
October/November/December 2025

Topic: FreeBSD 15.0

FreeBSD 15.0: Fixes and Features

Universal Flash Storage on FreeBSD

VOX FreeBSD: How Sound Works

Credentials Transitions
with mdo(1) and mac_do(4)

Printf(“Hello, srcmgr\n”);

FreeBSD and
Google Summer of Code 2025

Nov/Dec 2019 57

2026 Editorial Calendar
•	 Jan/Feb/March Laptop/Desktop

•	 April/May/June Improving Software Quality

•	 July/August/Sept Production Deployments

•	 Oct/Nov/Dec to come

https://www.freebsdfoundation.org/journal

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
	 John Baldwin •	 FreeBSD Developer and Chair of
		 the FreeBSD Journal Editorial Board

	 Tom Jones •	FreeBSD Developer, Software Engineer,
 		 FreeBSD Foundation

	 Ed Maste •	 Senior Director of Technology,
		 FreeBSD Foundation and Member of
		 the FreeBSD Sec Team

	 Benedict Reuschling •	 FreeBSD Documentation Committer

	 Jason Tubnor •	 BSD Advocate, Senior Security Lead
		 at 	Latrobe Community Health Service
		 (NFP/NGO), Victoria, Australia

	 Mariusz Zaborski •	 FreeBSD Developer

Advisory Board
	 Anne Dickison •	 Deputy Director
		 FreeBSD Foundation

	 Justin Gibbs •	 Founder of the FreeBSD Foundation,
		 President of the FreeBSD Foundation
 		 Board, and a Software Engineer at
		 Facebook

	 Allan Jude •	 CTO at Klara Inc., the global FreeBSD
		 Professional Services and Support
		 company

	 Dru Lavigne •	 Author of BSD Hacks and
		 The Best of FreeBSD Basics

	 Michael W Lucas •	 Author of more than 40 books including
		 Absolute FreeBSD, the FreeBSD
		 Mastery series, and git commit murder

	 Kirk McKusick •	 Lead author of The Design and
		 Implementation book series

	 George Neville-Neil •	 Past President of the FreeBSD Foundation
		 Board and co-author of the Design and
		 Implementation of the FreeBSD Operating
		 System

	 Hiroki Sato •	 Chair of AsianBSDCon, Member of
		 the FreeBSD Core Team, and Assistant
		 Professor at Tokyo Institute of Technology

	Robert N. M. Watson •	 Director of the FreeBSD Foundation
		 Board, Founder of the TrustedBSD
		 Project, and University Senior Lecturer
		 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

	 Editor-at-Large •	James Maurer
		 maurer.jim@gmail.com

	Design & Production •	Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 4 times
a year (January/February/March, April/May/June,

July/August/September, October/November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2025 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written

permission from the publisher.

3FreeBSD Journal • October/November/December 2025

Thank you for spending time with the FreeBSD
Journal this year. We’re grateful for our readers,
as well as the authors, editors, and volunteers who

bring each issue to life. Your passion and effort keep the
Journal going and help share the work happening across
the Project. Wishing you a happy, restful holiday season
from all of us at the FreeBSD Foundation.

Deb Goodkin
Executive Director
FreeBSD Foundation

4FreeBSD Journal • October/November/December 2025

October/November/December 2025

	 8	 FreeBSD 15.0: Fixes and Features
	 By John Baldwin

	 11	 Universal Flash Storage on FreeBSD
	 By Jaeyoon Choi

	 18	 �VOX FreeBSD: How Sound Works
	 By Christos Margolis

	 29	 �Credentials Transitions
with mdo(1) and mac_do(4)

	 By Olivier Certner

	 41	 �Printf(“Hello, srcmgr\n”);
	 By Mark Johnston	

	 44	 �FreeBSD and Google Summer of Code 2025
	 By Joe Mingrone

	 3	 Foundation Letter
	 The FreeBSD Foundation

	 5	 We Get Letters
	 By Michael W. Lucas

	 51	 Embedded FreeBSD: Building U-boot
	 By Christopher R. Bowman

	 55	 Events Calendar
	 By Anne Dickison

Topic: FreeBSD 15.0 October/November/December 2025

Topic: FreeBSD 15.0
FreeBSD 15.0: Fixes and Features
Universal Flash Storage on FreeBSD
VOX FreeBSD: How Sound Works
Credentials Transitions with mdo(1) and mac_do(4)
Printf(“Hello, srcmgr\n”);
FreeBSD and
Google Summer of Code 2025

Dear Why Do They Let You Write This Column,

FreeBSD 15 is now out, and it includes the base system
as packages. In the January/February 2022 issue of the
FreeBSD Journal, you spent your entire column ranting
about pkgbase. You were wrong. Obviously wrong. Is that
enough to finally make you shut up and quit answering
our letters?

	 —�Wants Useful Answers

Dear Wanna-Play-Gotcha,
Getting me to shut up is a solved problem. It costs $200 per hour (https://givebutter.

com/c/Penguicon24/auction/items/258146). And why do they let me write this? Because
John Baldwin, FreeBSD Journal editor, was desperate for a letters column. Now that he has
one, he’s even more desperate, but for completely different reasons. A change is as good
as a rest.

Now on to your real question. Packaged base. What’s up? Why?
I did not spend the “entire column rant-

ing about pkgbase.” Yes, I said the only true
way to upgrade BSD was to build it from
source and install it yourself. I also said that
packaged base was “the dread dragon of
FreeBSD, devouring every developer who
sets out to conquer it.”

Dragons fill vital ecological space.
They’re warnings. They’re limits: You shall
go this far, and no further. We call them evil
only because people hate limits. When we
encounter a limit or a dragon, we try to slay it. We still remember Saint George slaying an
innocent dragon to save a princess. We remember because royalty keeps spreading the
tale in the hope that we’ll rescue them from the next dragon, all while neglecting to re-
mind us that the king thought that letting dragons devour people was regrettable but ac-
ceptable until his own daughter landed on the menu.

Anyway. Slay the dragon, and you’ll go down in history.
The real problem here? Developers, like most “technical” people, are quite intelligent.

Intelligence has very little connection to the real world and provides zero protection
against peer pressure.

1 of 3

Intelligence has very little
connection to the real world
and provides zero protection
against peer pressure.

5FreeBSD Journal • October/November/December 2025

by Michael W Lucas

https://givebutter.com/c/Penguicon24/auction/items/258146
https://givebutter.com/c/Penguicon24/auction/items/258146

“Self-hosting,” the ability to build a system from code and tools on the system, was in-
tegral to primordial BSD and remains critical today. A BSD system should ship with all the
source code and tools needed to rebuild itself. The natural state of a BSD system is a sin-
gle, whole entity. Breaking it up into pieces is like selling apples by the slice. Packaging sure
feels convenient, though. The cool penguin kids have base system packaging! I surren-
dered any hope of being cool shortly after being born, so peer pressure triggers mere en-
nui.

Some folks found building FreeBSD from source code “slow” and “annoying.” It might
appear so to the unenlightened, but it’s all about technical correctness. Correctness is a
primary goal of every BSD, and watching the compiler churn as it recursively rebuilds the
compiler for the eleventy-ninth time is a minor price to pay to achieve such pinnacles of
purity. Technical correctness is not the worst kind of correctness. It merely feels that way.

In 2006, Colin Percival released freebsd-update(8) to allow the impatient to bypass this
rite of passage, leading to wider adoption and deployment of FreeBSD.

