FreeBSD and Google
Summer of Code 2025

BY JOE MINGRONE

21st consecutive year participating in the program. Three factors made this year stand

out. First, we received 64 applications, which is more than double last year's total and
roughly four times the number received in 2023. Al tools likely contributed to the surge, pro-
ducing some low-quality submissions; however, the overall quality of most applications re-
mained high. Second, we saw a notable increase in interest from South Asia. Given that the
FreeBSD Community Survey results indicate that 85% of respondents were from Europe or
North America, this interest from Asia and other parts of the world is welcome. Third, the
number and quality of accepted projects were encouraging. Out of 1200 total GSoC proj-
ects across 185 participating organizations, FreeBSD's 12 accepted projects nearly doubled
the average per organization, and unlike last year, all 12 were successfully completed.

Before we discuss individual projects, let's reflect on why we participate in GSoC. The
program requires significant effort, from organizing the application process and defining
project ideas to mentoring contributors. Is this investment of time and resources, which
could otherwise go toward direct development, worthwhile? From a short-term techni-
cal perspective, it's debatable; while some projects lead to committed code, many do not.
However, considered from a long-term perspective, the answer is clearer. GSoC is play-
ing an important role in attracting and developing new contributors. Since 2022, five new
FreeBSD committers have come through GSoC, and one 201/ participant went on to serve
on the 12th Core Team.

GSoC 2025 Projects

Sockstat Ul Improvements
For those unfamiliar with sockstat(1), it is a command to list open Internet or Unix do-
main sockets. Damin Rido’s goal for this project was to enhance the flexibility of the com-
mand’s output by allowing dynamically sized columns and integrating libxo for structured
output support. All three of Damin'’s pull requests linked below were pushed to the src tree.
» Add automatic column sizing and remove -w option: freebsd/freebsd-src#1/20

» Reintroduce —w flag to automatically size the columns: freebsd/freebsd-src#1/46
 Add libxo support: freebsd/freebsd-src#1//0

The successtul completion of Google Summer of Code (GSoC) 2025 marks FreeBSD's

vmm(4) Accelerator Support for QEMU

The VMM (Virtual Machine Monitor) module is the kernel component of the bhyve(4)
hypervisor, accessible through vmm(4). Other than bhyve, another widely used machine em-
ulator and virtualizer with official support for FreeBSD is QEMU. However, prior to this proj-
ect, QEMU on FreeBSD could only make use of software emulation (via its Tiny Code Gen-
erator) because it lacked support for hardware-accelerated virtualization. In other words,

FreeBSD Journal - October/November/December 2025 |1

1of7



https://github.com/freebsd/freebsd-src/pull/1720
https://github.com/freebsd/freebsd-src/pull/1746
https://github.com/freebsd/freebsd-src/pull/1770

20f 7

QEMU on FreeBSD could not take advantage of the host CPU'’s virtualization extensions to
run guest code directly on the hardware. This limitation resulted in significantly higher CPU
overhead and slower guest performance compared to hardware-assisted virtualization.
The primary objective of Abhinav Chavali's GSoC 2025 project was to integrate VMM
acceleration support into QEMU on FreeBSD. He accomplished this by modifying QEMU's
memory management layer to interoperate with VMM's kernel-allocated guest memory.
He also adapted VMM to make certain non-critical devices such as the HPET and RTC op-
tional, allowing QEMU to emulate them in user space instead. This enables a hybrid inter-
rupt model (with the virtual LAPIC handled in the kernel and the IOAPIC emulated in user
space), which has the potential to deliver perfor-
mance levels comparable to bhyve under FreeBSD.
The latest from from Abhinav is that he was able
to successfully boot FreeBSD 14 under QEMU with
the VMM acceleration. You can view his code here.

Testing and Development for Rust FreeBSD
Device Drivers

Over the past few years, there has been interest
in incorporating Rust in both FreeBSD and Linux de-
velopment. For a sample of some discussions, re-
fer to an REC for Rust support that was posted to
the Linux Kernel mailing and to discussions on the
FreeBSD hackers list. In both communities, debates
have emerged: some opponents warned of issues
such as “doubling build times”, whereas proponents argued that Rust would make certain
tools easier or even possible to implement. Beyond discussions, tangible progress has been
made. In his Master’s thesis project, Johannes Lundberg created a Rust KPI and network
driver, while David Young created a simple “Hello World” FreeBSD kernel module in Rust
and summarized existing community efforts to adopt Rust.

