
1FreeBSD Journal • October/November/December 2025

I n this article, we explore how the mdo(1) program can be used to easily and quickly
launch a new process with different credentials and how system administrators can en-
able credentials transitions initiated by unprivileged users by leveraging the mac_do(4)

kernel module, obviating the need to install third-party programs such as sudo(8) or
doas(1) in simple role-based scenarios.

The traditional UNIX approach to access control essentially relies on the following con-
cepts and components:

•	Users and groups. Groups are meant to ease administration by treating all users of a
group uniformly in some ways.

•	Processes, as subjects acting on behalf of some user and groups, which are referred to
as their credentials.

•	File ownership (one user, one group) and permissions, which separately guard accesses
by the owner, by members of the file’s group, and by other users.

•	The special root user1, which has all privileges and in particular is not subject to access
control.

•	Set-user-ID/set-group-ID executables, which, when launched, have their process respec-
tively endorse the executable’s owner as the user and the executable’s group as the “pri-
mary” group2.

One of the primary duties of a system adminis-
trator is to give their users appropriate access to vari-
ous resources of the systems. This, for the most part,
translates into defining users and groups and ensur-
ing that files have the proper permissions with re-
spect to the expected security policy.

The UNIX access control model has the flexibil-
ity that users need not represent real, human indi-
viduals, but may as well represent roles that can be
assumed by multiple real users who require access
to specific resources and information. Such a role-
based approach relying on UNIX users instead of just groups is, in fact, necessary in all but
the simplest file-sharing scenarios. It makes temporarily adopting another set of credentials,
established from a target user, an important feature of the system, which the su(1) pro-
gram traditionally fulfills.

However, su(1) requires authenticating to a new user before switching to its credentials,
typically by asking for the user’s password3, which is not convenient either for humans who
have been assigned roles and are already authenticated or for automated scenarios. It nec-

BY OLIVIER CERTNER

1 of 12

	 Credentials Transitions
with mdo(1)mdo(1)
		 and mac_do(4)mac_do(4)

One of the primary duties
of a system administrator
is to give their users
appropriate access to various
resources of the systems.

2FreeBSD Journal • October/November/December 2025

2 of 12

essarily spawns the target user’s shell, which precludes using it with users who have no valid
login shells, whereas this is typically desired for role users that nobody should be able to log
in as directly. It also makes launching a specific program with arguments more cumbersome
than it should be4.

In order to overcome these limitations, system administrators commonly install other
programs designed to run commands on behalf of other users such as sudo(8) or doas(1).
However, programs like sudo(8) have a non-negligible attack surface, in part due to their
number of infrequently used features, and, in particular, modularity, which can be dangerous
from a security standpoint. More generally, having programs installed with the executable
file’s owner being root and having the set-user-ID
mode bit set is a security concern, as compromis-
ing them can mean gaining full administration rights
through code execution as the root user. But tradi-
tional UNIX did not provide any other way to change
credentials, which is why programs like su(1) and
login(1) are installed this way.

As an alternative to executables with the set-user-
ID mode bit set, more colloquially called “setuid exe-
cutables”, we provide the mac_do(4) kernel module,
built on top of FreeBSD’s MAC framework5. Its pur-
pose is to allow only certain credentials transitions
from unprivileged processes, thus not requiring the
corresponding executable image to be installed “setuid”.

mdo(1) is the companion program to mac_do(4) and actually requests the desired cre-
dentials transitions to the kernel. mdo(1) can be used standalone by the root user who has
all privileges. Otherwise, its requests are vetted by the mac_do(4) kernel module according
to the administrator’s configuration.

In this article, we first describe how to use mdo(1) to launch commands under new cre-
dentials, walking through a series of examples. Then, we explain how to configure mac_
do(4) to enable specific credentials transition in support of role-based schemes, on the
host system as well as in jails, also offering some insights on the current design. Finally, we
ask for user feedback on what should come in the relative short term and possible longer
term future plans.

Using mdo(1)mdo(1)
mdo(1) is designed to run any command with an arbitrary set of credentials. If you have

not yet configured mac_do(4), which is covered in the next section, you can still run all the
examples below as root. For most examples, FreeBSD 15.0 is required as FreeBSD 14.3’s
mdo(1) only supports options -u and -i6.

For safety reasons, the target process credentials have to be fully specified, either explic-
itly by listing all users and groups and their requested values, or indirectly by establishing a
baseline that provides a default value for each of them and can then be amended by addi-
tional options.