FreeBSD also has the ports system. Ports
allow the sysadmin to build add-on soft-
ware exactly as desired and bundle it up in
convenient tarballs so you can install them
anywhere. The thirty-four thousand plus
add-on programs in the ports collection
supports a tangle of options and depen-
dencies that nicely illustrates exactly why
we build BSD as a monolithic whole, and
the package management software need-
ed to cope with all these interactions. The
modern package management tools in
pkg(8) were first included in FreeBSD 9.1 at
the end of 2012.

No sooner had the new package tools been launched than folks obsessed with mere
“usability” ignored the Unix philosophy of “many small tools that each handle one task”
and started babbling about the convenience of using a single tool to manage both the
base system and add-on software. How hard could it be? After all, bloated text editors like
Emacs and vim are also built into a whole bunch of files. They could just tar up the whole
base system, give it a packing list, and call it done?

Well, no.
Innumerable developers succumbed to the temptation to wrangle FreeBSD into friend-

ly packages until a public call for tests went out in 2016. As you might expect, that’s when
everything went wrong. If you damaged your installation and wanted to remove all pack-
ages and start over, you would lose your operating system. That detail got promptly fixed,
but it turned out there are dozens and dozens of edges and hundreds of interactions be-
tween them.

That original call for testing claimed that FreeBSD 11 would ship with a packaged base
system. That slipped release after release, as lingering bugs were found and fixed.

Like all volunteer software projects, pkgbase hung at 99% complete for years.
FreeBSD prides itself on its open management, but one person in the project wields

phenomenal cosmic power: the release engineer. The FreeBSD 15 release engineer put his

2 of 3

In 2006, Colin Percival
released freebsd-update(8)
to allow the impatient
to bypass this rite of passage,
leading to wider adoption
and deployment of FreeBSD.

6FreeBSD Journal • October/November/December 2025

foot down and said, “We are not only packaging the base system for 15, I will delay the re-
lease until the base system is packaged.” People flinched but got to work. The pkgbaseify
tool converts FreeBSD 14 hosts to use pkgbase so they can be easily upgraded to FreeBSD
15 with the packaging tools.

After all this testing, pkgbase should work for most people. I have no doubt that some-
body with an excess of cleverness will use it to render their hosts unbootable or install
Rails as their new kernel, but users are responsible for their own ideas, and I have a big
bucket of popcorn ready.

A clean install of FreeBSD 15 on my crashbox shows 311 packages, all but one with a
name beginning with “FreeBSD.” The exception is, of course, “pkg.” Frankly, if you delete
the FreeBSD-kernel-generic package on a production server, you deserve what you get,
which is a warning that you can’t delete the kernel. Or libc, or the linker, or any of the oth-
er obvious candidates. You can remove the compiler but, as I said in the original pkgbase
discussion, “real operating systems ship with fully functional compilers in the default in-
stall.” I also offered choice words for folks who suffer from a morbid fear of compilers.

A transition such as this merits a deeper look and a consideration of historical context.
Nineteen years ago, Colin released freebsd-update out of a misguided impulse to simpli-
fy upgrading and patching. The release engineer who held FreeBSD 15 hostage until it in-
cluded a packaged base system?

Colin Percival.
I think I see the real problem…

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS iis the author of Absolute FreeBSD, Dear Abyss, SSH Mastery, and too
many other books. Learn more at https://mwl.io.

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

7FreeBSD Journal • October/November/December 2025

mailto:letters@freebsdjournal.org
https://mwl.io
https://mwl.io

15.0

8FreeBSD Journal • October/November/December 2025

T he FreeBSD community continues to push forward with the release of 15.0. This re-
lease includes numerous features, refinements, and bugfixes relative to 14.0, which
was released in November of 2023. Highlights of some of the changes are listed be-

low, but more details can be found in the release notes.

Improving Project Structure
While FreeBSD’s developers have merged many patches over the last two years, they

have also refactored several of the project’s processes and structures. These changes aim to
streamline development workflows and make optimal use of developers’ time.

Colin Percival proposed several changes to FreeBSD’s release schedule shortly after the
release of 14.0. As he detailed in the journal earlier
this year, the new schedule features a fixed cadence
of both major and minor releases. 15.0 is the first
major release following the new schedule.

At last year’s BSDCan, FreeBSD’s core team an-
nounced the new srcmgr team to manage the
source repository. Delegating tasks such as src com-
mit bits to this new team allows the core team to fo-
cus its efforts on strategic planning for the project
as a whole.

Packaged Base System
The pkg(8) tool has proven itself as a mature system for managing binary packages.

FreeBSD has been using pkg(8) to manage third-party packages built from the ports col-
lection for many years. Over the past few years, a group of developers has worked to pro-
vide binary updates to the base system using pkg(8). This has included enhancements to the
pkg(8) tool as well as changes to the base system build process to integrate with the pkg(8)
tool. 15.0 will be the first major release supporting binary updates via pkg(8). The older sys-
tem of distribution sets managed by freebsd-update(8) will also be supported in 15.x, allow-
ing end users a graceful transition between these systems. FreeBSD’s developers expect to
switch the installer to use a packaged base system in the next major release.

Focusing Development Effort on Future Systems
Developer time and effort are scarce resources. To provide a high-quality system,

FreeBSD has long focused on contemporary, widely deployed systems. Over the past ma-
jor releases, FreeBSD has chosen to deprecate support for older CPU architectures that
are seeing declining use in industry and limited developer support. 14.0 deprecated sever-
al 32-bit architectures that will not be supported as a standalone architecture in 15.0, such

BY JOHN BALDWIN

1 of 3

FreeBSD 15.0:
Fixes and Features

This release includes
numerous features,
refinements, and bugfixes
relative to 14.0.

https://www.freebsd.org/releases/15.0R/relnotes/
https://freebsdfoundation.org/our-work/journal/browser-based-edition/downstreams/freebsd-release-engineering-a-new-sheriff-is-in-town/
https://freebsdfoundation.org/our-work/journal/browser-based-edition/downstreams/freebsd-release-engineering-a-new-sheriff-is-in-town/
https://man.freebsd.org/pkg/8

15.0

9FreeBSD Journal • October/November/December 2025

2 of 3

as 32-bit x86 and 32-bit PowerPC. The 64-bit versions of both architectures will continue to
support running 32-bit binaries in 15.0 and beyond. However, 32-bit kernels for these archi-
tectures are no longer supported in 15.0, and release artifacts such as install images will not
be provided for 15.0.

Networking
15.0 includes support for new networking devices as well as improvements to TCP. Nvid-

ia contributed changes to support inline IPsec offload, enabling smart NICs to offload IPsec
encryption/decryption from the host CPUs to the NIC. This is similar to kernel TLS offload,
but for IPsec. The mlx5en(4) driver supports IPsec offload on ConnectX-6 and later adapt-
ers. Local (UNIX domain) sockets were refactored in 15.0, resulting in increased throughput
and reduced latency for local stream sockets.

Storage
Several new storage features are included in the

upcoming release. Samsung contributed a driver
for the Universal Flash Storage standard, an alter-
native to the eMMC standard used for embedded
flash storage. The driver’s author, Jaeyoon Choi, cov-
ers this in more detail in “Universal Flash Storage
on FreeBSD” in this issue. 15.0 also includes support
for NVMe over Fabrics using the TCP transport as
covered in a previous journal article. Since that arti-
cle was published, support for NVMe-oF has been
merged into the ctld(8) daemon, and the nvmfd daemon has been removed.

Also included in 15.0 is a native implementation of the inotify(2) family of system calls.
This implementation is API-compatible with the same system calls as Linux and is available
for both native FreeBSD binaries and Linux binaries running under the Linux compatibility
layer. For many use cases, inotify(2) is both more reliable and more efficient than EVFILT_
VNODE kernel events available via kevent(2). It is also a widely used API in existing desktop
software such as KDE.