The Testing and Development for Rust FreeBSD Device Drivers project builds on past ef-
forts to incorporate Rust into FreeBSD development. One of its primary goals was to cre-
ate a testing and continuous-integration framework for Rust kernel modules. Aaron gives
an overview of his Rust echo driver in this video and summarizes the project in this write-up.
His code is available here:

« https://github.com/Acesp25/rustdrv
« https./github.com/Acesp25/freebsd-kernel-module-rust
« https:/github.com/Acesp25/RustKLD

Full-Disk Administration Tool for FreeBSD
Prior to this GSoC 2025 project from Braulio Rivas, FreeBSD lacked a user-friendly tool

for full-disk administration, i.e,, a utility comparable to Linux's GParted for partitioning, resiz-
ing, moving, and managing file systems. The goal of this project was to fill that gap by cre-
ating a new partitioning tool called geomman. Upon completion of the project, geomman
supports the following operations:

 copy and paste partitions on the same disk or across disks

« grow UFS, NTFS, ext2, ext3 and ext4 filesystems

shrink NTFS, ext2, ext3 and ext4 filesystems

FreeBSD Journal - October/November/December 2025 |2



https://github.com/freebsd/freebsd-src/compare/main...dumrich:freebsd-src:vmm-qemu-mods-16
https://lkml.org/lkml/2021/4/14/1023
https://lists.freebsd.org/archives/freebsd-hackers/2024-January/002823.html
https://lists.freebsd.org/archives/freebsd-hackers/2024-January/002823.html
https://github.com/johalun/rustkpi
https://www.nccgroup.com/research-blog/writing-freebsd-kernel-modules-in-rust/
https://www.youtube.com/watch?v=y82-t1tDLWg
https://gist.github.com/Acesp25/8928e35e710fdce1896b5448fc6327df
https://github.com/Acesp25/rustdrv
https://github.com/Acesp25/freebsd-kernel-module-rust
https://github.com/Acesp25/RustKLD
https://www.freshports.org/sysutils/geomman

«visually select free space to place a partition
- create exFAT, NTFS, ext2, ext3 and ext4 filesystems
« check filesystems: fsck_ufs (UFS), fsck_msdos (FAT), fsck.exfat (exFAT), ntfsfix (NTFS),
and eZfsck (ext)
e Create and label a partition
« create and encrypt a partition
Remaining work:
« /FS support
* resolve issues when moving a partition
* fest cases
he upstream repository can be found at: https:/gitlab.com/brauliorivas/geomman.

Adding QCOW2 Compressed Image Support to mkimg

QCOW2 (QEMU Copy-On-Write version 2) is a widely used disk image format for vir-
tualization, recognized for features such as thin provisioning and built-in compression.
FreeBSD's mkimg (1) tool can create disk images in a variety of formats, including QCOW?2.
Until now, however, mkimg's QCOW2 support was limited and did not allow for the creation
of compressed QCOWZ images.

This summer, Christos Komis enhanced mkimg by completing these milestones:

» add support for QCOW2 v2 compressed images

» add support for QCOW2 v3 compressed and uncompressed images
» update the user interface to expose the new features

» extend the test suite to verify correctness

» update the man pages with the new functionality

» perform code refactoring to improve readability and maintainability.

The implementation has been thoroughly tested and is ready for commit. Users can now
generate compressed QCOW?Z2 images directly with mkimg, simplifying workflows for virtu-
al machine image generation and reducing reliance on external conversion tools. Check out
Christos's code at https./github.com/ckkomis/freebsd-src/commits/mkimg/gcowZ-com-
pression/.

ACPI Initialization in Loader With Lua Bindings

Kayla Powell's project extends the ACPICA library’s initialization into the FreeBSD loader,
ensuring the tull ACPI namespace is available before the kernel is loaded. The work replaces a
somewhat ad hoc bootloader approach to ACPI by invoking standard ACPICA routines (e.g,
AcpilnitializeSubsystem, AcpilLoadTables, AcpiWalkNamespace, AcpikvaluateObject) within
the loader. This gives consistent discovery and interrogation of ACPI objects early in the boot
process. To maintain the loader’s lightweight design, only the necessary ACPICA compo-
nents were ported, omitting many functions unnecessary for initialization or scripting.