In a role-based setting, the most common use case is arguably to endorse the creden-
tials of some user as if he has just logged in. So, mdo(1) supports it in the simplest form

As an alternative to
“setuid executables” in
role-based settings,
we provide the mac_do(4)
kernel module and its mdo(1)
companion program.

3FreeBSD Journal • October/November/December 2025

3 of 12

possible, with the only needed option being -u (for “user”) to establish a baseline from
the named user, as in:

$ mdo -u www /usr/local/bin/occ

To sudo(8) and doas(1) users, this command-line should strike you as extremely similar to
what you use with those tools: Basically, mdo replaces sudo or doas, and the rest is identical.

Obviously, this cannot work if passing some user numerical ID as opposed to a user
name, as the full login credentials are determined by the password and group databases,
which are indexed by names7. Using -u with a user numerical ID only specifies the user (ac-
tually, the real, effective and saved user IDs), and mdo(1) then needs to be told about all tar-
get groups. That has to be done either explicitly as we will see below, or through -i which
means to use the current groups as a baseline, else mdo(1) will simply error.

Keeping the current groups, such as in:

$ mdo -u 10002 -i

can be useful, e.g., if you need to temporarily process alien files whose owner is not in your
password database.

-i also works with -u with a user name, and it means the same. E.g., if foo is some user
in your password database that has ID 10002, then this command is entirely equivalent to
the previous example:

$ mdo -u foo -i

Suppose now you want to explicitly specify groups, either because you are using a nu-
merical user ID as we saw above, or because you want to override the groups associated
with some user. You can use:

•	-g: To set/override the primary groups8.
•	-G: To set/override the full set of supplementary groups. The comma-separated list you

provide here is considered complete, i.e., it should contain all supplementary groups.
Keep in mind that, starting with FreeBSD 15, a user logging in has their initial group, as
specified in the password database, also in its processes’ supplementary groups set.

•	-s: To amend the supplementary groups set. The argument for this option consists of a
list of comma-separated directives. You can ensure a group is part of the supplementa-
ry groups with a + directive, or ensure it is not with a - directive, or reset the list with a @,
making -s work like -G but with a different syntax9.

Some examples:

$ mdo -u unprivileged_user -g wheel -G wheel,staff,operator

starts a shell as user unprivileged_user, but ignores the groups specified in the pass-
word and group databases, replacing them with the passed ones. -g and -G are useful for
testing which rights would be given to a user with a particular set of groups.

However, if the point is only to log in as some user with some additional groups, e.g.,
wheel and operator, in an “augmented” role scenario, -s is the option to use:

$ mdo -u unprivileged_user -s +wheel

or, conversely, if membership of some group must be temporarily revoked, e.g., when this
group is used as a tag to deny access through ugidfw(8) (and mac_bsdextended(4)) for
access control:

4FreeBSD Journal • October/November/December 2025

$ mdo -u unprivileged_user -s -tag_group

If the user should not change, there is no need to specify it explicitly with -u. Instead, you
can just use -k (for “keep”), meaning to start with all current users and groups as the base-
line. -k is exclusive with -u and implies -i (start from current groups).

Note that, in all cases, it is possible to override the credentials’ groups using the explicit
options we have seen (-g, -G, and -s).

Finally, the real, effective and saved variants of users and primary groups can be sepa-
rately overridden if needed, using --ruid, --euid and --svuid, and --rgid, --egid and
--svgid respectively. When all three variants are specified, there is no need to respectively
use -u or -g, although specifying -u with a name is still useful to get its associated groups.

As you can see, in addition to its simplicity for the most common use cases, mdo(1) thus
has the advantage over su(1), sudo(8) or doas(1) that it allows to control every aspect
of the target credentials, making it the tool of choice to test or temporarily use arbitrary
credentials in advance of a modification of the password and group databases, or for role-
based settings where endorsing a role comes from being part of additional groups rather
than switching users.

mdo(1) is only concerned with changing credentials. Consequently, its code is relative-
ly simple, and a special effort was made to make it as clear and as minimal as possible while
being “obviously” correct. This makes for a program that is easy to audit and results in a very
small binary, weighing a little more than 7kB on my stable/14 machines. Compare this
to doas(1) which weighs a little more than 27kB, and sudo(8) at 229kB completed by
sudoers(5), its default security policy plugin, at 628kB, both programs being installed as
“setuid executables” in contrast to mdo(1).