Virtualization
FreeBSD’s type 2 hypervisor, bhyve, includes several updates in 15.0 as well. Both the

in-kernel monitor and the userspace hypervisor are now supported for the 64-bit ARM and
RISC-V architectures. A few advanced features, such as PCI pass-through, are not yet sup-
ported, but both FreeBSD and Linux guests using existing bhyve device models, such as Vir-
tIO, are fully supported on both new architectures.

In addition to increased architecture support, bhyve can now use the net/libslirp pack-
age to provide a userspace backend for network devices. This allows the host to connect to
guests over a network connection without requiring additional host network configuration,
such as tap(4) devices.

Architecture-Specific
15.0 includes a processor tracing framework, hwt(4), which collects streams of events

logged by CPUs. These events include details about software execution, such as control

15.0 includes support
for new networking devices
as well as improvements
to TCP.

https://freebsdfoundation.org/our-work/journal/browser-based-edition/storage-and-filesystems/nvme-over-fabrics-in-freebsd-2/
https://man.freebsd.org/ctld/8
https://man.freebsd.org/inotify/2
https://man.freebsd.org/linux/4
https://man.freebsd.org/linux/4
https://man.freebsd.org/kevent/2
https://man.freebsd.org/tap/4
https://man.freebsd.org/hwt/4

10FreeBSD Journal • October/November/December 2025

3 of 3

flow changes, exceptions, and timing information. The framework supports events logged
by ARM’s Coresight and Statistical Profiling Extension (SPE) and Intel’s Processor Trace (PT).

This release also includes support for AMD’s IOMMU, which is particularly useful on sys-
tems with many cores. IOMMUs on x86 systems provide several features. The main pur-
pose of an IOMMU is to provide an alternate address space for device DMA requests, which
is useful both for virtualization (such as PCI pass-through) and for security (restricting mem-
ory access for untrusted devices). On x86, IOMMUs also interpose on interrupt delivery,
permitting device interrupts to be routed to CPUs with numerically larger IDs. Previous re-
leases of FreeBSD have included support for Intel’s IOMMU (DMAR), and 15.0 introduces
support for AMD’s IOMMU.

Extended Error Reporting
Traditionally, in POSIX systems, system calls report errors during execution by returning

an integer error code. This error code is available in the special global variable errno and can
be translated to strings in functions such as strerror(3). 15.0 introduces a new extended error
facility in the kernel, which saves additional information about an error, including an addi-
tional string description and the location in the source code of the error. The string descrip-
tion can be retrieved after a failed system call via the uexterr_gettext(3) function. The err(3),
errx(3), warn(3), and warnx(3) family of functions will include the extended string description
in the messages output to stderr automatically. Extended error information is also available
via ktrace(1).

Third-Party Software
FreeBSD’s base system includes several components that are externally maintained. As

with every release, 15.0 updates many of these components by importing newer versions of
the upstream software. The list of updates is too long to mention here, but a few deserve
special mention. OpenZFS has been updated to the latest release, 2.4.0. OpenSSL has been
upgraded to the current long-term support release (3.5), ensuring upstream support for the
life of the stable/15 branch. The current version of MIT Kerberos has been imported into
the base system, replacing the older Heimdal implementation. Toolchain utility programs
such as ar(1) and size(1) are now provided by LLVM rather than the ELF toolchain project.
This enables support for link-time optimization (LTO) in the base system toolchain.

Conclusion
FreeBSD 15.0 incorporates fixes and features contributed by a broad community over the

last two years. Thank you to everyone who has contributed to this release by testing snap-
shots, reporting bugs, submitting patches, working with users on social media, and per-
forming countless other tasks. We hope you enjoy FreeBSD 15.0. Please join us as we con-
tinue to move forward with FreeBSD 16 development!

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Concord, California with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

https://man.freebsd.org/strerror/3
https://man.freebsd.org/err/3
https://man.freebsd.org/errx/3
https://man.freebsd.org/warn/3
https://man.freebsd.org/warnx/3
https://man.freebsd.org/ktrace/1
https://man.freebsd.org/ar/1
https://man.freebsd.org/size/1
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

11FreeBSD Journal • October/November/December 2025

U niversal Flash Storage (UFS) is a high-performance, low-power storage interface de-
signed for mobile, automotive, and embedded environments. Today, UFS is widely
deployed and has become the successor to eMMC in most Android flagship smart-

phones. It also appears in some tablets, laptops, and automotive systems. Linux has sup-
ported UFS since around 2012, OpenBSD since 7.3, and Windows since Windows 10.

However, FreeBSD did not have a UFS driver. If we were to bring UFS’s proven maturity
from other ecosystems into the FreeBSD storage stack, FreeBSD would become a viable
choice in many mobile and embedded domains. The question “Why doesn’t FreeBSD have
a UFS driver yet?” became my personal motivation, and this article describes the path I took
to answer it.

Until last year, I had never used FreeBSD. Over
the course of approximately six months, I studied
FreeBSD, analyzed its codebase, and eventually im-
plemented a UFS driver. I hope this case shows that
even someone new to FreeBSD can develop a de-
vice driver with a systematic approach.

This article provides a brief introduction to UFS,
explains its architecture, development process, and
driver design, shares its current status and future
plans, and finally presents a hands-on environment
using QEMU, allowing readers to follow along.

Note: FreeBSD also has the traditional UFS (Unix File System). In this article, “UFS” means
Universal Flash Storage, not the file system. The driver name in the codebase is ufshci(4).

Universal Flash Storage Overview
In mobile storage, low latency and low power are essential, and compatibility with existing

systems is also important. Rather than inventing an entirely new standard, UFS combines
existing standards to achieve these goals. As a result, it was quickly adopted by the market.
It retained the benefits of low power and reliability from its component standards, albeit at
the cost of somewhat greater implementation complexity.

At the interconnect layer, UFS uses MIPI M-PHY (a reliable, differential high-speed serial
interface) together with MIPI UniPro (a link layer with strong power management). On top
of that, the transport protocol layer uses UTP, and the application layer uses a SCSI com-
mand subset whose reliability and compatibility are already well proven.

Where UFS is used
UFS may feel unfamiliar, but you are likely already using it. Most Android flagship smart-

phones use UFS for internal storage. UFS is also used in some low-power tablets and ultra-
light laptops, as well as in automotive infotainment, where reliability is critical.

BY JAEYOON CHOI

1 of 7

Universal Flash Storage
 	 on FreeBSD

The question
“Why doesn’t FreeBSD
have a UFS driver yet?”
became my personal
motivation.

12FreeBSD Journal • October/November/December 2025

2 of 7

Many high-performance ARM application processors integrate a UFS host controller, and
some low-power x86 platforms (e.g., Intel N100) support a UFS host controller as well. Ninten-
do’s recently released handheld console, Nintendo Switch 2, uses UFS for internal storage.

As UFS adoption continues to grow, adding native UFS support in FreeBSD broadens its ap-
plicability to mobile and embedded systems. Anticipating this demand, I started this project.

UFS Architecture

Figure 1. UFS System Model

A typical UFS system consists of a UFS target device (usually a BGA package on the PCB)
and a UFS host controller integrated into the application processor SoC. The two compo-
nents communicate over a high-speed serial link.

When an I/O request arrives, FreeBSD’s CAM (Common Access Method) subsystem
builds a SCSI command in a CCB (CAM Control Block) and passes it to the driver. The driver
encapsulates the SCSI command in a UPIU (UFS Protocol Information Unit) and enqueues it
on the UFS host controller’s queue.