On top of the foundational layer, the project introduces Lua bindings that expose the
ACPI namespace and object-evaluation facilities to scripts running under the loader. In oth-
er words, we can now write Lua loader code to walk the ACPI tree, examine device-table en-
tries, and attach or read data from ACPI nodes, before the kernel loads. Along with the im-
blementation, unit and regression tests were included (e.g., comparing namespace dumps
between C and Lua and building the loader across architectures).

Refer to Kayla's summary of the project on her blog at https:.//kmpow.com/content/
gsoc-writeup and her pull requests: 1818, 1819, and 1843.

FreeBSD Journal - October/November/December 2025

3of 7



https://gitlab.com/brauliorivas/geomman
https://github.com/ckkomis/freebsd-src/commits/mkimg/qcow2-compression/
https://github.com/ckkomis/freebsd-src/commits/mkimg/qcow2-compression/
https://kmpow.com/content/gsoc-writeup
https://kmpow.com/content/gsoc-writeup
https://github.com/freebsd/freebsd-src/pull/1818
https://github.com/freebsd/freebsd-src/pull/1819
https://github.com/freebsd/freebsd-src/pull/1843

mac_do(4) andmdo(1) Improvements

Kushagra Srivastava's project aims to enhance FreeBSD's credential transition infrastruc-
ture by improving both the kernel-side MAC module, mac_do(4), and its companion user-
land tool, mdo(1). Rather than relying on traditional setuid executables (which carry inherent
risks), the goal is to enable controlled, fine-grained credential transitions under the umbrel-
a of FreeBSD’s MAC framework. On the kernel side, mac_do(4) was extended to support
per-jail configuration of authorized executables (so that an admin can specity exactly which
vinaries in a given jail are allowed to request credential transitions, instead of being limited
to a hardcoded path). Also, it now intercepts standard credential-changing syscalls such as
setuid(2), setgid(2), setgroups(2), and treats
them as full transition requests that are subject to
the mac_do(4) policy module.

For userland work, the mdo (1) tool was improved
to provide fine-grained credential transition re-
quests. It now supports explicit overrides of user/
group IDs, as well as supplementary groups, via flags
such as —-g, -G, and -s. It also includes a ——print-
rule option to display the matching mac_do(4) rule
for a requested transition, which helps administra-
tors with rule creation and debugging.

Together, these enhancements make credential
transitioning more flexible, secure, and integrated
with FreeBSD's jail and MAC frameworks. This re-
duces the need for risky setuid binaries and brings improved auditability and control.

Refer to Kushagra's project write-up at https:/thesynthax.hashnode.dev/my-google-
summer-of-code-journey-part-3 for details.

Speed up the FreeBSD Boot Process
Lahiru Gunathilake's project is a continuation of past projects to speed up FreeBSD's
Hoot time by profiling the boot sequence, identifying bottlenecks, and implementing op-
timizations. Using the built-in TSLOG tracing framework, Lahiru generated flame charts of
the boot path to understand where time was being spent and where unnecessary delays
could be eliminated.
Once the profiling revealed hotspots such as device attach phases, initialization of
large filesystem subsystems (especially ZFS), and sleeps in vfs_mountroot (root filesystem
mount), the work progressed to the implementation phase. This included:
» reducing a benchmarking buffer size from 16MB to 256KB, cutting startup from 989
ms to 6/ ms
» reducing long wait loops in keyboard and mouse initialization, and introducing the tun-
able hw.atkbd.short_delay
* eliminated unnecessary waits for USB devices.
Overall, Lahiru reported reductions of 8.2 s in kernel initialization, 3.5 s after the ZFS and
input device optimizations, and 19 s when skipping the USB boot wait.

WiFi Management Ul
Muhammad Saheed took on a project to develop cohesive CLI (wutil) and TUI (wutui)
utilities for managing WiFi networks on FreeBSD. The aim was to cover “station mode op-

FreeBSD Journal - October/November/December 2025 |4

4 of 7



https://thesynthax.hashnode.dev/my-google-summer-of-code-journey-part-3
https://thesynthax.hashnode.dev/my-google-summer-of-code-journey-part-3

erations, such as scanning, connecting/disconnecting from wireless networks,” and to wrap
these into a clearer, more consistent user interface. Other completed work includes:

« updating related man pages

» creating a port for wultlil

« adding libwpa client build option to security/wpa supplicant port

» creating a port for libifconfig

» extracting required ifconfig helpers into libifconfig (052130, D52131)

Refer to Muhammad'’s blog for more information about his work.