Currently, as it is geared to role-based scenarios, mdo(1) does not ask for any password or
other form of authentication when requesting new credentials, instead relying solely on the
requester’s credentials for this purpose. As one of the possible future directions, listed in the
conclusion of this article, we may add support for asking the current logged-in user’s pass-
word. Additional functionalities related to switching to another user (such as login classes,
login name, scheduling priorities, etc.) may also be considered depending on user feedback.

Configuring mac_do(4)mac_do(4)
For a non-root user to be able to leverage mdo(1), configuring mac_do(4) is compulsory

since mdo(1) is by-design not installed “setuid”.
mac_do(4) is not compiled in the kernel by default, but can easily be loaded as a module:

kldload mac_do

You can then access its parameters below the security.mac.do sysctl(8) node. Cur-
rently (FreeBSD 14.3 and 15.0), the following are available:

•	enabled: Whether the module is enabled (defaults to true). This is a global toggle. It is
possible to deactivate mac_do(4) selectively on the host system or in any jail via rules
(next knob) or jail parameters (see corresponding subsection below).

•	rules: A list of rules indicating which credentials transitions are allowed. We are going
to study several examples in the next subsection. rules has an empty value by default,
meaning that mac_do(4) will not allow any credentials changes by itself.

•	print_parse_error: Whether to print a parse error on the console and system log
when setting rules fails.

4 of 12

5FreeBSD Journal • October/November/December 2025

Let’s start by illustrating rules, and we will then get to how to configure jails.

Rules
Related to some examples we gave above for mdo, let’s authorize user unprivileged_

user with UID 10001 to endorse the www user (UID 80) representing a webmaster role:

sysctl security.mac.do.rules=’uid=10001>uid=80,gid=80,+gid=80’

In this example, there is only a single rule. The > token separates both parts of a rule, the
left part being the “from” one, also called “match”, and the right part being the “to” one, also
called “target”. : has been the historical separator token and still works, but we felt that >
makes for more easily readable rules, especially to UNIX-trained eyes that can easily interpret
: as a list separator between similar elements. Because > is a shell special character, you need
to quote it somehow. For simplicity, we advise to always quote the value passed to sysctl(8).
Any amount of spaces can be used between tokens as another slight help to human users,
and this feature also requires shell quoting.

The “from” part (uid=10001 in the above rule) is pretty straightforward and indicates to
match processes whose user ID10 is 10001, thus matching unprivileged_user (and possibly
other users with the same user ID). Note that only numerical IDs are allowed, not user names.
The kernel indeed does not know about user names, which are irrelevant credentials-wise.

The “to” part (uid=80,gid=80,+gid=80) is a bit more involved. It contains three clauses
separated by ,. The uid=80 and gid=80 ones should be pretty straightforward: They allow
switching to www in terms of user and initial (“primary”) group ID. The last clause, +gid=80, is
about supplementary groups, and says that 80 as a supplementary group ID is allowed but
not mandatory. In general, gid preceded by a flag, here +, applies to supplementary groups.
Other possible flags are ! and -, and will be illustrated below.

Such a rule allows, e.g., the example command we saw in the previous section to be exe-
cuted by unprivileged_user:

$ mdo -u www /usr/local/bin/occ

Note that the uid=10001>uid=80,gid=80,+gid=80 rule is quite stringent, and for exam-
ple would not allow mdo -u www to succeed if, e.g., user www was also a member of another
group than www, as mdo -u www would try to install the supplementary groups mandated
by the password11 and group databases, and that other group does not appear in the rule.

It also forbids, e.g., mdo -u www -i, meaning to switch to user www but to keep the
current groups, presumably those associated to unprivileged_user if they were not
changed in the meantime. If an administrator wants this to work, it needs to relax the checks
on groups. Assuming unprivileged_user is only a member of a group with the same
name and GID 10001, they could use:

sysctl security.mac.do.rules='uid=10001>uid=80,gid=80,gid=10001,+gid=80,+gid=10001'

As you can probably infer from this example, specifying multiple target clauses with gid
and +gid means that any of the specified groups can be present in the target credentials12.