The host controller enqueues the request and rings the doorbell; data moves via DMA,
and completions arrive via interrupts. The UFS device executes the SCSI subset command
(e.g., READ/WRITE), accesses NAND flash, and returns completion or error status to the
host controller.

In this way, the UFS device driver controls the host controller to perform reads and writes
to the UFS device.

Figure 2. UFS Layered Architecture

https://en.wikipedia.org/wiki/Nintendo_Switch_2

13FreeBSD Journal • October/November/December 2025

3 of 7

As noted earlier, UFS layers several existing standards and is organized into three layers:
interconnect, transport, and application. Their roles are:

•	UIC (UFS InterConnect Layer): Manages the link. It performs Link Startup over
M-PHY/UniPro, adjusts gear and lane settings to balance performance and power, sup-
ports power states (Active, Hibernate), detects errors, and performs recovery. The UFS
driver controls this layer via registers and UIC commands.

•	UTP (UFS Transport Protocol Layer): Transports admin and SCSI commands. The host
controller maintains Admin and I/O queues; the driver enqueues requests and rings a
doorbell. Data moves via DMA, and completions arrive via interrupts.

•	UAP (UFS Application Layer): Handles com-
mands (e.g., READ/WRITE) and command
queue control. Although UFS defines multi-
ple command sets, in practice, only the SCSI
command subset is used. The UFS driver does
not create SCSI commands; it encapsulates
CAM-generated SCSI commands in UPIUs
for UTP. This allows CAM’s standard paths for
scanning, error handling, and retries to be re-
used as-is. Through this layer, CAM treats UFS
as a standard SCSI device.

Key advantages (high performance, low power)
•	Performance: Compared with eMMC’s half-duplex, parallel interface, UFS’s full-duplex,

high-speed serial interface delivers higher bandwidth and lower latency. The submission
path is lightweight, built around queues, DMA, and interrupts. As a result, performance
is solid even with a single queue, and multi-circular queues (MCQ) improve scalability on
multicore systems. WriteBooster further improves burst-write performance by using an
SLC region of NAND.

•	Power efficiency: The UIC link raises the gear only when I/O is active and quickly drops
to a low-power state when idle. The standard defines power-state transitions, enabling
longer battery life in thermal and power-constrained mobile form factors. In practice,
tablets using UFS instead of NVMe have been reported to gain roughly 30-90 minutes
of battery life.

•	Compatibility: Because UFS uses a SCSI command subset, existing SCSI infrastructure
can be reused. On FreeBSD, CAM handles SCSI processing, while the UFS driver en-
capsulates CAM-generated SCSI commands in UPIUs for UTP, making integration with
CAM straightforward.

History and future of UFS
The UFS standard is published as JESD220 (UFS), and the host controller interface as

JESD223 (UFSHCI). UFS/UFSHCI 1.0 was released in 2011. In 2015, UFS 2.1 devices first
shipped in the Samsung Galaxy S6, marking the start of broad commercialization. UFS 3.0
improved link speed and introduced WriteBooster for burst writes. UFS 4.0 added multi-cir-
cular queues (MCQ), improving multicore scaling. UFS 4.1 is the current release, and UFS is
deployed in most flagship smartphones.

As on-device AI workloads grow on smartphones and other mobile devices, UFS is evolv-
ing to enable the faster transfer of LLM models into DRAM. Because on-device LLM mod-

UFS layers several existing
standards and is organized
into three layers: interconnect,
transport, and application.

https://psref.lenovo.com/syspool/Sys/PDF/IdeaPad/IdeaPad_Duet_3_11IAN8/IdeaPad_Duet_3_11IAN8_Spec.pdf
https://psref.lenovo.com/syspool/Sys/PDF/IdeaPad/IdeaPad_Duet_3_11IAN8/IdeaPad_Duet_3_11IAN8_Spec.pdf

14FreeBSD Journal • October/November/December 2025

els must be loaded quickly, higher bandwidth is required; work toward UFS 5.0 targets high-
er link speeds by increasing the serial-bus clock rate to boost bandwidth.

Driver Overview
I proposed a UFS device driver on the freebsd-hackers mailing list in July 2024 and be-

gan analysis and design in January 2025. Fortunately, Warner Losh, now my mentor, replied
and provided valuable guidance on the FreeBSD storage stack. The FreeBSD Handbook
and BSD conference talks were also helpful. After about two months of analyzing CAM,
SCSI, and the NVMe driver, I designed the UFS driver. Because NVMe and UFS share a sim-
ilar structure, I reused many of the same ideas. I requested an early code review on May 16,
2025. After several review rounds, the work was committed on June 15, 2025, and included in
FreeBSD 15.0.

Development was conducted primarily using QEMU’s UFS emulation, and was later vali-
dated on real hardware: Intel Lakefield and Alder Lake platforms with UFS 2.0/3.1/4.0 devic-
es. I also aimed to test on ARM SoCs, but suitable hardware was difficult to obtain.

The UFS driver is tightly integrated with the CAM subsystem. During initialization, it reg-
isters with CAM; thereafter, SCSI commands for configuration and reads/writes are deliv-
ered from CAM to the driver. To maintain backward
compatibility with UFS 3.0 and earlier, the driver
supports both the single doorbell queue (SDQ)
path and the multi-circular queue (MCQ) path.

Device initialization and registration
Initialization follows the UFS layered architecture,

proceeding from the bottom layer upward.
•	UFSHCI Registers: Enable the host controller,

program required registers, and enable interrupts.
•	UIC (UFS InterConnect Layer): Issue the Link Startup command to bring up the link

between the host and device and verify connectivity.
•	UTP (UFS Transport Protocol Layer): Create the UTP command queues and enable

UTP interrupts. Issue a NOP UPIU command to verify the transport path.
•	Configure Gear and Lane: Negotiate gear and lane counts, then configure the link to

operate at maximum bandwidth.
•	UAP (UFS Application Layer): Register with CAM to begin SCSI-based initialization;

CAM then scans the bus for targets and LUNs and delivers SCSI commands to the driver.
CAM (Common Access Method) is FreeBSD’s storage subsystem. It is organized into

three layers: the CAM Peripheral layer, the CAM Transport layer (XPT), and the CAM SIM
layer. After initialization, the UFS driver creates a SIM object with cam_sim_alloc() and regis-
ters it with the XPT via xpt_bus_register(). The XPT then scans the bus for targets and LUNs
to discover SCSI devices. When it finds a valid LUN, it calls cam_periph_alloc() to create and
register a Direct Access (da) peripheral in the CAM Peripheral layer.

With the Direct Access (da) peripheral registered, the CAM Peripheral layer automati-
cally constructs SCSI commands when I/O to the UFS disk is requested. The driver’s ufsh-
ci_cam_action() handler, registered with the SIM, receives the CCBs that carry these com-
mands, encapsulates them in UPIUs, enqueues them on the UTP queue, and on completion
calls xpt_done() to notify the XPT.

4 of 7

The UFS driver
is tightly integrated with
the CAM subsystem.

https://reviews.freebsd.org/D50370

15FreeBSD Journal • October/November/December 2025

Because CAM handles standard SCSI paths such as scanning, queuing, error handling,
and retries, much of the required logic does not need to live in the UFS driver. The driver
primarily forwards SCSI commands to the target device over UTP.

