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A Brief  History of  the BSD

Following is a taxonomy of filesystem and storage development from 1979 to
the present, with the BSD Fast Filesystem as its focus. It describes the early per-
formance work done by increasing the disk blocksize and by being aware of 
the disk geometry and using that knowledge to optimize rotational layout.
With the abstraction of the geometry in the late 1980s and the ability of the
hardware to cache and handle multiple requests, filesystems performance
ceased trying to track geometry and instead sought to maximize performance
by doing contiguous file layout. Small file performance was optimized through
the use of techniques such as journaling and soft updates. By the late 1990s,
filesystems had to be redesigned to handle the ever-growing disk capacities.
The addition of snapshots allowed for faster and more frequent backups. Multi-
processing support got added to utilize all the CPUs found in the increasingly
ubiquitous multi-core processors. The increasingly harsh environment of the
Internet required greater data protection provided by access-control lists and
mandatory-access controls. Ultimately, the addition of metadata optimization
brings us to the present and possible future directions.

1979: Early  F i lesystem Work

The first work on the UNIX filesystem at University of California, Berkeley attempted to improve both
the reliability and the throughput of the filesystem. The developers improved reliability by staging

modifications to critical filesystem information so that the modifications could be either completed or
repaired cleanly by a program after a crash [15]. Doubling the blocksize of the filesystem improved the
performance of the 4.0 BSD filesystem by a factor of more than 2 when compared with the 3 BSD
filesystem. This doubling caused each disk transfer to access twice as many data blocks and eliminated
the need for indirect blocks for many files.

The performance improvement in the 3 BSD filesystem gave a strong indication that increasing the
blocksize was a good method for improving throughput. Although the throughput had doubled, the 3
BSD filesystem was still using only about 4% of the maximum disk throughput. The main problem was
that the order of blocks on the free list quickly became scrambled as files were created and removed.
Eventually, the free-list order became entirely random, causing files to have their blocks allocated ran-
domly over the disk. This randomness forced a seek before every block access. Although the 3 BSD

filesystem provided transfer rates of up to 175 Kbyte per second when it
was first created, the scrambling of the free list caused this rate to deterio-
rate to an average of 30 Kbyte per second after a few weeks of moderate
use. There was no way of restoring the performance of a 3 BSD filesystem
except to recreate the system.
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1986: Dropping the Disk-geometry Calculations

The first version of the current BSD filesystem was written in
1982 and became widely distributed in 4.2 BSD [14]. This

version is still in use today on systems such as Solaris and
Darwin. For large blocks to be used without significant waste,
small files must be stored more efficiently. To increase space
efficiency, the filesystem allows the division of a single filesys-
tem block into one or more fragments. The fragment size is
specified at the time that the filesystem is created; each filesys-
tem block optionally can be broken into two, four, or eight
fragments, each of which is addressable. The lower bound on
the fragment size is constrained by the disk-sector size, which
is typically 512 bytes. As disk space in the early 1980s was
expensive and limited in size, the filesystem was initially
deployed with a default blocksize of 4,096 so that small files
could be stored in a single 512-byte sector.

The BSD filesystem organization divides a disk partition into one or more areas, each
of which is called a cylinder group. Historically, a cylinder group comprised one or

more consecutive cylinders on a disk. Although the filesystem still uses the same data
structure to describe cylinder groups, the practical definition of them has changed.
When the filesystem was first designed, it could get an accurate view of the disk geom-
etry including the cylinder and track boundaries and could accurately compute the rota-
tional location of every sector. By 1986, disks were hiding this information, providing fic-
titious numbers of blocks per track, tracks per cylinder, and cylinders per disk. Indeed, in
modern RAID arrays, the ‘‘disk’’ that is presented to the filesystem may really be com-
posed from a collection of disks in the RAID array. While some research has been done
to figure out the true geometry of a disk [5, 10, 25], the complexity of using such infor-
mation effectively is high. Modern disks have
greater numbers of sectors per track on the outer
part of the disk than the inner part that makes cal-
culation of the rotational position of any given sec-
tor complex to calculate. So in 1986, all the rota-
tional layout code was deprecated in favor of laying
out files using numerically close block numbers
(sequential being viewed as optimal) believing that
would give the best performance. Although the
cylinder group structure is retained, it is used only
as a convenient way to manage logically close
groups of blocks.