In addition to the two last mdo(1) use cases, this last rule also allows unprivileged_
user to become www while endorsing both groups 80 and 10001 at the same time29. If this
is not desired at all, then the following setting could be used instead:

5 of 12

6FreeBSD Journal • October/November/December 2025

sysctl security.mac.do.rules='uid=10001>uid=80,gid=80,+gid=80;uid=10001>uid=80,gid=1
0001,+gid=10001'

This time, there are two rules separated by ;. When there are multiple rules, it is enough
for one of them to validate the transition for it to be possible13. This setting still allows for
mdo -u www and mdo -u www -i to work while ruling out something like mdo -u www
-i -s +www or mdo -u www -g 10001.

If for some reason mdo -u www -i should work also when the current groups do not
reflect what the databases say for user unprivileged_user, you can alternatively use:

sysctl security.mac.do.rules='uid=10001>uid=80,gid=80,+gid=80;uid=10001>uid=80'

The second rule above, uid=10001>uid=80, allows a change of user ID with-
out changing the current groups, so is exactly adapted to the use of -i with mdo(1)
when any set of current groups can be kept. That second rule is in fact a shortcut for
uid=10001>uid=80,gid=.,!gid=., where . stands for the current primary groups2 in
the case of gid, and for the current supplementary groups in the case of !gid, and
more broadly in the case of gid preceded by another flag. Note that this default part,
gid=.,!gid=., is implied only when no target clause has gid as its type (with or without
flags). In particular, the following rule: uid=10001>uid=80,gid=. would prevent any switch
that does not drop all supplementary groups, as no gid clause with flags appear.

An additional gid flag, -, can be used to indicate that a group shall not be part of the
final supplementary groups. You may at first find this strange, as allowed groups have to
be explicit in rules, barring the default explained in the previous paragraph. This is actu-
ally useful in conjunction with . used with +gid or !gid, in order to rule out some of the
current groups. For example, if you want to allow unprivileged_user to switch to user
www but retaining its current groups while ensuring that wheel does not appear in the fi-
nal supplementary groups, instead of the above uid=10001>uid=80, you could use
uid=10001>uid=80,gid=.,+gid=.,
-gid=014.

Finally, in place of user or group IDs in rules,
you can use * or any to mean any possible ID.
For example, if you do want to allow members of
wheel to become root, you could use a rule like
gid=0>uid=0,gid=*,+gid=*, basically saying that
any set of target groups will do. Going even further,
if you do not want to impose switching to root be-
fore becoming another user, you could as well use
gid=0>uid=*,gid=*,+gid=*, which can be abbre-
viated to gid=0>any. Let us remind you that, cur-
rently, mdo(1) is geared to role-based schemes and
consequently, as in any other case, will not ask for a
password to be entered to switch to another user, even if the latter is root.

We have just demonstrated a large practical assortment of possibilities offered by mac_
do(4)’s rules, which as you can see are very flexible and able to express precisely the target
credentials that are to be allowed15. We have tried hard to keep the syntax as easy as possi-
ble to understand with the constraints of an essentially single-line sysctl(8) value, imply-

6 of 12

When there are multiple rules,
it is enough for one of them
to validate the transition
for it to be possible.

7FreeBSD Journal • October/November/December 2025

ing terseness, sufficient expressive power and the kernel dealing only with numerical IDs
and not accessing the password and group databases. Even if you do not immediately grasp
what a particular setting of security.mac.do.rules means, it should not take long before
you do, so do not get overwhelmed by the examples and take some time to study them as
necessary.

An exhaustive and more formal specification of rules can be found in the mac_do(4)
manual page.

Jails
Jails in FreeBSD form a hierarchy16, whose top is the host system17. Each individual jail has

parameters, some of which can only be set at jail creation, and others also while the jail runs,
from outside the jail.

mac_do(4) supports per-jail configuration thanks to the following parameters:
•	mac.do: The per-jail module’s mode.
•	mac.do.rules: The per-jail rules that apply.
Parameter mac.do.rules contains the applicable rules, with exactly the same format as

the security.mac.do.rules sysctl(8) knob we saw in the previous section.
It is usually desirable to control security parameters from outside a jail, and that is actually

the only possibility at jail creation. However, it is also useful to have jails behave as closely as
possible to the host system. Since mac_do(4) is a tool for an administrator to authorize cre-
dentials transitions, an administrator in a jail should also be able to use it.

For this reason, the security.mac.do.rules sysctl(8) knob was made jail-aware,
i.e., it reflects the current jail’s setting and can be set from the jail itself. security.mac.
do.rules inside a jail and the corresponding jail’s mac.do.rules parameter are in fact
the same variable, so their values are always the same. An outside modification of mac.
do.rules is immediately in force inside the jail, and conversely reading the jail parameter re-
veals any inner modification to security.mac.do.rules.