Queue architecture: SDQ and MCQ
One of the key design decisions was the queue architecture. UFS 4.0 introduced

multi-circular queues (MCQ), which are conceptually similar to NVMe’s model. For backward
compatibility, single doorbell queue (SDQ) support is also required, and the driver must se-
lect between SDQ and MCQ at runtime, since UFS 3.1 and earlier support only SDQ. To ad-
dress this, I defined a function-pointer operations interface (ufs_qop) that abstracts queue
operations so the implementation can be chosen at runtime. (MCQ is not yet implemented
and will be added soon.)

Current status and future development plans
The UFS driver is under active development and currently implements a subset of UFS

4.1 features. My goal is to achieve full feature coverage, followed by power management and
MCQ. At present, supported platforms are limited to PCIe-based UFS host controllers, and
I plan to add support for ARM system-bus platforms as well. I also aim to track and adopt
new UFS specifications promptly as they are released.

Getting Started with the UFS driver
To test the UFS driver, you typically need hardware with UFS built in. Fortunately, QEMU

allows development and testing without such hardware. This section shows how to emulate
a UFS device in QEMU and exercise the driver. (UFS emulation is supported starting with
QEMU 8.2.)

Prepare a FreeBSD snapshot image.

$ wget https://download.freebsd.org/releases/VM-IMAGES/15.0-RELEASE/amd64/Latest/
FreeBSD-15.0-RELEASE-amd64-zfs.qcow2.xz
$ xz -d FreeBSD-15.0-RELEASE-amd64-zfs.qcow2.xz

Create a 1 GiB file to use as the backing device for the UFS Logical Unit:

$ qemu-img create -f raw blk1g.bin 1G

Launch QEMU with an emulated UFS device:

$ qemu-system-x86_64 -smp 4 -m 4G \
 -drive file=FreeBSD-15.0-RELEASE-amd64-zfs.qcow2,format=qcow2 \
 -net user,hostfwd=tcp::2222-:22 -net nic -display curses \
 -device ufs -drive file=/home/jaeyoon/blk1g.bin,format=raw,if=none,id=luimg \
 -device ufs-lu,drive=luimg,lun=0

On amd64, the GENERIC kernel config includes the UFS driver module (see sys/amd64/
conf/GENERIC):

Universal Flash Storage Host Controller Interface support
device ufshci # UFS host controller

To load the module explicitly, edit /boot/loader.conf:

ufshci_load=”YES”

After reboot, verify that the UFS device is attached as ufshci0/da0 via camcontrol:

5 of 7

https://download.freebsd.org/releases/VM-IMAGES/15.0-RELEASE/amd64/Latest/FreeBSD-15.0-RELEASE-amd64-zfs.qcow2.xz
https://download.freebsd.org/releases/VM-IMAGES/15.0-RELEASE/amd64/Latest/FreeBSD-15.0-RELEASE-amd64-zfs.qcow2.xz

16FreeBSD Journal • October/November/December 2025

$ camcontrol devlist -v
scbus2 on ufshci0 bus 0:
<QEMU QEMU HARDDISK 2.5+> at scbus2 target 0 lun 0 (pass2,da0)
<> at scbus2 target -1 lun ffffffff ()

Basic performance checks with fio:

$ fio --name=seq_write --filename=”/dev/da0” --rw=write --bs=128k --iodepth=4
--size=1G --time_based --runtime=60s --direct=1 --ioengine=posixaio --group_reporting
$ fio --name=seq_read --filename=”/dev/da0” --rw=read --bs=128k --iodepth=4 --size=1G
--time_based --runtime=60s --direct=1 --ioengine=posixaio --group_reporting
$ fio --name=rand_write --filename=”/dev/da0” --rw=randwrite --bs=4k --iodepth=32
--size=1G --time_based --runtime=60s --direct=1 --ioengine=posixaio --group_reporting
$ fio --name=rand_read --filename=”/dev/da0” --rw=randread --bs=4k --iodepth=32
--size=1G --time_based --runtime=60s --direct=1 --ioengine=posixaio --group_reporting

QEMU is an emulator, so it is best for checking functional behavior. For performance
measurements, I used my Galaxy Book S.

The Galaxy Book S has an Intel 10th-gen i5-L16G7 (1.4 GHz, 5 cores) and an internal UFS
3.1 device, which I upgraded to UFS 4.0 for the experiment (operating at HS-Gear 4 on a 3.1
host controller).

Queue Depth Sequential Read (MiB/s) Sequential Write (MiB/s) Random Read (kIOPS) Random Write (kIOPS)

1 709 554 7.1 12.1

2 1,395 556 14.8 29.4

4 1,416 559 31.6 68.2

8 1,417 554 63.5 102.3

16 1,399 555 103.7 105.5

32 1,361 556 114.2 106.6
Table 1. FreeBSD UFS Performance

Depending on queue depth, sequential write peaks at 559 MiB/s, and sequential read
reaches 1,417 MiB/s, which is highly competitive for mobile devices.

Queue Depth Sequential Read (MiB/s) Sequential Write (MiB/s) Random Read (kIOPS) Random Write (kIOPS)

1 542 479 6.1 11.0

2 1,358 548 13.0 21.0

4 1,351 550 29.7 53.1

8 1,352 550 61.1 84.1

16 1,351 552 119.0 114.0

32 1,355 553 142.0 120.0
Table 2. Linux UFS Performance

Under the same conditions on Linux, performance is at a comparable level.

Conclusion
UFS is a rapidly evolving interface standard. The FreeBSD UFS driver likewise adds new

features and is continually optimized to enable UFS across a variety of devices.
I hope this article encourages wider use of UFS on FreeBSD. Contributions to the UFS

driver are very welcome. I’m grateful to the reviewers who helped make this possible, and I

6 of 7

17FreeBSD Journal • October/November/December 2025

plan to continue contributing to the community.
Development of the ufshci(4) UFS device driver was supported by Samsung Electronics.

JAEYOON CHOI is a software engineer in the Memory Division at Samsung Electron-
ics, working to expand the open-source ecosystem for SSDs and UFS. He started using
FreeBSD in 2024 and became a FreeBSD src committer in September 2025. He previous-
ly contributed to Fuchsia OS’s F2FS file system and currently maintains the Fuchsia OS UFS
driver. He is interested in open source for storage systems.

7 of 7

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
mailto:maurer.jim@gmail.com

18FreeBSD Journal • October/November/December 2025

S ound support for FreeBSD began in 1993, when Jordan K. Hubbard imported the ge-
neric Linux sound driver into FreeBSD, later known as the VoxWare sound drivers, writ-
ten by Hannu Savolainen. Several new versions of the VoxWare drivers were imported

(and modified) into the FreeBSD base system between 1993 and 1997. At this time, Amancio
Hasty and Jim Lowe did most of the work on sound support in FreeBSD. The VoxWare driv-
ers eventually became what we know today as OSS, the Open Sound System, maintained by
Hannu and his team at 4Front Technologies.

However, things changed in 1997 as more of the
foundation for the sound system we have today was
laid out by Luigi Rizzo. In 1999, Cameron Grant re-
wrote the sound system for FreeBSD 4.0, now using
the newbus interface, which supported a great deal
of hardware. This superseded Luigi’s driver, which
was removed from the tree a month later. In the
following years, many things changed in the sound
area. The number of drivers for different hardware
chips increased drastically (especially for PCI and
USB devices), and many improvements were made
to the sound infrastructure, thanks to Cameron
Grant and Orion Hodson. Cameron passed away in
2005, a major loss for the FreeBSD community.

Ariff Abdullah took over the maintainership of the
sound code in FreeBSD in 2005. Since then, we’ve
seen some dramatic changes in sound support, as
well as several rounds of device driver restructuring.