1982: Birth of the Fast Filesystem
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The early vnode interface was simply an object-oriented interface to an underlying filesystem. By
1987 demand had grown for new filesystem features. It became desirable to find ways of providing

them without having to modify the existing, and stable, filesystem code. One approach is to provide a
mechanism for stacking several filesystems on top of one another [24]. The stacking ideas were refined
and implemented in the 4.4 BSD system [7]. The bottom of a vnode stack tends to be a disk-based
filesystem, whereas the layers used above it typically transform their arguments and pass on those
arguments to a lower layer.

Stacking uses the mount command to create new layers. The mount command pushes a new layer
onto a vnode stack; an unmount command removes a layer. Like the mounting of a filesystem, a vnode
stack is visible to all processes running on the system. The mount command identifies the underlying
layer in the stack, creates the new layer, and attaches that layer into the filesystem name space. The
new layer can be attached to the same place as the old layer (covering the old layer) or to a different
place in the tree (allowing both layers to be visible).

When a file access (e.g., an open, read, stat, or close) occurs to a vnode in the stack, that vnode has
several options:

•Do the requested operations and return a result.
•Pass the operation without change to the next-lower vnode on the stack. When the operation

returns from the lower vnode, it may modify the results or simply return them.
•Modify the operands provided with the request and then pass it to the next-lower vnode. When the

operation returns from the lower vnode, it may modify the results, or simply return them. If an opera-
tion is passed to the bottom of the stack without any layer taking action on it, then the interface will
return the error ‘‘operation not supported.’’

The simplest filesystem layer is nullfs. It makes no transformations on its arguments, simply passing
through all requests that it receives and returning all results that it gets back. Although it provides no
useful functionality if it is simply stacked on top of an existing vnode, nullfs can provide a loopback
filesystem by mounting the filesystem rooted at its source vnode at some other location in the filesys-
tem tree. The code for nullfs is also an excellent starting point for designers who want to build their
own filesystem layers. Examples that could be built include a compression layer or an encryption layer.

The union filesystem is another example of a middle filesystem layer. Like the nullfs, it does not store
data but just provides a name-space transformation. It is loosely modeled on the work on the 3-D

filesystem [9], on the Translucent filesys-
tem [8], and on the Automounter [20].
The union filesystem takes an existing
filesystem and transparently overlays the
latter on another filesystem. Unlike most
other filesystems, a union mount does not
cover up the directory on which the
filesystem is mounted. Instead, it shows
the logical merger of both directories and
allows both directory trees to be accessible
simultaneously [19].

1987: Fi lesystem Stacking
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By 1988 disk capacity had risen enough that the default blocksize was raised to 8,196-byte blocks
with 1,024-byte fragments. Although this meant that small files used a minimum of two disk sec-

tors, the nearly doubled throughput provided by doubling the blocksize seemed a reasonable trade-
off for the measured 1.4% of additional wasted space.

Through most of the 1980s, the optimal placement for files was to lay them out using every other
block on the disk. By leaving a gap between each allocated block, the disk had time to schedule

the next read or write following the completion of the previous operation. With the advent of disk
caches and the ability to handle multiple outstanding requests (tag queueing) in the late 1980s, it
became desirable to begin laying files out contiguously on the disk.

The operating system has no way of knowing how big a file will be when it is first opened for
writing. If it assumes that all files will be big and thus tries to place them in its largest area of avail-
able space, it will soon have only small areas of contiguous space available. Conversely, if it assumes
that all files will be small and thus tries to place them in its areas of fragmented space, then the
beginning of files that do grow large will be poorly laid out.