Parameter mac.do indicates how mac_do(4) works in a jail. As typical for the master pa-
rameter of a module supporting jails, it accepts or reports the following values:

•	new: Jail’s configuration is independent from that of the parent jail.
•	inherit: Jail’s configuration is inherited from the parent jail.
•	disable: mac_do(4) is disabled in the jail.
For obvious security reasons, the default value is disable, except if mac.do.rules is ex-

plicitly set.
You may wonder what the exact interactions of this parameter with mac.do.rules

are, as both parameters appear to be somewhat redundant. As said in this section’s intro-
duction, setting rules to an empty string causes mac_do(4) to ignore credentials change re-
quests, and since rules are per-jail, this also works as a per-jail toggle to disable mac_do(4),
similarly to the disable value. Conversely, setting mac.do.rules from outside the jail, or
security.mac.do.rules inside it, always has the effect of establishing per-jail settings,
which conceptually corresponds to new.

We introduced18 the mac.do jail parameter for two reasons. First, most kernel modules
supporting jails provide a single knob to enable or disable its functionality inside a jail, and we
found it good to have one, both for system consistency but also to provide a perhaps more
natural way of disabling mac_do(4) than setting the rules to an empty string. Second, it

7 of 12

8FreeBSD Journal • October/November/December 2025

gives us the opportunity to introduce a new inheritance mode, through the inherit value,
which can be very useful to administrators who want a set of jails to behave the same.

Before examining what inheritance exactly means, let’s first see how mac.do and mac.
do.rules stay consistent. Internally, each jail holds
a kind of flag indicating whether it inherits from its
parent and, if it does not, a copy of the rules setting
(mac.do.rules) and an internal representation for
them, avoiding any information redundancy19. We do
not actually store any value that directly corresponds
to the mac.do parameter. Rather, the latter gets syn-
thesized from the available data when it is read. After
this description, you probably have an idea of how it
goes: If the inheritance flag is set, then reading mac.
do returns inherit, else, if no rules were specified
(empty string), disable, else new. When setting
mac.do explicitly, mac_do(4) checks that its value is
consistent with that of mac.do.rules. If mac.do is set to new, mac.do.rules must be spec-
ified. For the other cases, we apply the robustness principle20, tolerating the presence of
mac.do.rules with an empty string in jail parameters, even if strictly speaking it should be
absent.

When setting mac.do to inherit, mac_do(4) simply uses the configuration that ap-
plies to the parent jail, which itself may come from a jail higher in the tree. The main con-
sequence is that a change of rules in any of the parent jails up to the first that does not in-
herit automatically and immediately does apply in a jail with inherit. This alleviates the
administrator from having to change the configuration of multiple jails in a tree when all of
them are supposed to stay in sync. As already noted, explicitly setting rules on a jail, whether
through mac.do.rules or security.mac.do.rules, establishes independent per-jail set-
tings, effectively breaking inheritance. Re-enabling it later is always possible, by just setting
mac.do to inherit again.

As with any jail parameters, you can use these to easily configure a jail at its creation, ei-
ther directly on jail(8)’s command-line, e.g.:

jail -c name=test_jail path=/ mac.do=inherit

or through jail.conf(5). To modify some parameters as the jail is running, use jail -m
as usual, e.g.:

jail -m name=test_jail mac.do=disable

Boot-up
Since mac_do(4) configuration on the host happens via sysctl(8) knobs that are also

tunables, you can use either of the two different mechanisms that the base system provides
to set them at boot.

As a first possibility, you can tune your loader.conf(5) configuration, by adding a line like:

security.mac.do.rules=’uid=10001>uid=80,gid=80,+gid=80;uid=10001>uid=80’

This is adapted to cases where rules really have to be available very early at boot, or, e.g., if
you are not using the base system’s rc(8) bring-up framework.

8 of 12

We introduce a new
inheritance mode,
which can be very useful
to administrators who
want a set of jails to behave
the same.

9FreeBSD Journal • October/November/December 2025

Else, you can add the exact same line to sysctl.conf(5), and the sysctl(8) knob will
be set accordingly when rc(8) executes21.

