10f10

Vox FreeBSD:
How Sound Works

B BY CHRISTOS MARGIOLIS

i i
: w 1 . 3
[} P 1! .
| P E i
] oo, %
o TR
el | I
o 1 r_T- : i w I- - =
LR o i L f J
Bw -
L] f F
- el 'E PR -
]) ::| iy :' % i = T -
P By 4, oo . .
| R _||I' p._f_l I'"lll;'l \
[- 4 LRl B B
g ik "1 I.-I-'- .‘ '
i

Sound support for FreeBSD began in 1993, when Jordan K. Hubbard imported the ge-

neric Linux sound driver into FreeBSD, later known as the VoxWare sound drivers, writ-
ten by Hannu Savolainen. Several new versions of the VoxWare drivers were imported

(and modified) into the FreeBSD base system between 1993 and 1997. At this time, Amancio
Hasty and Jim Lowe did most of the work on sound support in FreeBSD. The VoxWare driv-
ers eventually became what we know today as OSS, the Open Sound System, maintained by
Hannu and his team at 4Front Technologies.

However, things changed in 1997 as more of the
foundation for the sound system we have today was
laid out by Luigi Rizzo. In 1999, Cameron Grant re-
wrote the sound system for FreeBSD 4.0, now using
the newbus interface, which supported a great deal
of hardware. This superseded Luigi’s driver, which
was removed from the tree a month later. In the
following years, many things changed in the sound
area. The number of drivers for different hardware
chips increased drastically (especially for PCl and
USB devices), and many improvements were made
to the sound infrastructure, thanks to Cameron
Grant and Orion Hodson. Cameron passed away in
2005, a major loss for the FreeBSD community.

Arift Abdullah took over the maintainership of the
sound code in FreeBSD in 2005. Since then, we've
seen some dramatic changes in sound support, as
well as several rounds of device driver restructuring.

OSS
FreeBSD's sound APl is called OSS, which stands for “Open Sound System”. Interesting-

ly enough, it also used to be Linux’'s default sound AP, until it was eventually replaced by
ALSA. FreeBSD, however, still uses it, and it provides a simple and clean API by just exposing

FreeBSD Journal - October/November/December 2025 |1

20of 10

standard device files (/dev/dsp* corresponding to sound cards and /dev/mixer* to mix-
ers), which are operated on using a few common POSIX system calls:

open(2) Open device.

close(2) Close device.

read(2) Record audio.

write(2) Play audio.

ioctl(2) Query/manipulate settings (sample rate, format,
volume, and much more).

select(2), poll(2), Poll for events. kqueue(2) is FreeBSD-only

kqueue(2) (15.0 onwards).

mmap(2) Memory-mapped I/O.

The official manual can be found here: http://manuals.opensound.com/developer/

Since interaction with the sound device is done using common syscalls, it is possible to
do things like this in the terminal:

1. Play white noise: cat /dev/random > /dev/dsp

2. Record raw PCM (Pulse Code Modulation) stream into a file: cat /dev/dsp > foo

3. Very crude input monitoring, which can be used to make sure your microphone is

working: cat /dev/dsp > /dev/dsp

For more elaborate things, however, actual programs have to be written — Fortunately,
the OSS APl is straightforward to use. /usr/share/examples/sound contains several ex-
ample programs and is, in fact, growing as of the writing of this article.

In addition to the /dev/dsp* devices, there is a /dev/dsp device, which is what was used
in the examples above. This isn't a real device, but an alias to the currently default device.
Applications that want to use whatever the default device is at any given time are strongly
encouraged to access this device instead of hardcoding specific ones.

An additional nice feature is that OSS works with POSIX syscalls only is that it is trivial to
use OSS in any programming language, without the need for language bindings. The only
thing one would need to do to fully “port” OSS to another language would be to define
some global OSS APl constants and structures, which can be found in /usr/include/sys/
soundcard.h.

sound(4)

The OSS APl is implemented inside sound(4). It abstracts some generic functionality
into a kernel module, so that individual device drivers (e.g., snd_hda(4), snd_uaudio(4),
etc.) do not need to duplicate code that would be the same across all of them. This generic
functionality includes:

 Device creation, deletion, and access.

» Buffer management.

» Audio processing.

* Providing global and (most of) device-specific sysctls.