To avoid these problems, the filesystem was changed in 1990 to do dynamic block reallocation.
The filesystem initially places the file’s blocks in small areas of free space, but then moves them to
larger areas of free space as the file grows. Using this technique, small files use the small chunks of
free space while the large ones get laid out contiguously in the large areas of free space. The algo-
rithm does not tend to increase I/O load as the buffer cache generally holds the file contents long
enough that the final block allocation has been determined by the first time that the file data is
flushed to disk.

The effect of this algorithm is that the free space remains largely unfragmented even after years of
use. A Harvard study found only a 15% degradation in throughput on a three-year-old filesystem versus
a 40% degradation on an identical filesystem that had had the dynamic reallocation disabled [27].

In filesystems, metadata (e.g., directories, inodes, and free block maps) gives structure to raw stor-
age capacity. Metadata provides pointers and descriptions for linking multiple disk sectors into files

and identifying those files. To be useful for persistent storage, a filesystem must maintain the integri-
ty of its metadata in the face of unpredictable system crashes, such as power interruptions and oper-
ating system failures. Because such crashes usually result in the loss of all information in volatile main
memory, the information in nonvolatile storage (i.e., disk) must always be consistent enough to
deterministically reconstruct a coherent filesystem state.
Specifically, the on-disk image of the filesystem must have no
dangling pointers to uninitialized space, no ambiguous resource
ownership caused by multiple pointers, and no unreferenced live
resources. Maintaining these invariants generally requires
sequencing (or atomic grouping) of updates to small on-disk

1988: Raising the Blocksize

1990: Dynamic Block Reallocation

1996: Soft Updates



1999: Snapshots

metadata objects.
Traditionally, the filesystem used synchronous writes to properly sequence stable storage changes.

For example, creating a file involves first allocating and initializing a new inode and then filling in a new
directory entry to point to it. With the synchronous write approach, the filesystem forces an application
that creates a file to wait for the disk write that initializes the on-disk inode. As a result, filesystem
operations like file creation and deletion proceed at disk speeds rather than processor/memory speeds
[16,18, 26]. Since disk access times are long compared to the speeds of other computer components,
synchronous writes reduce system performance.

The metadata update problem can also be addressed with other mechanisms. For example, one can
eliminate the need to keep the on-disk state consistent by using NVRAM technologies, such as an unin-
terruptible power supply or Flash RAM [17, 33]. Filesystem operations can proceed as soon as the block
to be written is copied into the stable store, and updates can propagate to disk in any order and when-
ever it is convenient. If the system fails, unfinished disk operations can be completed from the stable
store when the system is rebooted.

Another approach is to group each set of dependent updates as an atomic operation with some
form of write-ahead logging [3, 6] or shadow-paging [2, 28]. These approaches augment the on-disk
state with a log of filesystem updates on a separate disk or in stable store. Filesystem operations can
then proceed as soon as the operation to be done is written into the log. If the system fails, unfinished
filesystem operations can be completed from the log when the system is rebooted. Many modern
filesystems successfully use write-ahead logging to improve performance compared to the synchronous
write approach.

An alternative approach called soft updates was evaluated in the context of a research prototype [4].
Following a successful evaluation, a production version of soft updates was written for BSD in 1996.
With soft updates, the filesystem uses delayed writes (i.e., write-back caching) for metadata changes,
tracks dependencies between updates, and enforces these dependencies at write-back time. Because
most metadata blocks contain many pointers, cyclic dependencies occur frequently when dependencies
are recorded only at the block level. Therefore, soft updates track dependencies on a per-pointer basis,
which allows blocks to be written in any order. Any still-dependent updates in a metadata block are
rolled back before the block is written and rolled forward afterwards. Thus, dependency cycles are elim-
inated as an issue. With soft updates, applications always see the most current copies of metadata
blocks, and the disk always sees copies that are consistent with its other contents.

