use this
term. Legacy systems are the things we are stuck with, many of
the things we are stuck with are old, creaky and have seen much
better days. Legacy comes with a notion of neglect. Legacy
systems are painful to use. I know I have a bias here, but I don’t
think FreeBSD is painful to use. But it does have one heck of a
legacy. FreeBSD is quickly coming up on its 30th year as an es-
tablished open source project. Our roots extend much further
back into time, UNIX topped 50 a couple years ago and BSD
UNIX is going to do so, too.

Throw a stone in any direction (not at me!) and you are going
to hit a tool or subsystem that feels like it has been dredged out

of the past. Large chunks of FreeBSD are like sharks or crocodiles, perfected long ago and
mostly forgotten by evolution.

On the other hand, throw another one of your stones (again, not at me!) and you’ll hit
something in FreeBSD which is painfully modern and cutting-edge. While this seems count-
er to my initial claim, I still think that FreeBSD belongs in the legacy system crowd.

Kill it with Fire (KIWF) by Marianne Bellotti, takes the same stance as I do on FreeBSD (or
maybe it helped me get to this position). It begins with an important point about legacy
systems, they are almost by definition, incredibly successful. Many software projects strug-
gle to see the light of day at all, but legacy projects not only make it into continued produc-
tion, but they also become integral components of much larger systems. So much so, that
something about their age causes them to become a liability.

FreeBSD is certainly a massive success--we haven’t managed to take over the entire
world, but we are still part of the conversation about modern operating systems. For many
of the engineers that use our platform, it has been a key component of their ability to have
outsized success.

But you really can’t argue that FreeBSD isn’t a legacy system, and it is a legacy in two
ways. First, it has components that are aging and a little long in the tooth. Second, FreeBSD,
being almost too easy to maintain, becomes a legacy component in other systems.

BOOK REVIEW BY TOM JONES

Kill It with Fire: Manage Aging
Computer Systems
(and Future Proof Modern Ones)
by Marianne Bellotti

67FreeBSD Journal • November/December 2022

KIWF doesn’t aim to be a technical manual to help you maintain a legacy code base, for
that it points you to the renowned Working Effectively with Legacy Code by Michael C.
Feathers. Instead, KIWF talks about the political and social mechanisms that lead systems
to be considered legacy and the approaches we need to take within an organization to help
move on from them or to solve the major hindrances they generate.

Many organizations that use FreeBSD as a component see our favorite OS as a legacy
component. It is notably more difficult to hire engineers to work on FreeBSD systems--the
supply side is much smaller than what is available for Linux or Windows platforms. FreeBSD
also has a marketing problem. We may be loved by the en-
gineers that use our platform, but there are few startups us-
ing FreeBSD as a core selling point.

Both are political issues for the continued use of
FreeBSD. It is easy to sell someone on a new idea to replace
a painful product as new is without bounds and limits and
we all know the real pain of the tools we use day to day.

KIWF advocates for understanding why a system has
succeeded enough for it to be considered legacy and pro-
vides some tools for approaching a design for new systems
or refactoring to improve the existing components.

KIWF carries the subtitle: Manage Aging Computer
Systems (and Future Proof Modern Ones). The lessons from
this book carry forward and should help you build protec-
tions into systems so they can succeed more easily and be
more manageable in the long run when they do.

KIWF is not a tutorial. While the introduction promises
exercises, they can be a little thin. They do serve well as a
starting point for helping your thinking about existing sys-
tems and your understanding of how to manage modernization projects. The advice here
can help bridge the gap to the humans behind the maintenance and management of exist-
ing systems. There is advice for breaking down problems with teams, working through mod-
ernization projects, and keeping motivation high when replacing a component or updating
it to match better with more modern practices.

KIWF is a great read if you have to defend the continued use of FreeBSD or another sim-
ilar component in your environment. The measurement practices suggested by Marianne
can be used to get quantified information about failure rates and usage, great tools for un-
derstanding how things are used, and evaluating any moves to other platforms.

I found a lot of value in this book; it has helped with my thinking about FreeBSD and how
our OS is used in real environments. If FreeBSD is a part of your environment, or if you want
to move from something else, then Kill it With Fire is a quick read that will help you have
harder data to work from.

TOM JONES, FreeBSD Developer and co-host of the BSDNow Podcast, wants FreeBSD-based
projects to get the attention they deserve. He lives in the North East of Scotland and offers
FreeBSD consulting.

Many organizations

that use FreeBSD

as a component

see our favorite OS

as a legacy

component.

2 of 2

BSD Events taking place through April 2023
BY ANNE DICKISON

Please send details of any FreeBSD related events or events that are of interest for
FreeBSD users which are not listed here to freebsd-doc@FreeBSD.org.

FreeBSD Office Hours
https://wiki.freebsd.org/OfficeHours
Join members of the FreeBSD community for FreeBSD Office Hours. From general Q&A to
topic-based demos and tutorials, Office Hours is a great way to get answers to your FreeBSD-
related questions.

Past episodes can be found at the FreeBSD YouTube Channel.
https://www.youtube.com/c/FreeBSDProject.

68FreeBSD Journal • November/December 2022

FOSDEM 2023
February 4-5, 2023
Brussels, Belgium
https://fosdem.org/2023/

FOSDEM is a two-day event organized by volunteers to promote the widespread use of free
and open source software. The event offers open source and free software developers a place
to meet, share ideas and collaborate. Renowned for being highly developer-oriented, FOSDEM
brings together some 8000+ developers from all over the world.

SCALE 20X
March 9-12, 2023
Pasadena, CA
https://www.socallinuxexpo.org/blog/scale-20x

SCaLE is the largest community-run open-source and free software conference in North America.
It is held annually in the greater Los Angeles area. Roller Angel will also be hosting a FreeBSD
workshop during the conference.

AsiaBSDCon 2023
March 30-April 2, 2023
Tokyo, Japan
https://2023.asiabsdcon.org/

AsiaBSDCon is for anyone developing, deploying and using systems based on FreeBSD, NetBSD,
OpenBSD, DragonFlyBSD, Darwin and MacOS X. It is a technical conference and aims to collect
the best technical papers and presentations available to ensure that the latest developments in
our open source community are shared with the widest possible audience.

mailto:freebsd-doc@FreeBSD.org
https://wiki.freebsd.org/OfficeHours
https://www.youtube.com/c/FreeBSDProject
https://www.youtube.com/c/FreeBSDProject
https://fosdem.org/2023/
https://www.socallinuxexpo.org/blog/scale-20x
https://2023.asiabsdcon.org/