We have had some limited feedback that a few people do not find it very practical that
mac_do(4) only deals with numerical IDs and find the sysctl(8) knob syntax quite terse.
These are essentially the consequences of having the transition rules in the kernel, which al-
lows to cope with a strong threat model where some userland parts may have been com-
promised. However, we understand that most people do not require such a level of securi-
ty, and that having userland tools produce final rules from references to the content of the
password and group databases could be useful to them. There has been a proposal in this
direction consisting of a dedicated executable and configuration file for mac_do(8) which
for the moment is stalled as, among others, we have been reflecting on the overall design,
including how to organize executables and possible future configuration files and how to
avoid conflicts. If more people are interested in such functionality, we may make progress
on this front sooner rather than later. See also, in this article’s last section, the short-term
features we plan to add to mdo(1), one of which will bridge an important part of the gap.

Some Notes on mac_do(4)mac_do(4)’s Design
Baptiste Daroussin initially launched the mac_do(4)/mdo(1) project with the goal to en-

able role-based credentials transitions without using “setuid executables”. In high-security,
norm-constrained settings, installing these executables, if at all possible, may be subject to
long and complex security audits, which often need to be renewed as the executables are
upgraded. Thus, mac_do(4) was conceived as a kernel-based alternative that, thanks to the
MAC framework5, can authorize unprivileged processes to successfully change credentials. In
addition to alleviating the need for “setuid executables”, this architecture instantly reduces the
impacts of a successful attack on or a programming bug of credentials-changing programs.

The original implementation of mac_do(4) only monitored the setuid() system call,
authorizing a specific call to it according to rules matching the original user and the target
one. In order to allow mdo(1) to change groups as prescribed by the password and group
database for the target user, mac_do(4) then needed to accept any setgroups() and set-
gid() system calls. In order to avoid arbitrary programs from being able to leverage these
calls independently, mac_do(4) would only authorize credentials transition requests from
processes spawned from the mdo(1) program.

Because allowing any request from setgroups() and setgid() was a serious dent in
reducing the impacts of an attack or a flaw, we modified mac_do(4) to validate the full cre-
dentials transition and its rules to say which groups can appear in the final credentials.

Validating or rejecting the full transition fundamentally requires atomicity, implying chang-
es to the security API from traditional UNIX. A natural approach would be to add to the lat-
ter a transactional mode where successive calls amending credentials would not immediately
apply changes but rather accumulate them for atomic application at final “commit”. This ap-
proach would somehow facilitate amending existing programs as well as possible additions of
credentials’ attributes but was deemed relatively invasive in terms of kernel code and a para-
digm change for the existing system calls’ MAC hooks22. Instead, we settled for the alternative
to have a new, separate system call, setcred(2), that can set all credentials attributes at once.
They are passed via a structure that can be extended or versioned through flags as needed.
New MAC hooks are defined and are passed the current and requested credentials, allowing
mac_do(4) to see the current and desired state at once and make decisions based on them.

9 of 12

10FreeBSD Journal • October/November/December 2025

Even after these changes, we have kept the restriction that mac_do(4) can only autho-
rize processes spawned from the mdo(1) executable, as it may allow implementing addition-
al transition restrictions in mdo(1) proper. A Google Summer of Code 2025 (GSoC 2025)
student, Kushagra Srivastava, was tasked, among others, to bring configurability to this re-
striction, allowing an administrator to specify which executables mac_do(4) can authorize.

Some people may find strange, and even a potential security hazard, that code respon-
sible for checking and deciding on credentials transitions based on rules is moved to the
kernel instead of being executed in userland. While the ability to compromise the kernel
would certainly be even more catastrophic than “setuid executables”, we believe the former
is much less likely to occur than the latter for the fol-
lowing reasons.

First, rules accepted by mac_do(4) are complete-
ly well-defined, self-contained, relatively simple to
parse and hopefully to comprehend.

Second, “setuid executables” performing creden-
tials changes generally involve a lot more compo-
nents than mac_do(4) actually uses. The latter are
essentially some parts of the MAC framework and
the jail and OSD subsystems, which are pervasive-
ly used and tested and do not frequently or deeply
change. The former are the libraries to read the password and group databases, which may
involve network access, the userland configuration parser, and the code establishing all char-
acteristics of the new session, including the credentials, which is sometimes part of a sepa-
rate library, not even mentioning the usual userland support code, such as the dynamic linker.