In 1999, the filesystem added the ability to take snapshots. A
filesystem snapshot is a frozen image of a filesystem at a given

instant in time. Snapshots support several important features: the
ability to provide backups of the filesystem at several times during
the day and the ability to do reliable dumps of live filesystems.

Snapshots may be taken at any time. When taken every few
hours during the day, they allow users to retrieve a file that they
wrote several hours earlier and later deleted or overwrote by mis-
take. Snapshots are much more convenient to use than dump tapes
and can be created much more frequently.

16 FreeBSD Journal
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To make a snapshot accessible to users through a traditional filesystem interface, the system adminis-
trator uses the mount command to place the replica of the frozen filesystem at whatever location in the
name space that is convenient.

Once filesystem snapshots are available, it becomes possible to safely dump live filesystems. When
dump notices that it is being asked to dump a mounted filesystem, it can simply take a snapshot of the
filesystem and run over the snapshot instead of on the live filesystem. When dump completes, it releas-
es the snapshot.

By 2001 disk capacity had risen enough that the default blocksize was raised to 16,384-byte blocks
with 2,048-byte fragments. Although this meant that small files used a minimum of four disk sec-

tors, the nearly doubled throughput provided by doubling the blocksize seemed a reasonable trade-off
for the measured 2.9% of additional wasted space.

Traditionally, after an unclean system shutdown, the filesystem check program, fsck, has had to be
run over all the inodes in a filesystem to ascertain which inodes and blocks are in use and to correct

the bitmaps. This check is a painfully slow process that can delay the restart of a big server for an hour
or more. Soft updates guarantee the consistency of all filesystem resources, including the inode and
block bitmaps. With soft updates, the only inconsistency that can arise in the filesystem (barring soft-
ware bugs and media failures) is that some unreferenced blocks may not appear in the bitmaps and
some inodes may have to have overly high link counts reduced. Thus, it is completely safe to begin
using the filesystem after a crash without first running fsck. However, some filesystem space may be
lost after each crash. Thus, there is value in having a version of fsck that can run in the background on
an active filesystem to find and recover any lost blocks and adjust inodes with overly high link counts.

With the addition of snapshots, the task becomes simple, requiring only minor modifications to the
standard fsck. When run in background cleanup mode, fsck starts by taking a snapshot of the filesys-
tem to be checked. fsck then runs over the snapshot filesystem image doing its usual calculations just
as in its normal operation. The only other change comes at the end of its run, when it wants to write
out the updated versions of the bitmaps. Here, the modified fsck takes the set of blocks that it finds

were in use at the time of the snapshot and removes this set from
the set marked as in use at the time of the snapshot—the differ-
ence is the set of lost blocks. It also constructs the list of inodes
whose counts need to be adjusted. fsck then uses a new system
call to notify the filesystem of the identified lost blocks so that it
can replace them in its bitmaps. It also gives the set of inodes
whose link counts need to be adjusted; those inodes whose link
count is reduced to zero are truncated to zero length and freed.
When fsck completes, it releases its snapshot. The complete
details of how background fsck is implemented can be found in
McKusick [12, 13].

2001: Raising the Blocksize, Again

2002: Background fsck
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The original BSD fast filesystem and its derivatives have used 32-bit pointers to reference the blocks
used by a file on the disk. At the time of its design in the early 1980s, the largest disks were 330

Mbytes. There was debate at the time whether it was worth squandering 32 bits per block pointer
rather than using the 24-bit block pointers of the filesystem that it replaced. Luckily the futurist view
prevailed, and the design used 32-bit block pointers.

Over the 20 years since it has been deployed, storage systems have grown to hold over a terabyte
of data. Depending on the blocksize configuration, the 32-bit block pointers of the original filesystem
run out of space in the 1 to 4 terabyte range. While some stopgap measures can be used to extend
the maximum-size storage systems supported by the original filesystem, by 2002 it became clear the
only long-term solution was to use 64-bit block pointers. Thus, we decided to build a new filesystem,
that would use 64-bit block pointers.

