1of7

Universal Flash Storage
= = on FreeBSD

BY JAEYOON CHOI

signed for mobile, automotive, and embedded environments. Today, UFS is widely

deployed and has become the successor to eMMC in most Android flagship smart-
phones. It also appears in some tablets, laptops, and automotive systems. Linux has sup-
ported UFS since around 2012, OpenBSD since 7.3, and Windows since Windows 10,

However, FreeBSD did not have a UFS driver. If we were to bring UFS's proven maturity
from other ecosystems into the FreeBSD storage stack, FreeBSD would become a viable
choice in many mobile and embedded domains. The question “Why doesn’t FreeBSD have
a UFS driver yet?” became my personal motivation, and this article describes the path | took
to answer it.

Until last year, | had never used FreeBSD. Over
the course of approximately six months, | studied
-reeBSD, analyzed its codebase, and eventually im-
vlemented a UFS driver. | hope this case shows that "\\/hy doesn't FreeBSH
even someone new to FreeBSD can develop a de-
vice driver with a systematic approach.
his article provides a brief introduction to UFS, became my personal
explains its architecture, development process, and
driver design, shares its current status and future
plans, and finally presents a hands-on environment
using QEMU, allowing readers to follow along.

Note: FreeBSD also has the traditional UFS (Unix File System). In this article, “UFS" means
Universal Flash Storage, not the file system. The driver name in the codebase is ufshci(4).

l ' niversal Flash Storage (UFS) is a high-performance, low-power storage interface de-

Ihe question

nave a UFSdriveryet”?”

motivation.

Universal Flash Storage Overview

In mobile storage, low latency and low power are essential, and compatibility with existing
systems is also important. Rather than inventing an entirely new standard, UFS combines
existing standards to achieve these goals. As a result, it was quickly adopted by the market.

't retained the benefits of low power and reliability from its component standards, albeit at
the cost of somewhat greater implementation complexity.

At the interconnect layer, UFS uses MIPI M-PHY (a reliable, differential high-speed serial
interface) together with MIPI UniPro (a link layer with strong power management). On top
of that, the transport protocol layer uses UTP, and the application layer uses a SCSI com-
mand subset whose reliability and compatibility are already well proven.

Where UFS is used

UFS may feel unfamiliar, but you are likely already using it. Most Android flagship smart-
phones use UFS for internal storage. UFS is also used in some low-power tablets and ultra-
light laptops, as well as in automotive infotainment, where reliability is critical.

FreeBSD Journal - October/November/December 2025 |1

Many high-performance ARM application processors integrate a UFS host controller, and
some low-power x86 platforms (e.g., Intel N100) support a UFS host controller as well. Ninten-
do's recently released handheld console, Nintendo Switch 2, uses UFS for internal storage.

As UFS adoption continues to grow, adding native UFS support in FreeBSD broadens its ap-
plicability to mobile and embedded systems. Anticipating this demand, | started this project.

UFS Architecture
Application Processor UFS Target Device
CAM (Software) _
N UFS Device Controller Well Known LUN
} CCB(SCSI CMD)
UFS Driver (Software) Core Logic NAND
- NAND Read/
Register, UICJ UPIU, Interrupt R _» Logical Unit 0
_ NAND Management _ _
o > Logical Unit 1
Tg UFS Host Controller Interface 4
c v
3 UTP Protocol Engine UTP Protocol Engine .
1)
2 UFS InterConnect UFS InterConnect
i (UniPro , M-PHY) (UniPro , M-PHY) Logical Unit N
)

AA T

M-PHY 2 Lane High Speed Serial Link

Figure 1. UFS System Model

A typical UFS system consists of a UFS target device (usually a BGA package on the PCB)
and a UFS host controller integrated into the application processor SoC. The two compo-
nents communicate over a high-speed serial link.

When an I/O request arrives, FreeBSD's CAM (Common Access Method) subsystem
builds a SCSI command in a CCB (CAM Control Block) and passes it to the driver. The driver
encapsulates the SCSI command in a UPIU (UFS Protocol Information Unit) and enqueues it
on the UFS host controller’s queue.

The host controller enqueues the request and rings the doorbell; data moves via DMA,
and completions arrive via interrupts. The UFS device executes the SCSI subset command
(e.g, READ/WRITE), accesses NAND flash, and returns completion or error status to the
host controller.

In this way, the UFS device driver controls the host controller to perform reads and writes
to the UFS device.