Journaling for FreeBSD ExtFS

This project by Pau Sum set out to bring Linux-compatible journaling to FreeBSD's
ext2fs filesystem implementation. With FreeBSD's existing ext2fs driver, FreeBSD users
could already mount and use ext2/3/4 tilesystems, but the driver lacked journaling support,
meaning unclean shutdowns required lengthy recovery via fsck. Pau's work introduced
on-disk journal awareness and transaction logging to improve crash recovery and
filesystem integrity, allowing FreeBSD to mount and replay journals on ext3/4 volumes and
interoperate more closely with Linux systems.

Rather than replicating Linux's full journaling framework, the design implements a tradi-
tional metadata-only journal using the same on-disk structures for compatibility. The new
code defines key data structures, including ext2fs_journal (representing the active journal),
ext2fs_journal_transaction (grouping atomic metadata updates), and ext2fs_journal_buf
(tracking per-block state). Core filesystem operations like ext2_link, ext2_mkdir, and
extZ2_write were extended with journal hooks to begin, dirty, and end transactions. Com-
mitting a transaction writes descriptor, metadata, revoke, and commit blocks, followed by
checkpointing to flush updates to disk. Recovery proceeds in three passes: validating trans-
action ranges, collecting revoked blocks, and replaying non-revoked metadata.

By the end of the project, 11 of 12 journal hooks were complete, with work in progress on
truncation and extent-based operations. Planned extensions include journaling support for
extents and truncation, checksum validation for journal integrity, more extensive crash sim-
ulation, and documentation cleanup. The implementation was tested using fsx and dirconc.
Pau’s code is available from his fork of FreeBSD's src repository.

Power Profiling Tool

he goal of Kasyap Jannabhatla’s project was to provide granular, process-level insights
into power usage on FreeBSD. This addressed the limitations of ACPI's whole-system power
statistics. Inspired by Performance Co-Pilot (PCP) and RAPL (Running Average Power Lim-
it) support, the project implemented a FreeBSD-native framework rather than porting Li-
nux PowerTop. The solution consisted of a kernel-level component to collect power-related
metrics and a user-space daemon with a command-line interface that provides CPU usage
and energy consumption per process tracking. By combining RAPL readings with per-process
CPU utilization derived from kvm_getprocs, the tool can estimate energy usage for individ-
ual processes and threads, providing a foundation for fine-grained power profiling and fu-
ture enhancements in FreeBSD’s power management ecosystem.

hroughout the development, the project focused on building a lightweight dae-
mon-based architecture, implementing a library (librapl) for structured RAPL data access,
and integrating it with process accounting to calculate per-thread energy consumption.
Testing involved stress benchmarks such as OpenSSL Speed and careful handling of multi-

FreeBSD Journal - October/November/December 2025 |5

50f 7



https://www.freshports.org/net/wutil
https://cgit.freebsd.org/ports/commit/?id=edaddcd1a5bb374e58de0d4f99a7cccf6aed09ec
https://www.freshports.org/net/libifconfig
https://reviews.freebsd.org/D52130
https://reviews.freebsd.org/D52131
https://saheed.tech/writings
https://www.freshports.org/devel/fsx/
https://www.netbsd.org/~riastradh/tmp/dirconc.c
https://github.com/pxsum/freebsd-ext34/tree/extfs-journaling
https://github.com/pxsum/freebsd-ext34/tree/extfs-journaling

6 of 7

core runtime accounting using thread IDs. By the end of the project, the framework could
reliably report per-process energy usage over time, and all deliverables, including the dae-
mon, library, and documentation, were completed. The implementation is available here.

Port FreeBSD to QEMU microvm

QEMU microvm is a minimalist virtual machine inspired by Firecracker. While FreeBSD
was ported to Firecracker, that platform is Linux-specific, limiting portability. For this project,
Wyatt Geckle aimed to develop a QEMU microvm version of the FreeBSD kernel inspired
by the Firecracker port. To do this, Wyatt replicated prior porting attempts and analyzed
kernel initialization issues, particularly timer configuration, which caused long boot times. By
studying NetBSD's working microvm implementation and Intel documentation, the project
identified differences in FreeBSD's timecounter and APIC initialization.