Device drivers have to attach to sound(4) and set up a communication pipeline with it,
during their initialization stage. In other words, sound(4) is the bridge between userland

FreeBSD Journal - October/November/December 2025 |2

http://manuals.opensound.com/developer/

and device drivers. This is particularly convenient, because the FreeBSD kernel exposes the
same /dev/dsp* files and sysctls (hw.snd.* and dev.pcm.*) for every connected sound
device, and provides uniform access and configuration to users and application program-
mers, while also avoiding the need for duplication at the device driver level.

sound(4) also exposes /dev/sndstat, which provides information about all connect-
ed sound devices and active channels, and is used internally by virtual oss(8) and
sndctl1(8).

sound(4) works with PCM audio streams, the specifics of which (sample rate, sample
format, etc.) can also be manually configured by the user with sndct1(8), if needed. This
means that applications working with audio represented in other formats, such as WAV,
Opus, MP3, etc, need to convert the stream to PCM during playback, and from PCM
during recording.

High-level implementation overview
Device access
As was mentioned earlier and shown in the example program, applications access the

sound subsystem through /dev/dsp*, using the open(2) syscall. The following flags can be
specified:

0_RDONLY Recording.
0 WRONLY Playback.
0_RDWR Recording and playback.

The 0_NONBLOCK and 0_EXCL flags can be additionally specified in the open(2) call, for
non-blocking I/O and exclusive access to the device respectively. For sound(4) to know
which channels belong to which file descriptor, and to route audio and information properly,
it uses DEVFS_CDEVPRIV(9).

As alluded to earlier, there are also /dev/mixer* devices. This is a legacy interface, main-
ly used for volume setting and recording source selection, by applications such as mixer(8).
/dev/mixer* devices have a 11 relationship with /dev/dsp* ones, so for instance, /dev/
mixerO is the mixer device corresponding to /dev/dsp0. This interface also provides some
functionality for physical mixers. As of OSS version 4.0, the mixer APl has been rewritten,
but is not currently fully implemented on FreeBSD.

Channels

Channels hold some important information about their state (e.g., configuration, PID,
and name of process consuming it, diagnostic values, etc.), as well as the most important
component; the buffer(s). In other words, the actual audio stream. Channels also have their
own volume, in addition to the device-wide master volume. This is especially useful because
applications get their own volume knobs and usually do not need to touch the master one.

At this point, it is essential to note that there are two types of channels in sound(4); pri-
mary/"hardware” and virtual.

The device drivers allocate primary channels, and there is usually one for playback and
one for recording, depending on what is supported by the hardware. However, some driv-
ers might make the number of primary channels equal to the number of physical playback
and recording ports provided by the hardware. Each primary channel comes with a pair of

FreeBSD Journal - October/November/December 2025 |3

30of 10

buffers, a software-facing one and a hardware-facing one.

he software-facing buffer is re-

sponsible for exchanging audio data with userland, while the hardware-facing one is for ex-

changing data with the hardware. Whenever the device driver is ready to read from or write
data to the hardware, it interrupts sound(4), and data is copied from one buffer to the oth-
er. During playback, since we are writing data to the hardware, we copy the software-facing

buffer to the hardware one, so that the driver can feed that data to the hardware. The re-

verse is true for recording.

Virtual channels, commonly referred to as VCHANS, are treated as children of primary
channels, but, unlike primary channels, they do not have any connection to the hardware,

so only their software-facing buffer is used. The rea-
son for virtual channels existing in the first place is
that we want an indefinite number of applications to
be able to access the device simultaneously. With-
out virtual channels, the number of processes that
can access the device simultaneously is equal to the
number of primary channels, since each channel has
only one software-facing buffer, which means that
all processes would have to share the same buffer,
which is not really ideal for audio, so each buffer has
to be dedicated to one process.

Earlier, we explained how audio streams are ex-
changed between userland and hardware using pri-
mary channels. When virtual channels are enabled
(as is the case by default), sound(4), instead of sim-
ply copying the primary channel’s software-facing
buffer to the hardware-facing one (during playback),

and vice-versa (during recording), it first has to mix all the audio streams of the primary
channel’s children virtual channels, and then supply the final mixed stream to the prima-

ry channel's hardware-facing buffer. As you can imagine, this additional layer introduces

a slight overhead, which is irrelevant for most use cases, but might not be ideal in some
low-latency music production workflows. For those cases, virtual channels can simply be dis-

abled.
To view channel states, you can use sndct1(8):

$ sndctl -v

Processing chain

An interesting feature of sound(4) is its processing chain. This includes:
« Mixing. This is actually exactly what was explained in the previous section, about how

virtual channel streams are (de-)mixed.
« \Volume control.

» Channel matrixing. sound(4) is capable of doing any-to-any channel matrixing, for ex-
ample, mono to stereo, or stereo to 5.1 surround. This is done by converting streams

from one interleaved PCM tformat to another.
» Basic parametric equalization.
 Format conversions.