UFS Application Layer (UAP)

Device Manager UFS Command Layer
scs| Task Manager

UFS Transport Protocol Layer (UTP)

UFS InterConnect Layer (UIC)

M-PHY

Figure 2. UFS Layered Architecture

FreeBSD Journal - October/November/December 2025 |2

20f 7

https://en.wikipedia.org/wiki/Nintendo_Switch_2

As noted earlier, UFS layers several existing standards and is organized into three layers:
interconnect, transport, and application. Their roles are:

* UIC (UFS InterConnect Layer): Manages the link. It performs Link Startup over
M-PHY/UniPro, adjusts gear and lane settings to balance performance and power, sup-
horts power states (Active, Hibernate), detects errors, and performs recovery. The UFS

driver controls this layer via registers and UIC commands.

* UTP (UFS Transport Protocol Layer): Transports admin and SCSI commands. The host
controller maintains Admin and /O queues; the driver enqueues requests and rings a
doorbell. Data moves via DMA, and completions arrive via interrupts.

* UAP (UFS Application Layer): Handles com-
mands (e.g., READ/WRITE) and command
queue control. Although UFS defines multi-
ple command sets, in practice, only the SCS UrFS layers several existing
command subset is used. The UFS driver does . -

b standards and is organizec
not create SCSI commands; it encapsulates
CAM-generated SCSI commands in UPIUs nto three layers: interconnect,
for UTP. This allows CAM’S standgrd paths for transport, and application.
scanning, error handling, and retries to be re- |
used as-is. Through this layer, CAM treats UFS
as a standard SCSI device.

Key advantages (high performance, low power)

e Performance: Compared with eMMC's half-duplex, parallel interface, UFS's full-duplex,
nigh-speed serial interface delivers higher bandwidth and lower latency. The submission
nath is lightweight, built around queues, DMA, and interrupts. As a result, performance

is solid even with a single queue, and multi-circular queues (MCQ) improve scalability on
multicore systems. WriteBooster further improves burst-write performance by using an
SLC region of NAND.

* Power efficiency: The UIC link raises the gear only when /O is active and quickly drops
to a low-power state when idle. The standard defines power-state transitions, enabling
longer battery lite in thermal and power-constrained mobile form factors. In practice,
tablets using UFS instead of NVMe have been reported to gain roughly 30-90 minutes
of battery life.

e Compatibility: Because UFS uses a SCSI command subset, existing SCSI infrastructure
can be reused. On FreeBSD, CAM handles SCSI processing, while the UFS driver en-
capsulates CAM-generated SCSI commands in UPIUs for UTP, making integration with

CAM straightforward.

History and future of UFS
The UFS standard is published as JESD220 (UFS), and the host controller interface as

JESD223 (UFSHCI). UFS/UFSHCI 1.0 was released in 2011. In 2015, UFS 2.1 devices first
shipped in the Samsung Galaxy S6, marking the start of broad commercialization. UFS 3.0
improved link speed and introduced WriteBooster for burst writes. UFS 4.0 added multi-cir-
cular queues (MCQ), improving multicore scaling. UFS 4.1is the current release, and UFS is
deployed in most flagship smartphones.

As on-device Al workloads grow on smartphones and other mobile devices, UFS is evolv-
ing to enable the faster transfer of LLM models into DRAM. Because on-device LLM mod-

FreeBSD Journal - October/November/December 2025

3of7

https://psref.lenovo.com/syspool/Sys/PDF/IdeaPad/IdeaPad_Duet_3_11IAN8/IdeaPad_Duet_3_11IAN8_Spec.pdf
https://psref.lenovo.com/syspool/Sys/PDF/IdeaPad/IdeaPad_Duet_3_11IAN8/IdeaPad_Duet_3_11IAN8_Spec.pdf

4 of 7

els must be loaded quickly, higher bandwidth is required; work toward UFS 5.0 targets high-
er link speeds by increasing the serial-bus clock rate to boost bandwidth.

Driver Overview
| proposed a UFS device driver on the freebsd-hackers mailing list in July 2024 and be-
gan analysis and design in January 2025. Fortunately, Warner Losh, now my mentor, replied
and provided valuable guidance on the FreeBSD storage stack. The FreeBSD Handbook
and BSD conference talks were also helpful. After about two months of analyzing CAM,
SCSI, and the NVMe driver, | designed the UFS driver. Because NVMe and UFS share a sim-
ilar structure, | reused many of the same ideas. | requested an early code review on May 16,
2025. After several review rounds, the work was committed on June 15, 2025, and included in
FreeBSD 15.0.