The current FreeBSD microvm kernel boots under QEMU microvm but does not call
tc_init, which limits the available timers. The Firecracker port remains broken due to MPT-
ables issues, requiring further investigation. Despite
these limitations, the project broadened Wyatt's
understanding of FreeBSD and NetBSD kernel in-
ternals, virtualization, and microvm platforms, and
produced extensive documentation for building,
running, and debugging FreeBSD in microvms and
Firecracker. The work also provides a foundation for
future contributions to FreeBSD, QEMU microvm,
and Firecracker support, as well as reproducible de-
bugging workflows for other microvm projects.

Those interested in this work can find more informa-
tion on Wyatt's blog. The code can be found at Wy-
att's fork of the src tree.

Mentor Summit

Robert Clausecker, a FreeBSD GSoC co-admin-
istrator and mentor, represented FreeBSD at this
year's Mentor Summit that was held from October 23 to 25 in Munich, Germany. Topics
discussed included Al-generated and spam applications. While no definitive solutions have
emerged, one approach under consideration is to require applicants to meet with potential
mentors before applying. This is something FreeBSD has already encouraged in previous
years to help ensure good matches between mentors, contributors, and projects. Robert
also met with representatives from the Linux Foundation to brainstorm potential collabora-
tion between the Linux and FreeBSD Foundations, such as attracting more students to op-
erating systems development.

Other summit sessions covered funding in open source projects. Robert spoke with a
developer working on RTEMS, a real-time operating system used in various devices and
learned that they incorporate FreeBSD's network stack in their system. He also met GSoC
organizer Stephanie Taylor and shared the positive impact GSoC has had on FreeBSD. Of
course, he returned with some swag, including a T-shirt and a pair of GSoC(k)s.

FreeBSD Journal - October/November/December 2025 |6



https://github.com/cheeseburger9309/freebsd-src/tree/gsoc2025-powerprofilingtool
https://www.qemu.org/docs/master/system/i386/microvm.html
https://firecracker-microvm.github.io/
https://wgeckle80.github.io/blog/categories/port-freebsd-to-qemu-microvm/
https://github.com/wgeckle80/freebsd-src/tree/microvm-port
https://github.com/wgeckle80/freebsd-src/tree/microvm-port

7 of 7

Final Thoughts

It's gratitying to review the success of our GSoC 2025 program, but the time before
G50C 2026 starts will come quickly. As usual, our most significant challenges to repeat-
ing this year's success will be developing suitable projects, finding dedicated mentors, and
matching applicants to mentors. Fortunately, recent changes to the Google Summer of
Code program should help.

» Flexible Timelines and Scope: Project timelines are more flexible. Contributors and
mentors can choose from small (0-hour), medium (175-hour), or large (350-hour)
projects, and the total time for the projects can be extended from the standard 8
weeks (small) or 12 weeks (medium and large).

- Expanded Contributor Pool: The pool of applicants has grown. Contributors do not
nave to be university students, so everyone new to open source is eligible to partici-
Date.

But for now, let’s bask in our collective success and acknowledge the considerable effort

that went into this year's program.

Thank you
Thank you to everyone who contributed project ideas to https:/wikifreebsd.org/Sum-
merOfCodeldeas and especially to our 2025 mentors:
 John Baldwin
 Olivier Certner
« Robert Clausecker
« Pedro Giffuni
* Jlom Jones
* Warner Losh
« Ed Maste
« Getz Mikalsen
* Joe Mingrone
* Mehdi Mokhtari
» George Neville-Neil
« Colin Percival
* Alfonso Sabato Siciliano
« Alan Somers
* Joomas Soome
 Fedor Uporov
* Aymeric Wibo

JOE MINGRONE is a FreeBSD ports developer and works for the FreeBSD Foundation. He
lives with his wife and two cats in Dartmouth, Nova Scotia, Canada.

FreeBSD Journal - October/November/December 2025



https://wiki.freebsd.org/SummerOfCodeIdeas
https://wiki.freebsd.org/SummerOfCodeIdeas