We considered the alternatives between trying to make incremental changes to the existing filesys-
tem versus importing another existing filesystem such as XFS [29], or ReiserFS [21]. We also considered
writing a new filesystem from scratch so that we could take advantage of recent filesystem research
and experience. We chose to extend the original filesystem because this approach allowed us to reuse
most of its existing code base. The benefits of this decision were that the 64-bit block-based filesys-
tem was developed and deployed quickly, it became stable and reliable rapidly, and the same code
base could be used to support both 32-bit block and 64-bit block filesystem formats. Over 90% of
the code base is shared, so bug fixes and feature or performance enhancements usually apply to both
filesystem formats.

At the same time that the filesystem was updated to use 64-bit block pointers, an addition was
made to support extended attributes. Extended attributes are a piece of auxiliary data storage associ-
ated with an inode that can be used to store auxiliary data that is separate from the contents of the
file. The idea is similar to the concept of data forks used in the Apple filesystem [1]. By integrating the
extended attributes into the inode itself, it is possible to provide the same integrity guarantees as are
made for the contents of the file itself. Specifically, the successful completion of an fsync system call
ensures that the file data, the extended attributes, and all names and paths leading to the names of
the file are in stable store.

Extended attributes were first used to support an access control
list, generally referred to as an ACL. An ACL replaces the

group permissions for a file with a more specific list of the users
who are permitted to access the files. The ACL also includes a list
of the permissions that each user is granted. These permissions
include the traditional read, write, and execute permissions along
with other properties such as the right to rename or delete the
file [22].

Earlier implementations of ACLs were done with a single auxiliary file per filesystem that was
indexed by the inode number and had a small fixed-sized area to store the ACL permissions. The small
size was to keep the size of the auxiliary file reasonable, since it had to have space for every possible

2003: Multi-terabyte Support

2004: Access  Control  L i sts
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inode in the filesystem. There were two problems with this implementation. The fixed size of the space
per inode to store the ACL information meant that it was not possible to give access to long lists of
users. The second problem was that it was difficult to atomically commit changes to the ACL list for a
file, since an update required that both the file inode and the ACL file be written to have the update
take effect [30].

Both problems with the auxiliary file implementation of ACLs are fixed by storing the ACL informa-
tion directly in the extended-attribute data area of the inode. Because of the large size of the extended
attribute data area (a minimum of 8 Kbytes and typically 32 Kbytes), long lists of ACL information can
be easily stored. Space used to store extended attribute information is proportional to the number of
inodes with extended attributes and the size of the ACL lists that they
use. Atomic update of the information is much easier, since writing
the inode will update the inode attributes and the set of data that it
references including the extended attributes in one disk operation.
While it would be possible to update the old auxiliary file on every
fsync system call done on the filesystem, the cost of doing so would
be prohibitive. Here, the kernel knows if the extended attribute data
block for an inode is dirty and can write just that data block during an
fsync call on the inode.

The second use for extended attributes was for data labeling. Data
labels provide permissions for a mandatory access control (MAC)

framework enforced by the kernel. The kernel’s MAC framework per-
mits dynamically introduced system-security modules to modify system
security functionality. This framework can be used to support a variety of new security services, includ-
ing traditional labeled mandatory access control models. The framework provides a series of entry
points that are called by code supporting various kernel services, especially with respect to access con-
trol points and object creation. The framework then calls out to security modules to offer them the
opportunity to modify security behavior at those MAC entry points. Thus, the filesystem does not codi-
fy how the labels are used or enforced. It simply stores the labels associated with the inode and pro-
duces them when a security module needs to query them to do a permission check [31, 32].

In the late 1990s, the Free BSD Project began the long hard task of converting
their kernel to support symmetric multi-processing. The initial step was to add

a giant lock around the entire kernel to ensure that only one processor at a
time could be running in the kernel. Each kernel subsystem was brought out
from under the giant lock by rewriting it to be able to be executed by more
than one processor at a time. The vnode interface was brought out from under
the giant lock in 2004. The disk subsystem became multi-processor safe in
2005. Finally, in 2006, the fast filesystem was overhauled to support symmetric
multi-processing completing the giant-free path from system-call to hardware.