OSS
FreeBSD’s sound API is called OSS, which stands for “Open Sound System”. Interesting-

ly enough, it also used to be Linux’s default sound API, until it was eventually replaced by
ALSA. FreeBSD, however, still uses it, and it provides a simple and clean API by just exposing

BY CHRISTOS MARGIOLIS

1 of 10

Vox FreeBSD:
How Sound Works

Ariff Abdullah took over
the maintainership of
the sound code in FreeBSD
in 2005. Since then,
we’ve seen some dramatic
changes in sound support,
as well as several rounds
of device driver restructuring.

19FreeBSD Journal • October/November/December 2025

2 of 10

standard device files (/dev/dsp* corresponding to sound cards and /dev/mixer* to mix-
ers), which are operated on using a few common POSIX system calls:

Syscall Description

open(2) Open device.

close(2) Close device.

read(2) Record audio.

write(2) Play audio.

ioctl(2) Query/manipulate settings (sample rate, format,
volume, and much more).

select(2), poll(2),
kqueue(2)

Poll for events. kqueue(2) is FreeBSD-only
(15.0 onwards).

mmap(2) Memory-mapped I/O.

The official manual can be found here: http://manuals.opensound.com/developer/
Since interaction with the sound device is done using common syscalls, it is possible to

do things like this in the terminal:
1.	 Play white noise: cat /dev/random > /dev/dsp
2.	 Record raw PCM (Pulse Code Modulation) stream into a file: cat /dev/dsp > foo
3.	 Very crude input monitoring, which can be used to make sure your microphone is

working: cat /dev/dsp > /dev/dsp
For more elaborate things, however, actual programs have to be written — Fortunately,

the OSS API is straightforward to use. /usr/share/examples/sound contains several ex-
ample programs and is, in fact, growing as of the writing of this article.

In addition to the /dev/dsp* devices, there is a /dev/dsp device, which is what was used
in the examples above. This isn’t a real device, but an alias to the currently default device.
Applications that want to use whatever the default device is at any given time are strongly
encouraged to access this device instead of hardcoding specific ones.

An additional nice feature is that OSS works with POSIX syscalls only is that it is trivial to
use OSS in any programming language, without the need for language bindings. The only
thing one would need to do to fully “port” OSS to another language would be to define
some global OSS API constants and structures, which can be found in /usr/include/sys/
soundcard.h.

sound(4)
The OSS API is implemented inside sound(4). It abstracts some generic functionality

into a kernel module, so that individual device drivers (e.g., snd_hda(4), snd_uaudio(4),
etc.) do not need to duplicate code that would be the same across all of them. This generic
functionality includes:

• Device creation, deletion, and access.
• Buffer management.
• Audio processing.
• Providing global and (most of) device-specific sysctls.
Device drivers have to attach to sound(4) and set up a communication pipeline with it,

during their initialization stage. In other words, sound(4) is the bridge between userland

http://manuals.opensound.com/developer/

20FreeBSD Journal • October/November/December 2025

3 of 10

and device drivers. This is particularly convenient, because the FreeBSD kernel exposes the
same /dev/dsp* files and sysctls (hw.snd.* and dev.pcm.*) for every connected sound
device, and provides uniform access and configuration to users and application program-
mers, while also avoiding the need for duplication at the device driver level.

sound(4) also exposes /dev/sndstat, which provides information about all connect-
ed sound devices and active channels, and is used internally by virtual_oss(8) and
sndctl(8).

sound(4) works with PCM audio streams, the specifics of which (sample rate, sample
format, etc.) can also be manually configured by the user with sndctl(8), if needed. This
means that applications working with audio represented in other formats, such as WAV,
Opus, MP3, etc., need to convert the stream to PCM during playback, and from PCM
during recording.

High-level implementation overview
Device access

As was mentioned earlier and shown in the example program, applications access the
sound subsystem through /dev/dsp*, using the open(2) syscall. The following flags can be
specified:

open(2)open(2) flag Description

O_RDONLY Recording.

O_WRONLY Playback.

O_RDWR Recording and playback.

The O_NONBLOCK and O_EXCL flags can be additionally specified in the open(2) call, for
non-blocking I/O and exclusive access to the device respectively. For sound(4) to know
which channels belong to which file descriptor, and to route audio and information properly,
it uses DEVFS_CDEVPRIV(9).

As alluded to earlier, there are also /dev/mixer* devices. This is a legacy interface, main-
ly used for volume setting and recording source selection, by applications such as mixer(8).
/dev/mixer* devices have a 1:1 relationship with /dev/dsp* ones, so for instance, /dev/
mixer0 is the mixer device corresponding to /dev/dsp0. This interface also provides some
functionality for physical mixers. As of OSS version 4.0, the mixer API has been rewritten,
but is not currently fully implemented on FreeBSD.
Channels

Channels hold some important information about their state (e.g., configuration, PID,
and name of process consuming it, diagnostic values, etc.), as well as the most important
component; the buffer(s). In other words, the actual audio stream. Channels also have their
own volume, in addition to the device-wide master volume. This is especially useful because
applications get their own volume knobs and usually do not need to touch the master one.

At this point, it is essential to note that there are two types of channels in sound(4); pri-
mary/”hardware” and virtual.

The device drivers allocate primary channels, and there is usually one for playback and
one for recording, depending on what is supported by the hardware. However, some driv-
ers might make the number of primary channels equal to the number of physical playback
and recording ports provided by the hardware. Each primary channel comes with a pair of

21FreeBSD Journal • October/November/December 2025

buffers, a software-facing one and a hardware-facing one. The software-facing buffer is re-
sponsible for exchanging audio data with userland, while the hardware-facing one is for ex-
changing data with the hardware. Whenever the device driver is ready to read from or write
data to the hardware, it interrupts sound(4), and data is copied from one buffer to the oth-
er. During playback, since we are writing data to the hardware, we copy the software-facing
buffer to the hardware one, so that the driver can feed that data to the hardware. The re-
verse is true for recording.

Virtual channels, commonly referred to as VCHANs, are treated as children of primary
channels, but, unlike primary channels, they do not have any connection to the hardware,
so only their software-facing buffer is used. The rea-
son for virtual channels existing in the first place is
that we want an indefinite number of applications to
be able to access the device simultaneously. With-
out virtual channels, the number of processes that
can access the device simultaneously is equal to the
number of primary channels, since each channel has
only one software-facing buffer, which means that
all processes would have to share the same buffer,
which is not really ideal for audio, so each buffer has
to be dedicated to one process.

Earlier, we explained how audio streams are ex-
changed between userland and hardware using pri-
mary channels. When virtual channels are enabled
(as is the case by default), sound(4), instead of sim-
ply copying the primary channel’s software-facing
buffer to the hardware-facing one (during playback),
and vice-versa (during recording), it first has to mix all the audio streams of the primary
channel’s children virtual channels, and then supply the final mixed stream to the prima-
ry channel’s hardware-facing buffer. As you can imagine, this additional layer introduces
a slight overhead, which is irrelevant for most use cases, but might not be ideal in some
low-latency music production workflows. For those cases, virtual channels can simply be dis-
abled.

To view channel states, you can use sndctl(8):

$ sndctl -v

Processing chain
An interesting feature of sound(4) is its processing chain. This includes:
•	Mixing. This is actually exactly what was explained in the previous section, about how

virtual channel streams are (de-)mixed.
•	Volume control.
•	Channel matrixing. sound(4) is capable of doing any-to-any channel matrixing, for ex-

ample, mono to stereo, or stereo to 5.1 surround. This is done by converting streams
from one interleaved PCM format to another.

•	Basic parametric equalization.
•	Format conversions.