Third, we have taken special care to design and write mac_do(4) in some of the cleanest
and clearest ways, with special attention to understanding the constraints of the underlying
subsystems and ensuring that the ones we rely on cannot be changed without our noticing
via assertions. The result is that, despite copious testing, we have yet to find a bug in mac_
do(4)’s core functionality (famous last words). Out of the few bug reports we received, only
two turned out to be real problems in scenarios that admittedly were not well-considered
nor tested initially23, which led to performing another audit of the code. Our GSoC student
was also tasked with developing automated tests, which should enter the official tree in the
coming weeks. They will represent additional safeguards and will help maintain code quality
as mac_do(4) and its dependent subsystems evolve.

What Lies Ahead
The essential message here is that, while we have a few simple short-term plans and

more loose longer-term ones, future directions will depend for the most part on current
or potential users’ feedback. We are eager to hear suggestions for small improvements or
entirely new features, whether you are already using mac_do(4)/mdo(1), are planning to, or
would like to but cannot because your use case is not covered by existing functionality. This
will help us select what to work on while keeping the overall design sound. Even just saying
you’re using them is useful feedback, as it is good to know how many users we have and
how they are using these tools.

In the short term, we expect to add auditing-like functionalities to mac_do(4)/mdo(1).
Displaying the final credentials passed to the kernel would help check if the invocation was
correct with respect to the expected goals. Producing the target part of a mac_do(4)’s rule

10 of 12

“Setuid executables”
performing credentials
changes generally involve
a lot more components than
mac_do(4) actually uses.

11FreeBSD Journal • October/November/December 2025

authorizing exactly a specific mdo(1) call could help administrators build mac_do(4)
configurations or better understand why some do not work as expected. Integration to the
audit(4) subsystem would allow tracking credentials changes after the fact. Logging failed
attempts through syslog(3) would match what login(1) and other credentials-chang-
ing program do. mac_do(4) will soon allow configuring the executables whose processes
it will consider, with the aim to support thin-jails scenarios and other userland programs24.
It should also monitor traditional system calls such as setuid(2) in addition to just set-
cred(2), considering each call as a full transition on its own24.

Longer term, we may consider providing su-like and doas-like functionalities, e.g., to ask
for a password or perhaps more generally leveraging
pam(3), establish resource limits and other attributes
as in a full login, or allow only certain commands to
be launched. However, it is not yet clear how these
functionalities could be fit into mdo(1), as it is not a
“setuid executable”, and if different paths should be
pursued instead.

As an example, we have conducted a preliminary
study on how to add support for requesting a pass-
word for certain credentials transitions. As mdo(1)
can be launched by any user, we need a mechanism
to check for a password against a password database which is not directly readable by every-
body25. This situation is comparable to that of programs leveraging CAPSICUM’s capability
mode26 which sometimes need to access data that require more privileges than they direct-
ly keep. That can be resolved by having an unrestricted process perform the necessary ac-
cesses on behalf of the process in capability mode. libcasper(3) is FreeBSD’s implemen-
tation of that idea for a number of services, including cap_pwd(3) to access the password
and group databases. Unfortunately, using libcasper as-is cannot work as cap_enter()
creates and connects to a process launched with the same credentials. mdo(1) is going to
need an outside daemon with privileges to provide the cap_pwd(3) service. We can also
imagine a number of alternative approaches with varying development effort. They include
pushing the password configuration entirely into mac_do(4) as for the rules, or turning
mdo(1) into a “setuid” executable that however relinquishes root rights for most of its oper-
ation and crucially when calling setcred(2), or instead leaving mdo(1) as it is and having a
different “setuid” executable for these needs27. However, all of these alternatives except the
first provide fewer security guarantees than the initial solution, and the first one is less flex-
ible as it does not allow other forms of authentication nor additional transition restrictions
that can be best imposed by userland28.

We hope you will find mac_do(4)/mdo(1) useful! Please share your feedback and more
generally other security needs you would like to see addressed, even if not necessarily di-
rectly connected to the framework presented here.

Footnotes
1.	 In reality, the special user ID 0. The name root resolves to ID 0, as may other names such as toor.
2.	 More precisely, the effective and saved user IDs, and the effective and saved group IDs, respectively. The saved user and

group IDs are officially called the “Saved Set-User-ID” and “Saved Set-Group-ID” in the POSIX specification.
3.	 Other authentication mechanisms can be configured using PAM, see pam(3) for an introduction, pam.conf(5) for con-

figuring particular applications, and pam_unix(8) for the canonical module.

11 of 12

Future directions will depend
for the most part on current or
potential users’ feedback.