2005: Mandatory Access Controls

2006: Symmetric Multi-processing
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Though soft updates avoided the need to run fsck after a crash, soft
updates could still cause blocks and inodes to become lost; they

would not be in use by the filesystem but were still claimed as in use
in the filesystem’s bitmaps. fsck still had to be run periodically to
reclaim the lost space. Thus, the idea arose to supplement soft
updates with a journal that tracks the freeing of resources so that
after a crash the journal can be replayed to recover the lost resources.
Specifically, the journal contains the information needed to recover the
block and inode resources that have been freed but whose freed sta-
tus failed to make it to disk before a system failure. After a crash, a
variant of the venerable fsck program runs through the journal to

identify and free the lost resources. Only if an inconsistency between the log and filesystem is detected
is it necessary to run the whole-filesystem fsck. The journal is tiny: 16 Mbyte is usually enough, inde-
pendent of filesystem size. Although journal processing needs to be done before restarting, the pro-
cessing time is typically just a few seconds and, in the worst case, a minute. It is not necessary to build
a new filesystem to use soft-updates journaling. The addition or deletion of soft-updates journaling to
existing Free BSD fast filesystems is done using the tunefs program.

By 2011 disk capacity had risen enough that the default blocksize was raised to 32,768-byte blocks
with 4,096-byte fragments. This increase was also driven by the change of disk technology to 4K

sectors. With the increase in sector size, small files once again used a minimum of one disk sector.
Thus the filesystem once again doubled throughput
with no additional wasted disk space.

In an effort to speed random access to files and to
speed the checking of metadata by fsck, the

filesystem holds the first 4% of the data blocks in
each cylinder group for the use of metadata [11].
The policy routines preferentially place metadata in
the metadata area and everything else in the blocks
that follow the metadata area. The size of the meta-
data area does not need to be precisely calculated as
it is used just as a hint of where to place the meta-
data by the policy routines. If the metadata area fills
up, then the metadata can be placed in the regular-
blocks area, and if the regular-blocks area fills up,
then the regular blocks can be placed in the metadata area. This decision happens on a cylinder group
by cylinder group basis, so some cylinder groups can overflow their metadata area while others do not

2011: Rais ing the Blocks ize,  Yet  Again

2009: Journaled Soft  Updates

2013: Optimized Metadata Layouts
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overflow it. The policy is to place all metadata in the same cylinder group as their inode. Spreading the
metadata across cylinder groups generally results in reduced filesystem performance.

The one exception to the metadata placement policy is for the first indirect block of the file. The
policy is to place the first (single) indirect block inline with the file data (e.g., it tries to lay out the first
12 direct blocks contiguously, followed immediately by the indirect block, followed immediately by the
data blocks referenced from the indirect block). Putting the first indirect block inline with the data
rather than in the metadata area is to avoid two extra seeks when reading it. These two extra seeks
would noticeably slow down access to a file that uses only the first few blocks referenced from its
indirect block.

Only the second and third level indirects, along with the indirects that they reference, are allocated in
the metadata area. The nearly contiguous allocation of this metadata close to the inode that references
them noticeably improves the random access time to the file as well as speeding up the running time of
fsck. Also, the disk track cache is often filled with much of a file’s metadata when the second-level indi-
rect block is read, thus often speeding up even the sequential reading time for the file.

In addition to putting indirect blocks in the metadata area, it is also helpful to put the blocks hold-
ing the contents of directories there, too. Putting the contents of directories in the metadata area
gives a speed-up to directory tree traversal since the data is a short seek away from where the direc-
tory inode was read and may already be in the disk’s track cache from other directory reads done in
its cylinder group.