4 of 10

The reason for virtual
channels existing
in the first place is
that we want an indefinite
number of applications
to be able to access
the device simultaneously.

22FreeBSD Journal • October/November/December 2025

•	Resampling. There are three different resampling types, namely:
•	Linear.
•	Zero-order-hold (ZOH).
•	Sine Cardinal (SINC).

Each channel gets its own processing chain, and it includes only the necessary compo-
nents. For instance, if the channel is configured to have a sample rate of 44100Hz, but the
application feeds it audio sampled at 48000Hz, then sound(4) will need to include resam-
pling in the channel’s processing chain. Similarly, if the stream has the same sample rate as
the channel, then that component will not be needed. The same applies to the other com-
ponents.

A helpful way to visualize the processing chain is to print it using sndctl(8). The follow-
ing command will print the chain of each active channel:

$ sndctl feederchain

In the next section, we will discuss how and why, in some specialized cases, you might
want to bypass the processing chain entirely.
Memory-mapped I/O and bit-perfect audio

Two of sound(4)’s liked features by low-latency application developers and audio enthu-
siasts, are that it provides bit-perfect mode support, as well as memory-mapped I/O.

Bit-perfect mode means that the audio stream skips all of sound(4)’s processing chain,
and is fed more or less directly to the sound card. Applications have the added responsibil-
ity of making sure the stream’s configuration (sample rate, format, channel matrix) match-
es that of the sound card. For instance, if the application wants to play audio sampled at
48000Hz, but the sound card does not support that sample rate, then it needs to take care
of resampling the stream. As a result, this feature is disabled by default and is enabled only
by applications that implement their own processing, and/or users who are sure their sound
card will work properly in bit-perfect mode.

Memory-mapped I/O is similar to bit-perfect, in that the audio stream skips all processing
done by sound(4); in fact, bit-perfect has to be enabled in order to do memory-mapped
I/O. However, the major difference between bit-perfect and memory-mapped I/O, is that
the latter puts all of the audio buffer handling responsibilities entirely on the application,
which means that it has to take care of not only the same things that an application using
bit-perfect would, but to also make sure the buffer is synchronized correctly and that read/
writes happen at the right time, with some help from sound(4). If done right, and in the
right environment, this can yield performance improvements, but is quite tricky and tedious
to implement correctly, and so is mostly discouraged, unless the programmer really knows
what they are doing.

Device drivers
Just like sound(4) is the bridge between userland and the device drivers, the device driv-

ers are the bridge between sound(4) and the actual hardware. Apart from the fact that all
sound drivers attach to sound(4) and communicate with it, the rest of their functionality
depends on the driver itself. In a future article, we could present how to write a sound driver
from scratch.

FreeBSD ships with support for the following sound cards:

5 of 10

23FreeBSD Journal • October/November/December 2025

Driver Soundcards Enabled by default

snd_ai2s(4) Apple I2S powerpc

snd_als4000(4) Avance Logic ALS4000

snd_atiixp(4) ATI IXP

snd_cmi(4) CMedia CMI8338/CMI8738 amd64, i386

snd_cs4281(4) Crystal Semiconductor CS4281

snd_csa(4) Crystal Semiconductor CS461x
/462x/4280

amd64, i386

snd_davbus(4) Apple Davbus powerpc

snd_emu10k1(4) SoundBlaster Live! and Audigy

snd_emu10kx(4) Creative SoundBlaster Live!
and Audigy

amd64, i386

snd_envy24(4) VIA Envy24 and compatible

snd_envy24ht(4) VIA Envy24HT and compatible

snd_es137x(4) Ensoniq AudioPCI ES137x amd64, i386

snd_fm801(4) Forte Media FM801

snd_hda(4) Intel High Definition Audio amd64, i386

snd_hdsp(4) RME HDSP

snd_hdspe(4) RME HDSPe

snd_ich(4) Intel ICH AC’97 and compati-
ble

amd64, i386

snd_maestro3(4) ESS Maestro3/Allegro-1

snd_neomagic(4) NeoMagic 256AV/ZX

snd_solo(4) ESS Solo-1/1E

snd_spicds(4) I2S SPI

snd_t4dwave(4) Trident 4DWave

snd_uaudio(4) USB audio and MIDI auto-loaded on device plug

snd_via8233(4) VIA Technologies VT8233 amd64, i386

snd_via82c686(4) VIA Technologies 82C686A

snd_vibes(4) S3 SonicVibes

There is also support for the following ARM chips:
•	Allwinner A10/A20 and H3.
•	Broadcom BCM2835.
•	Freescale Vybrid.
•	Freescale i.MX6.

6 of 10

24FreeBSD Journal • October/November/December 2025

If you own a sound card whose driver is not enabled by default on your machine’s archi-
tecture, or you are using a custom kernel configuration without sound compiled in, and are
unsure which driver your sound card uses, you can run the following command:

kldload snd_driver

snd_driver is a meta-driver that loads all available drivers. Once you figure out which
driver attaches to your sound card, you can load that one only.

Recent improvements
The sound subsystem has (and still is) undergone many improvements in the last two

years, including a number of bug and crash fixes, the introduction of a growing Kyua test
suite and a testing driver (snd_dummy(4)), as well as multiple cleanups and refactors.

A few important user-facing improvements include:
•	Hot-unplugging is now possible. Users of USB sound cards on older versions of FreeBSD

might remember that hot-unplugging the sound card usually resulted in the USB bus
hanging, until the application using the now-detached device was manually killed
(PR 194727).

•	Floating-point audio support. This is a bit misleading, though, because we do not really,
at least currently, support floating-point audio on the device driver level, but rather, we
allow userland applications to use OSS with floating-point audio. This already fixes quite
a few ports, such as Wine, that needed floating-point audio support from OSS.

•	sound(4) now only exposes a single /dev/dsp* file for each device and does all the
audio stream routing internally, using DEVFS_CDEVPRIV(9), as opposed to exposing a
/dev/dsp* file for each allocated audio stream. The current approach is cleaner both in
implementation and in what is exposed to userland.

•	Better out-of-the-box support for High Definition Audio (snd_hda(4)) sound cards.
These cards are a constant pain for both developers and users, because they tend to
come with non-standard configurations, meaning that we have to compensate for that
by adding manual patches inside the driver or /boot/device.hints. A commonly re-
ported issue is that sound is not automatically redirected to the headphones once they
are plugged in, and vice versa. Several patches have recently been written for various
sound cards that experience this issue, especially Framework laptops. It is very likely that
you also have fallen victim to that issue. With that being said, since FreeBSD 15.0, there is
a devd(8) configuration, /etc/devd/snd.conf, which attempts to automate this issue.
The basic idea of the implementation is that whenever snd_hda(4) detects that a jack
has been (un-)plugged, it issues a devd(8) notification, and /etc/devd/snd.conf will
make sure to redirect sound to the appropriate device using virtual_oss(8). This fea-
ture is still experimental, so there should be more refining as more people provide feed-
back.

•	kqueue(2) support for sound(4).

Userland utilities
You can find examples and more information for each of the following utilities in their re-

spective manual pages.