Development was conducted primarily using QEMU's UFS emulation, and was later vali-
dated on real hardware: Intel Lakefield and Alder Lake platforms with UFS 2.0/31/4.0 devic-
es. | also aimed to test on ARM SoCs, but suitable hardware was difficult to obtain.

The UFS driver is tightly integrated with the CAM subsystem. During initialization, it reg-
isters with CAM; thereafter, SCSI commands for configuration and reads/writes are deliv-
ered from CAM to the driver. To maintain backward
compatibility with UFS 3.0 and earlier, the driver
supports both the single doorbell queue (SDQ) The UFSdriver
path and the multi-circular queue (MCQ) path.

s tightly integrated with
Device initialization and registration

Initialization follows the UFS layered architecture, the LAM subsystem
proceeding from the bottom layer upward.

* UFSHCI Registers: Enable the host controller,

program required registers, and enable interrupts.

* UIC (UFS InterConnect Layer): Issue the Link Startup command to bring up the link

between the host and device and verify connectivity.

* UTP (UFS Transport Protocol Layer): Create the UTP command gueues and enable

UTP interrupts. Issue a NOP UPIU command to verify the transport path.

» Configure Gear and Lane: Negotiate gear and lane counts, then configure the link to

operate at maximum bandwidth.

* UAP (UFS Application Layer): Register with CAM to begin SCSI-based initialization;

CAM then scans the bus for targets and LUNs and delivers SCSI commands to the driver.

CAM (Common Access Method) is FreeBSD's storage subsystem. It is organized into
three layers: the CAM Peripheral layer, the CAM Transport layer (XPT), and the CAM SIM
ayer. After initialization, the UFS driver creates a SIM object with cam_sim_alloc() and regis-
ters it with the XPT via xpt_bus_register(). The XPT then scans the bus for targets and LUNs
to discover SCSI devices. When it finds a valid LUN, it calls cam_periph_alloc() to create and
register a Direct Access (da) peripheral in the CAM Peripheral layer.

With the Direct Access (da) peripheral registered, the CAM Peripheral layer automati-
cally constructs SCSI commands when /O to the UFS disk is requested. The driver's ufsh-
ci_cam_action() handler, registered with the SIM, receives the CCBs that carry these com-
mands, encapsulates them in UPIUs, enqueues them on the UTP queue, and on completion
calls xpt_done() to notity the XPT.

FreeBSD Journal - October/November/December 2025 |4

https://reviews.freebsd.org/D50370

50f 7

Because CAM handles standard SCSI paths such as scanning, queuing, error handling,
and retries, much of the required logic does not need to live in the UFS driver. The driver
primarily forwards SCSI commands to the target device over UTP.

Queue architecture: SDQ and MCQ

One of the key design decisions was the queue architecture. UFS 4.0 introduced
multi-circular gueues (MCQ), which are conceptually similar to NVMe's model. For backward
compatibility, single doorbell queue (SDQ) support is also required, and the driver must se-
lect between SDQ and MCQ at runtime, since UFS 3.1 and earlier support only SDQ. To ad-
dress this, | defined a function-pointer operations interface (ufs_gop) that abstracts queue
operations so the implementation can be chosen at runtime. (MCQ is not yet implemented
and will be added soon.))

Current status and future development plans

The UFS driver is under active development and currently implements a subset of UFS
41 features. My goal is to achieve full feature coverage, followed by power management and
MCQ. At present, supported platforms are limited to PCle-based UFS host controllers, and
| plan to add support for ARM system-bus platforms as well. | also aim to track and adopt
new UFS specifications promptly as they are released.

Getting Started with the UFS driver

To test the UFS driver, you typically need hardware with UFS built in. Fortunately, QEMU
allows development and testing without such hardware. This section shows how to emulate
a UFS device in QEMU and exercise the driver. (UFS emulation is supported starting with

QEMU 8.2)
Prepare a FreeBSD snapshot image.