There have been many changes proposed or requested for the filesystem. The first group includes
improvements that can be made without the need to change the on-disk format of the filesystem:

• When running on devices such as flash memory that need to bulk-erase blocks before they can be
reused, the filesystem notifies the underlying device whenever it is finished using a block. The device
is notified using a TRIM request, typically when a block is being freed during a file removal or trunca-
tion. Each block that is freed results in a TRIM command being sent through the GEOM layer to the
device and a corresponding acknowledgment being returned when it is completed. Often, a file is
made up of many consecutive blocks. It would be far more efficient to collect these consecutive
blocks together and send a single TRIM request for the entire large block.
• Currently, a filesystem that has enabled journaled soft updates is not able to take snapshots. The
restriction applies because the code in fsck that does the journal rollback does not know how to han-
dle snapshot files when it is releasing blocks. Specifically, when a block is released, each of the snap-
shots needs to be checked to see if the block being released is one that the snapshot wants to claim.
Only if none of the snapshots want the block can it be released to the free list. The journal rollback in
fsck always releases the blocks to the free list. Thus, if the filesystem contained any snapshots that
needed to claim one of the released blocks, it would be corrupted. Either the kernel code that checks
whether any snapshots need blocks being freed has to be integrated into fsck or all existing snapshots

need to be deleted when fsck is run in journal rollback mode.
• Provide support for shingled magnetic recording (SMR) disk drives. These
drives are mostly made up of large (typically several megabyte) areas that
have to be written contiguously (similar to flash memory blocks). A small
part of the disk is able to write normal fragmented blocks. The strategy for
handling these drives would be to split the bitmap into contiguous and
fragmented areas to match the zones on the disk. The soft updates code

Future Directions
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would then be augmented to collect the soft updates together into batches of blocks that could be
written contiguously.
• The current filesystem has a provision to allow individual files to use a larger blocksize. This capabil-
ity has never been implemented, but would be very beneficial for larger files. Other desired changes
to the filesystem would require a new disk format, often referred to as UFS3:

The most important of these changes would be to change the directory format to increase its file
number from 32 bits to 64 bits. With increasing disk capacities, the limit of 4 billion files per filesys-
tem has become increasingly problematic. The biggest stumbling block to making this change is the
FreeBSD filesystem interface currently only supports 32-bit file numbers. Changing this interface has
been discussed ever since the ZFS filesystem with its native 64-bit file numbers was brought into the
system. Hopefully the interface change can be realized in time for the FreeBSD 11 release.
• Another limitation of the current filesystem format is that it uses a 16-bit field to record the num-
ber of links to a file, thus limiting a file to having 65,535 directory entries referencing it. When
changing the on-disk format, this field should be increased to 64 bits to resolve the problem for
many years to come.When doing a revision of the on-disk format as part of UFS3, it might be useful
to add some ZFS-like features:

Add checksums to improve the robustness and data integrity of the filesystem. The easiest to
implement would be to place the checksum in each block of the file. This approach fails to detect
blocks that are written to the wrong location. Taking the ZFS approach of storing each checksum
with the block pointer avoids this problem but requires a more impactful change to the existing
filesystem code.
• Another useful change to improve the robustness and data integrity is to provide redundancy of
the filesystem metadata. At a minimum, the filesystem should provide redundant copies of inodes
and indirect blocks. If practical, the filesystem should also provide multiple copies of the directory
data blocks. And if the implementation was flexible enough, it could provide optional redundancy 
for the user’s data blocks as is available in ZFS.Another technology that is beginning to appear in 
the marketplace is key/value disks such as those recently released by Seagate. These disks provide
objects up to one megabyte in size that are identified using a 64-bit key. The filesystem could be
adapted to use these disks by using a one megabyte blocksize, which would dramatically reduce the
amount of metadata information that it would need to maintain. The block numbers would be
replaced with the 64-bit object keys, and the file content would be stored as the object value. The
final fragment of the file could be stored in a smaller object, thus allowing the disk to manage disk
fragmentation issues. •
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