FreeBSD Journal - October/November/December 2025

4 of 10

50f 10

» Resampling. There are three different resampling types, namely:
* Linear.
« /ero-order-hold (ZOH).
 Sine Cardinal (SINC).

Fach channel gets its own processing chain, and it includes only the necessary compo-
nents. For instance, if the channel is configured to have a sample rate of 44100Hz, but the
application feeds it audio sampled at 48000Hz, then sound(4) will need to include resam-
pling in the channel's processing chain. Similarly, if the stream has the same sample rate as
the channel, then that component will not be needed. The same applies to the other com-
ponents.

A helpful way to visualize the processing chain is to print it using sndct1(8). The follow-
ing command will print the chain of each active channel:

$ sndctl feederchain

In the next section, we will discuss how and why, in some specialized cases, you might
want to bypass the processing chain entirely.
Memory-mapped I/0 and bit-perfect audio

Two of sound(4)’s liked features by low-latency application developers and audio enthu-
siasts, are that it provides bit-perfect mode support, as well as memory-mapped 1/O.

Bit-perfect mode means that the audio stream skips all of sound(4)'s processing chain,
and is fed more or less directly to the sound card. Applications have the added responsibil-
ity of making sure the stream’s configuration (sample rate, format, channel matrix) match-
es that of the sound card. For instance, if the application wants to play audio sampled at
48000Hz, but the sound card does not support that sample rate, then it needs to take care
of resampling the stream. As a result, this feature is disabled by default and is enabled only
by applications that implement their own processing, and/or users who are sure their sound
card will work properly in bit-perfect mode.

Memory-mapped /O is similar to bit-perfect, in that the audio stream skips all processing
done by sound(4); in fact, bit-perfect has to be enabled in order to do memory-mapped
/O. However, the major difference between bit-perfect and memory-mapped I/O, is that
the latter puts all of the audio buffer handling responsibilities entirely on the application,
which means that it has to take care of not only the same things that an application using
bit-perfect would, but to also make sure the buffer is synchronized correctly and that read/
writes happen at the right time, with some help from sound(4). If done right, and in the
right environment, this can yield performance improvements, but is quite tricky and tedious
to implement correctly, and so is mostly discouraged, unless the programmer really knows
what they are doing.

Device drivers

Just like sound(4) is the bridge between userland and the device drivers, the device driv-
ers are the bridge between sound(4) and the actual hardware. Apart from the fact that all
sound drivers attach to sound(4) and communicate with it, the rest of their functionality
depends on the driver itself. In a future article, we could present how to write a sound driver
from scratch.

FreeBSD ships with support for the following sound cards:

FreeBSD Journal - October/November/December 2025 |5

Driver

snd _ai2s(4)
snd als4000(4)
snd_atiixp(4)
snd cmi(4)

snd cs4281(4)
snd csa(4)

snd_davbus(4)
snd emulOk1(4)
snd _emulOkx(4)

snd_envy24(4)
snd_envy24ht(4)
snd es137x(4)
snd fm801(4)
snd_hda(4)
snd_hdsp(4)
snd_hdspe(4)
snd ich(4)

snd maestro3(4)
snd_neomagic(4)
snd _solo(4)
snd_spicds(4)
snd_t4dwave(4)
snd uaudio(4)
snd via8233(4)

snd via82c686(4)

snd vibes(4)

Soundcards
Apple 125

Avance Logic ALS4000
ATI IXP
CMedia CMI8338/CMI8738

Crystal Semiconductor CS428]1

Crystal Semiconductor CS461x
[462x/4280

Apple Davbus

SoundBlaster Live! and Audigy

Creative SoundBlaster Live!
and Audigy

VIA Envy24 and compatible
VIA EnvyZ24HT and compatible
Ensonig AudioPCl ES137x
~orte Media FM801

ntel High Definition Audio
RME HDSP

RME HDSPe

ntel ICH AC'97 and compati-
Dle

=SS Maestro3/Allegro-1
NeoMagic 256AV/ZX

ESS Solo-1/1E

25 SPI

Trident 4DWave

USB audio and MIDI

VIA Technologies V18233
VIA Technologies 82C686A
S3 SonicVibes

There is also support for the following ARM chips:
* Allwinner A10/A20 and H3.

e Freescale i.MXé6.

« Broadcom BCM2835.
* Freescale Vybrid.

