Building U-boot

BY CHRISTOPHER R. BOWMAN

the process since | wanted to bring up a different Zyng board and would have to go

through it anyway. | need to provide a disclaimer: what I've written below is accurate,
but these are complex systems, and | could have gotten some details wrong. I'd be grateful to
hear from you if you think | have.

As we've discussed before, U-boot is both the second- and third-stage boot loader that
runs and loads the FreeBSD loader, which, in
turn, loads the FreeBSD kernel itself. U-boot is an
open-source community project used on a wide
variety of systems to provide boot services. Doc- U-boot is both
umentation is available through their website: The
U-boot Documentation. the se(;ond- and

On AMD/Xilinx Zyng chips, the first-stage _
boot loader is in BootROM on the Zyng chip it- thlrd—stage boot loader
self. The Zyng boot process is described in Chap-
ter 6, "Boot and Configuration” of the Zyng /000 that runs and loads

SqC Technical Reference Mgnual. The shor.t dg— the FreeBSD loader.
scription is that when powering on the device, it
samples some pins and, depending on their state,
chooses one of several boot methods. This allows
a jumper on the board (JP5 according to Fig. 21 of the Zybo Z7/ Reference Manual) to se-
lect a boot method, one of which is loading from an SD card. If you select this method, the
BootROM code looks for a file named boot.bin on a FAT16 or FAT32 partition on the SD
card. This is what U-boot calls the secondary program loader or SPL. The Zyng chip contains
a small amount of onboard RAM, thus limiting the size of the program that the BootROM
can load. In non bare metal applications, the SPL must contain enough code to configure
the Zyng chip (PLLs, memory interfaces, and more) so that it can bring up the memory sys-
tem and load U-boot proper. U-boot proper is a larger version with more features (like file
systems) supported.

We're quite lucky as the Zybo Z7 is already supported in U-boot. So, we just need to get
the build process to work. U-boot is typically built on a host system for a target system. The
U-boot documentation referenced above suggests that we should set the compiler to be
used for this cross-compiling using an environment variable. We will use the GCC compiler
and GNU tools to do the cross-compiling, so we need to install those packages and set the
cross compiler. U-boot is also built using gmake, not the standard BSD make, so we'll need
to install that, as well as some other packages:

o reader wrote to me that he had trouble building U-boot, so | thought I'd walk through

FreeBSD Journal - October/November/December 2025 |1

1of 4

https://u-boot.org/
https://docs.u-boot.org/en/latest/index.html
https://docs.u-boot.org/en/latest/index.html
https://docs.u-boot.org/en/latest/index.html
https://docs.u-boot.org/en/latest/index.html
https://digilent.com/reference/programmable-logic/zybo-z7/reference-manual?redirect=1
https://u-boot.org/

20of 4

pkg install gmake

pkg install arm-none-eabi-gcc
pkg install bison

pkg install gnutls

pkg install gmake

pkg install pkgcont

pkg install coreutils

pkg install dtc

pkg install gdd

setenv CROSS _COMPILE arm—-none-eabi-

Odd that you use arm—none-eabi-, and not arm-none—-eabi-gcc, but it's not a typo.

Next, we need to configure the U-boot source tree for the board we want to target. The
/ybo /7 board is supported by the xilinx_zynq_virt_defconfiglocated in the configs
directory. This configuration supports multiple boards, one of which is the Zybo Z7. To con-
figure the source tree, we run:

make xilinx_zynq_virt_defconfig

But we have to be careful that we pull in the GNU make, not the BSD make. To do this,
've created a directory with a symlink named make that points to /usr/local/bin/gmake,
and I've set this directory to be first in my path. This seems to work well. From there, we can
just call make and wait (I highly recommend using the -j flag it you have extra cores). Did it
error out for you as it did for me?

| get this output:

make[1]: *x* [scripts/Makefile.xpl:257: spl/U-boot-spl-align.bin] Error 1
make: *** [Makefile:2358: spl/U-boot-spl] Error 2
make: *** Deleting file 'spl/U-boot-spl'