oo

$ wget https://download.freebsd.org/releases/VM-IMAGES/15.0-RELEASE/amd64/Latest/
FreeBSD-15.0-RELEASE-amd64-zfs.qcow2.xz
$ xz -d FreeBSD-15.0-RELEASE-amd64-zfs.qcow2.xz

oo

oo

oo

oo

$ gqemu-system-x86_64 -smp 4 -m 4G \

—drive file=FreeBSD-15.0-RELEASE-amd64-zfs.qcow2,format=qcow2 \

-net user,hostfwd=tcp::2222-:22 -net nic -display curses \

—device ufs -drive file=/home/jaeyoon/blklg.bin,format=raw,if=none,id=luimg \
—device ufs-lu,drive=luimg,lun=0

oo

On amdé4, the GENERIC kernel config includes the UFS driver module (see sys/amdé4/

conf/GENERIC):
Universal Flash Storage Host Controller Interface support
device ufshci # UFS host controller

oo

oo

oo

After reboot, verity that the UFS device is attached as ufshciO/da0 via camcontrol:

FreeBSD Journal - October/November/December 2025 |5

https://download.freebsd.org/releases/VM-IMAGES/15.0-RELEASE/amd64/Latest/FreeBSD-15.0-RELEASE-amd64-zfs.qcow2.xz
https://download.freebsd.org/releases/VM-IMAGES/15.0-RELEASE/amd64/Latest/FreeBSD-15.0-RELEASE-amd64-zfs.qcow2.xz

6 of 7

ooo

$ camcontrol devlist -v
scbus?2 on ufshciO bus O:
<QEMU QEMU HARDDISK 2.5+> at scbus2 target 0 lun O (pass2,da0)
<> at scbus2 target -1 lun ffffffff ()

ooo

ooo

$ fio ——name=seq _write --filename="/dev/da0" --rw=write --bs=128k --iodepth=4
--s8ize=1G --time_based —--runtime=60s --direct=1 --ioengine=posixalo —-—-group_reporting
$ fio -—name=seq_read --filename="/dev/dal0" --rw=read --bs=128k --iodepth=4 --size=1G
——time_based —--runtime=60s --direct=1 —--lioengine=posixaio —-—-group_reporting

$ fio ——name=rand_write --filename="/dev/dal0" --rw=randwrite --bs=4k --iodepth=32
--size=1G --time_based —--runtime=60s --direct=1 --ioengine=posixalo —-—-group_reporting
$ fio ——name=rand_read --filename="/dev/da0" --rw=randread --bs=4k --iodepth=32

--size=1G --time_based —--runtime=60s --direct=1 --ioengine=posixalo —--group_reporting

oo

QEMU is an emulator, so it is best for checking functional behavior. For performance
measurements, | used my Galaxy Book S.

The Galaxy Book S has an Intel 10th-gen i5-L16G7 (14 GHz, 5 cores) and an internal UFS
3.1 device, which | upgraded to UFS 4.0 for the experiment (operating at HS-Gear 4 on a 31
host controller).

Queue Depth Sequential Read (MiB/s) Sequential Write (MiB/s) Random Read (kIOPS) Random Write (kIOPS)

1 709 554 /] 1211
2 1,395 556 14.38 294
4 1,416 559 31.6 63.2
8 1,417 554 63.5 102.3
16 1,399 555 103.7 105.5
32 1,361 556 114.2 106.6

Table 1. FreeBSD UFS Performance

Depending on queue depth, sequential write peaks at 559 MiB/s, and sequential read
reaches 1,41/ MiB/s, which is highly competitive for mobile devices.

Queue Depth Sequential Read (MiB/s) Sequential Write (MiB/s) Random Read (kKIOPS) Random Write (kIOPS)

1 542 479 6.1 1.0
2 1,358 543 13.0 21.0
4 1,351 550 297 53]
8 1,352 550 611 84.1
16 1,351 552 19.0 114.0
32 1,355 553 142.0 120.0

Table 2. Linux UFS Performance

Under the same conditions on Linux, performance is at a comparable level.

Conclusion

UFS is a rapidly evolving interface standard. The FreeBSD UFS driver likewise adds new
features and is continually optimized to enable UFS across a variety of devices.

| hope this article encourages wider use of UFS on FreeBSD. Contributions to the UFS
driver are very welcome. I'm grateful to the reviewers who helped make this possible, and |

FreeBSD Journal - October/November/December 2025 |6

7 of7

plan to continue contributing to the community.
Development of the ufshci(4) UFS device driver was supported by Samsung Electronics.

JAEYOON CHOI is a software engineer in the Memory Division at Samsung Electron-

ics, working to expand the open-source ecosystem for SSDs and UFS. He started using
FreeBSD in 2024 and became a FreeBSD src committer in September 2025. He previous-
ly contributed to Fuchsia OS's F2FS file system and currently maintains the Fuchsia OS UFS
driver. He is interested in open source for storage systems.

FreeBSD Journal - October/November/December 2025 |7