FreeBSD Journal - October/November/December 2025

6 of 10

Enabled by default

powerpc

amdé4, 386

amdé4, 386

DOWErpC

amdé4, 386

amdé4, 386

amdé4, 1386

amdé4, 386

auto-loaded on device plug
amdé4, 386

It you own a sound card whose driver is not enabled by default on your machine'’s archi-
tecture, or you are using a custom kernel configuration without sound compiled in, and are
unsure which driver your sound card uses, you can run the following command:

kldload snd driver

snd_driver is a meta-driver that loads all available drivers. Once you figure out which
driver attaches to your sound card, you can load that one only.

Recent improvements

The sound subsystem has (and still is) undergone many improvements in the last two
years, including a number of bug and crash fixes, the introduction of a growing Kyua test
suite and a testing driver (snd_dummy (4)), as well as multiple cleanups and refactors.

A few important user-facing improvements include:

» Hot-unplugging is now possible. Users of USB sound cards on older versions of FreeBSD
might remember that hot-unplugging the sound card usually resulted in the USB bus
hanging, until the application using the now-detached device was manually killed
(PR194/27).

» Floating-point audio support. This is a bit misleading, though, because we do not really,
at least currently, support floating-point audio on the device driver level, but rather, we
allow userland applications to use OSS with floating-point audio. This already fixes quite
a few ports, such as Wine, that needed floating-point audio support from OSS.

» sound(4) now only exposes a single /dev/dsp* file for each device and does all the
audio stream routing internally, using DEVFS_CDEVPRIV(9), as opposed to exposing a
/dev/dsp* file for each allocated audio stream. The current approach is cleaner both in
implementation and in what is exposed to userland.

» Better out-of-the-box support for High Definition Audio (snd_hda(4)) sound cards.
These cards are a constant pain for both developers and users, because they tend to
come with non-standard configurations, meaning that we have to compensate for that

Oy adding manual patches inside the driver or /boot/device.hints. A commonly re-
ported issue is that sound is not automatically redirected to the headphones once they
are plugged in, and vice versa. Several patches have recently been written for various
sound cards that experience this issue, especially Framework laptops. It is very likely that
you also have fallen victim to that issue. With that being said, since FreeBSD 15.0, there is
a devd(8) configuration, /etc/devd/snd.conf, which attempts to automate this issue.
The basic idea of the implementation is that whenever snd_hda(4) detects that a jack
has been (un-)plugged, it issues a devd(8) notification, and /etc/devd/snd.conf will
make sure to redirect sound to the appropriate device using virtual oss(8). This fea-
ture is still experimental, so there should be more refining as more people provide feed-
pDack.

 kqueue(2) support for sound(4).

Userland utilities
You can find examples and more information for each of the following utilities in their re-

spective manual pages.

FreeBSD Journal - October/November/December 2025

7/ of 10

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=194727

sndctl(8)

8 of 10

sndct1(8) lists and manipulates sound card settings, such as the sample rate, sample
format, bit-perfect and realtime mode settings, among others. It aims to be a replacement
for /dev/sndstat (in fact, it uses it internally) and some of sound(4)’s sysctls, at least for

MOST Use cases:

$ sndctl

pcm3: <Realtek ALC295 (Analog 2.0+HP/2.0)> on hdaal (play/rec)

name
desc

status

devnode

from user

unit

caps
bitperfect
autoconv
realtime
play.format
play.rate
play.vchans
play.min_rate
play.max_rate
play.min_chans
play.max_chans
play.formats
rec.rate
rec.format
rec.vchans
rec.min_rate
rec.max _rate
rec.min_chans
rec.max_chans
rec.formats

mixer(8)

pcm3

Realtek ALC295 (Analog 2.0+HP/2.0)

on hdaal
dsp3

0

3

INPUT ,MMAP,OQUTPUT ,REALTIME, TRIGGER

0

1

0

sl6le:2.0
48000

1

1

2016000

2

2
sl6le,s321e
48000
sl6le:2.0

1

1

2016000

2

2
sl6le,s321e

mixer(8) deals with volume control, (un-)muting, recording source(s) selection, and de-

fault device setting. It was completely rewritten on FreeBSD 14.0, and comes with an im-
oroved interface and functionality:

pcm3:mixer: <Realtek ALC295 (Analog 2.0+HP/2.0)> on hdaal (play/rec) (default)

$ mixer
vol = 0.75:0.75
pcm = 1.00:1.00
rec = 0.37:0.37
ogain = 1.00:1.00
monitor = 0.67:0.67

virtual_oss(8)

pbk
pbk
pbk
pbk
rec src

virtual oss(8) is a powerful sound server for OSS written by the late Hans Petter Se-
lasky . It was part of ports (audio/virtual_oss) for years, but has been part of the base

FreeBSD Journal - October/November/December 2025 | 8

system since FreeBSD 15.0. It is again in active development, and there are already plenty of
significant improvements being worked on and planned for the future.