The relevant lines from scripts/Makefile.xpl are

$(obj)/$(SPL_BIN)-align.bin: $(obj)/$(SPL_BIN).bin
@dd if=$< of=$@ conv=block,sync bs=4 2>/dev/null;

It you remove the redirection of output to /dev/null, you'll see a complaint from dd:

dd: record operations require cbs

Seems FreeBSD's dd is not command line equivalent with the GNU version. Origi-
nally, | simply used the GNU version of dd by installing the package and then creating
a symlink in my local bin directory, but it turns out you can simply remove “block” from
the dd command.

Also, the V make variable can be set to control the verbosity of build output. If your build
doesn't work, | highly recommend running again with only one processor and V=I:

make V=1

It everything builds without error, you should have a U-boot.img file and an spl/boot.bin
file. These are U-boot proper and the secondary program loader. Copy these to your SD
card and give it a whirl!

FreeBSD Journal - October/November/December 2025 |2

Wha, wait, didn't work? Huh! As | said, this configuration supports multiple boards, and its
default device tree isn't for the Zybo Z/. Consulting the board-specific documentation ref-
erenced above, we can specify which device tree is the default by setting DEVICE_TREE:

3 of 4

setenv DEVICE_TREE zynq-zybo-z7

This will override the default DTS in the configuration file. Build it again and try it. Wait,
what? Another problem? The kernel loads, but it crashes in probing? Oh right. FreeBSD DTS
requirements are not the same as Linux. The compat strings required to get some hardware
recognized are different, and FreeBSD seems to require some clock-frequency properties,
though I'm not sure the values are used. It might make sense to add compat values to the
-reeBSD drivers that match what Linux expects, but I'm not a committer. | had to add the
following to the DTS file in arch/arm/dts/zyng-zybo-z7.dts:

&sdhciO A
compatible = "arasan,sdhci-8.9a", "xlnx,zy7_sdhci";
U-boot ,dm-pre-reloc;
status = "okay";

+;

&devcfg {
compatible = "xlnx,zynq-devcfg-1.0", "xlnx,zy7_devcig";
status = "okay";

+;

&global timer {clock-frequency = <50000000>;};
&ttcO {clock-frequency = <50000000>;};

&ttcl {clock-frequency = <50000000>;};
scutimer {clock-frequency = <50000000>;};

Now that we've learned to build U-boot, let's see it we can make it a port. There are
a whole bunch of U-boot ports, all of which are built off the U-boot-master port. To use
them, we need to include the master port Makefile. We have to specity the board, the
model, and the config that should be used. We have a few patches for the changes we
made above, and we end up with the following.

MASTERDIR= ${.CURDIR}/../U-boot-master
MODEL= zybo-z7

BOARD CONFIG= xilinx_zynq_virt_defconfig
FAMILY= zynq_7000

EXTRA_PATCHES= ${.CURDIR}/files
BUILD_DEPENDS+= gdd:sysutils/coreutils

COMMENT= ported by Christopher R. Bowman <my_initials>Q@ChrisBowman.com

.include "${MASTERDIR}/Makefile"

FreeBSD Journal - October/November/December 2025 |3

4 of 4

| hope you've found these columns useful. I'd appreciate your comments or feedback.
You can contact me at articles@ChrisBowman.com.

CHRISTOPHER R. BOWMAN first used BSD back in 1989 on a VAX 11/785 while work-
ing two floors below ground level at the Johns Hopkins University Applied Physics Lab-
oratory. He later used FreeBSD in the mid 90's to design his first 2 Micron CMOS chip
at the University of Maryland. He's been a FreeBSD user ever since and is interested in

hard-ware design and the software that drives it. He has worked in the semiconductor
design automation industry for the last 20 years.

FreeBSD Journal - October/November/December 2025 |4

mailto:articles@ChrisBowman.com