12FreeBSD Journal • October/November/December 2025

4.	 As additional arguments to su(1) are passed to the target user’s shell, the program and its arguments have to be passed
through the shell’s -c argument (or equivalent). For sh(1) and descendants, they must be grouped in a single argument
that will be interpreted by the launched shell, sometimes requiring an additional level of quoting.

5.	 Mandatory Access Control. See mac(4).
6.	 The updated mdo(1) described here will normally be shipped with FreeBSD 14.4.
7.	 There may be multiple users mapping to the same numerical ID. doas(1) has the flaw that it will silently consider the

first matching user name. mdo(1) generally follows the conservative approach of not doing non-obvious operations si-
lently, here not trying to use a matching user name, even if there is only one.

8.	 I.e., the real, effective and saved group IDs, by contrast with the supplementary groups.
9.	 To ease scripting, -s is actually compatible with -G and can be used to amend it, so it is in effect processed after -G even

if it appears earlier on the command-line. Currently, though, using both @ and -G is treated as an error (redundant speci-
fication), a limitation which may be lifted in the future.

10.	 The real user ID is matched, as it represents the user’s identity, rather than the effective user ID, preventing by default
another set of rules to apply for “setuid executables”. That said, since unprivileged users are allowed to set the real user
ID to the effective user ID on FreeBSD, this distinction is currently not an absolute restriction.

11.	 Since FreeBSD 15, a user’s initial group from the password database is also installed as a supplementary group, which is
also the case on Linux/glibc, NetBSD, OpenBSD, and illumos. For compatibility with FreeBSD 14.3, we demonstrate the
target clause +gid=80 here, which also works on 15.0, instead of !gid=80, which would allow the transition only on 15.0.

12.	 In more formal parlance, gid and +gid target clauses form a logical disjunction.
13.	 In more formal parlance, rules form a logical disjunction.
14.	 If +gid=. was replaced by !gid=., the rule would allow a transition if and only if the current supplementary groups do not

include 0, and not a transition to all current groups but 0. We may relax this constraint in the future.
15.	 There are some exceptions. We have seen one in the previous footnote. Another one is that, on one hand, the real,

effective, and saved user IDs, and on the other hand, the real, effective, and saved group IDs are treated indifferent-
ly. Treating them separately was deemed to introduce additional complexity for meager benefit since FreeBSD’s se-
tresuid() currently allows an unprivileged process to set any of its user IDs to the value of any other one. We might
want to disallow this behavior in the future.

16.	 Since FreeBSD 8.0.
17.	 Which always has a global jail ID of 0. Jail IDs are global, except that any process sees the ID of its immediately enclosing

jail as 0.
18.	 In an earlier implementation, that parameter was called mdo and was intended to work like described here but did not

due to bugs.
19.	 And thus, consistency issues.
20.	 Also known as Postel’s Law. “Be liberal in what you accept, and conservative in what you send.”
21.	 By the /etc/rc.d/sysctl script.
22.	 Either these hooks’ existing implementations would need to start supporting the transactional mode, or we would by-

pass the hooks entirely, a change deemed too surprising to consumers.
23.	 Namely, using mac_do(4) when running with resource accounting functionality enabled, and running a 32-bit mdo(1) on

a 64-bit architecture.
24.	 Most of the code for this functionality has been written during GSoC 2025 and should be integrated soon.
25.	 In order to avoid leaking password hashes that would allow offline attacks.
26.	 A process mode where most accesses to the global namespaces are restricted, and only existing file descriptors can

be used.
27.	 That could take the form of first importing doas(1) into the base system and then tailoring it to our unique security fea-

tures, although that would be a regression in terms of the granularity of target credentials. Alternatively, we could create
an executable that would share part of its code and command-line interface with mdo(1). Mixing both approaches to get
the best of both worlds could also be viable.

28.	 But it has the benefit of not lessening the currently existing security guarantees, since the password would be checked
by the kernel as well.

29.	 In the different real, effective and saved group IDs.

OLIVIER CERTNER has been continuously using FreeBSD on all his machines and those
of some of the companies he worked with since the end of 2004. During this time, he has
grown a set of private customizations including modifications to rc scripts and some ker-
nel bits. After having worked for over 15 years in the CAD and finance sectors, he lately
switched back to pure IT topics, and in particular operating system development. His main
interests are centered around kernel development, with particular focuses on power man-
agement, security, scheduling, file systems and jails. He’s currently a contractor for the
FreeBSD Foundation.

12 of 12