As is mentioned in the 15.0 release notes, pre-FreeBSD 15.0 users of virtual oss(8)
can simply uninstall the audio/virtual_oss port and use the base system version. The
only thing to keep in mind is that some functionality, which depends on third-party libraries,
has been moved to separate ports, namely:

» sndio backend support: audio/virtual oss_sndio

» bluetooth backend support: audio/virtual oss_bluetooth

*virtual_equalizer(8): audio/virtual_oss_equalizer
mididump(1)

mididump(1) is a simple utility that prints MIDI events for a given device in real time. This
is useful for making sure a MIDI device works properly and that keys work and are mapped
correctly.

$ mididump /dev/umidi0.0

Note on channel=1, note=53 (F3, 174.61Hz), velocity=109
Note off channel=1, note=53 (F3, 174.61Hz), velocity=127
Note on channel=1, note=55 (G3, 196.00Hz), velocity=100
Note off channel=1, note=55 (G3, 196.00Hz), velocity=127
Pitch bend channel=1, change=1

beep(1)

beep(1), as the name suggests, plays a beep sound. This is an easy way to verify sound
WOrks.

More

Apart from the utilities mentioned, there are a few more things provided by the sound
subsystem:

mixer(3) A C library for interacting with man 3 mixer
the OSS mixer.
sndstat(4) An nv(9) interface for man 4 sndstat

listing device information,

as well as registering
userland sound devices.
Used internally by sndct1(8)
and virtual oss(8).

hw.snd.* Global sysct1(8) variables. man 4 sound

dev.pcm.* Device-specific sysct1(8) man 4 sound
variables.

Driver-specific Refer to the respective

sysctl(8) variables driver's manual page.

FreeBSD for music production?!

You might be thinking this is a joke, but it is, in fact, a topic that has been coming up
more and more in recent years, and we have already seen a few related talks in recent con-
ferences, more specifically:

9 of 10

FreeBSD Journal - October/November/December 2025 |9

https://cgit.freebsd.org/src/commit/?id=c457acb4ee821cf015930a94f52c3870786468a7

« Goran Meki¢, FOSDEM 2019

10 of 10

« Goran Mekic, EuroBSDCon 2022

« Charlie Li, BSDCan 2024

» Christos Margiolis, FreeBSD DevSummit 09/2024
» Christos Margiolis, BSDCan 2025

« Charlie Li, EuroBSDCon 2025

FreeBSD is, without a doubt, not the operating system a musician or producer would
typically think about when it comes to music production, however, this is partially the case
because of a lack of "marketing”, for lack of a better word. In reality, FreeBSD offers a solid,
fast, and highly configurable sound subsystem, it has a consistently rapidly growing collec-
tion of open source Digital Audio Workstations, LV2 plugins, and other types of production/
music software, and it can work with any non-native sound subsystem (ALSA, sndio, JACK,
Pulseaudio, Pipewire, etc.), in case OSS is not desirable.

| genuinely think that if we continue this trend of consistently maintaining and develop-
ing the sound subsystem, porting and developing more software, as well as showcasing in
practice why FreeBSD can be an alternative for audio and music production, both in confer-
ences and online, we could, one day, see FreeBSD gaining significant popularity among au-

diophiles and musicians.

Reporting and resolving bugs

All software might contain bugs from time to time, and the sound subsystem is no ex-
ception. Providing sufficient information is always necessary, and opening a bug report or
sending an email with just a “sound does not work on my machine” is not really helpful. At-

taching the output of the following
1. uname -a
Z2.sndctl -v
3.mixer -a

commands should be enough in most cases:

4.sysctl hw.snd dev.pcm, as well as the driver-specific sysctls, it any.
5.dmesg, after setting hw.snd.verbose=4 and reproducing the bug.
6.Logs, it any, from the application with which the bug is reproduced.

Conclusion

Hopefully, this article has helped with presenting the general structure of the sound sub-
system as a whole, at its current state. It would be great to see even more people interest-
ed in FreeBSD sound in the future! The freebsd-multimedia@FreeBSD.org mailing list is
where most of the discourse happens, so make sure to keep an eye on it.

CHRISTOS MARGIOLIS is an independent contractor and FreeBSD src committer from

Greece.

FreeBSD Journal - October/November/December 2025

10