7 of 10

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=194727

25FreeBSD Journal • October/November/December 2025

sndctl(8)
sndctl(8) lists and manipulates sound card settings, such as the sample rate, sample

format, bit-perfect and realtime mode settings, among others. It aims to be a replacement
for /dev/sndstat (in fact, it uses it internally) and some of sound(4)’s sysctls, at least for
most use cases:

$ sndctl
pcm3: <Realtek ALC295 (Analog 2.0+HP/2.0)> on hdaa1 (play/rec)
 name = pcm3
 desc = Realtek ALC295 (Analog 2.0+HP/2.0)
 status = on hdaa1
 devnode = dsp3
 from_user = 0
 unit = 3
 caps = INPUT,MMAP,OUTPUT,REALTIME,TRIGGER
 bitperfect = 0
 autoconv = 1
 realtime = 0
 play.format = s16le:2.0
 play.rate = 48000
 play.vchans = 1
 play.min_rate = 1
 play.max_rate = 2016000
 play.min_chans = 2
 play.max_chans = 2
 play.formats = s16le,s32le
 rec.rate = 48000
 rec.format = s16le:2.0
 rec.vchans = 1
 rec.min_rate = 1
 rec.max_rate = 2016000
 rec.min_chans = 2
 rec.max_chans = 2
 rec.formats = s16le,s32le

mixer(8)
mixer(8) deals with volume control, (un-)muting, recording source(s) selection, and de-

fault device setting. It was completely rewritten on FreeBSD 14.0, and comes with an im-
proved interface and functionality:

$ mixer
pcm3:mixer: <Realtek ALC295 (Analog 2.0+HP/2.0)> on hdaa1 (play/rec) (default)
 vol = 0.75:0.75 pbk
 pcm = 1.00:1.00 pbk
 rec = 0.37:0.37 pbk
 ogain = 1.00:1.00 pbk
 monitor = 0.67:0.67 rec src

virtual_oss(8)
virtual_oss(8) is a powerful sound server for OSS written by the late Hans Petter Se-

lasky . It was part of ports (audio/virtual_oss) for years, but has been part of the base

8 of 10

26FreeBSD Journal • October/November/December 2025

system since FreeBSD 15.0. It is again in active development, and there are already plenty of
significant improvements being worked on and planned for the future.

As is mentioned in the 15.0 release notes, pre-FreeBSD 15.0 users of virtual_oss(8)
can simply uninstall the audio/virtual_oss port and use the base system version. The
only thing to keep in mind is that some functionality, which depends on third-party libraries,
has been moved to separate ports, namely:

•	sndio backend support: audio/virtual_oss_sndio
•	bluetooth backend support: audio/virtual_oss_bluetooth
•	virtual_equalizer(8): audio/virtual_oss_equalizer

mididump(1)
mididump(1) is a simple utility that prints MIDI events for a given device in real time. This

is useful for making sure a MIDI device works properly and that keys work and are mapped
correctly.

$ mididump /dev/umidi0.0
Note on channel=1, note=53 (F3, 174.61Hz), velocity=109
Note off channel=1, note=53 (F3, 174.61Hz), velocity=127
Note on channel=1, note=55 (G3, 196.00Hz), velocity=100
Note off channel=1, note=55 (G3, 196.00Hz), velocity=127
Pitch bend channel=1, change=1

beep(1)
beep(1), as the name suggests, plays a beep sound. This is an easy way to verify sound

works.
More

Apart from the utilities mentioned, there are a few more things provided by the sound
subsystem:

What Description Documentation

mixer(3) A C library for interacting with
the OSS mixer.

man 3 mixer

sndstat(4) An nv(9) interface for
listing device information,
as well as registering
userland sound devices.
Used internally by sndctl(8)
and virtual_oss(8).

man 4 sndstat

hw.snd.* Global sysctl(8) variables. man 4 sound
dev.pcm.* Device-specific sysctl(8)

variables.
man 4 sound

Driver-specific
sysctl(8) variables

Refer to the respective
driver’s manual page.

FreeBSD for music production?!
You might be thinking this is a joke, but it is, in fact, a topic that has been coming up

more and more in recent years, and we have already seen a few related talks in recent con-
ferences, more specifically:

9 of 10

https://cgit.freebsd.org/src/commit/?id=c457acb4ee821cf015930a94f52c3870786468a7

27FreeBSD Journal • October/November/December 2025

•	Goran Mekić, FOSDEM 2019
•	Goran Mekić, EuroBSDCon 2022
•	Charlie Li, BSDCan 2024
•	Christos Margiolis, FreeBSD DevSummit 09/2024
•	Christos Margiolis, BSDCan 2025
•	Charlie Li, EuroBSDCon 2025
FreeBSD is, without a doubt, not the operating system a musician or producer would

typically think about when it comes to music production, however, this is partially the case
because of a lack of “marketing”, for lack of a better word. In reality, FreeBSD offers a solid,
fast, and highly configurable sound subsystem, it has a consistently rapidly growing collec-
tion of open source Digital Audio Workstations, LV2 plugins, and other types of production/
music software, and it can work with any non-native sound subsystem (ALSA, sndio, JACK,
Pulseaudio, Pipewire, etc.), in case OSS is not desirable.

I genuinely think that if we continue this trend of consistently maintaining and develop-
ing the sound subsystem, porting and developing more software, as well as showcasing in
practice why FreeBSD can be an alternative for audio and music production, both in confer-
ences and online, we could, one day, see FreeBSD gaining significant popularity among au-
diophiles and musicians.

Reporting and resolving bugs
All software might contain bugs from time to time, and the sound subsystem is no ex-

ception. Providing sufficient information is always necessary, and opening a bug report or
sending an email with just a “sound does not work on my machine” is not really helpful. At-
taching the output of the following commands should be enough in most cases:

1.	uname -a
2.	sndctl -v
3.	mixer -a
4.	sysctl hw.snd dev.pcm, as well as the driver-specific sysctls, if any.
5.	dmesg, after setting hw.snd.verbose=4 and reproducing the bug.
6.	Logs, if any, from the application with which the bug is reproduced.

Conclusion
Hopefully, this article has helped with presenting the general structure of the sound sub-

system as a whole, at its current state. It would be great to see even more people interest-
ed in FreeBSD sound in the future! The freebsd-multimedia@FreeBSD.org mailing list is
where most of the discourse happens, so make sure to keep an eye on it.

CHRISTOS MARGIOLIS is an independent contractor and FreeBSD src committer from
Greece.

10 of 10

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

http://www.freebsdfoundation.org/donate

29FreeBSD Journal • October/November/December 2025

I n this article, we explore how the mdo(1) program can be used to easily and quickly
launch a new process with different credentials and how system administrators can en-
able credentials transitions initiated by unprivileged users by leveraging the mac_do(4)

kernel module, obviating the need to install third-party programs such as sudo(8) or
doas(1) in simple role-based scenarios.

The traditional UNIX approach to access control essentially relies on the following con-
cepts and components:

•	Users and groups. Groups are meant to ease administration by treating all users of a
group uniformly in some ways.

•	Processes, as subjects acting on behalf of some user and groups, which are referred to
as their credentials.

•	File ownership (one user, one group) and permissions, which separately guard accesses
by the owner, by members of the file’s group, and by other users.

•	The special root user1, which has all privileges and in particular is not subject to access
control.

•	Set-user-ID/set-group-ID executables, which, when launched, have their process respec-
tively endorse the executable’s owner as the user and the executable’s group as the “pri-
mary” group2.

One of the primary duties of a system adminis-
trator is to give their users appropriate access to vari-
ous resources of the systems. This, for the most part,
translates into defining users and groups and ensur-
ing that files have the proper permissions with re-
spect to the expected security policy.

The UNIX access control model has the flexibil-
ity that users need not represent real, human indi-
viduals, but may as well represent roles that can be
assumed by multiple real users who require access
to specific resources and information. Such a role-
based approach relying on UNIX users instead of just groups is, in fact, necessary in all but
the simplest file-sharing scenarios. It makes temporarily adopting another set of credentials,
established from a target user, an important feature of the system, which the su(1) pro-
gram traditionally fulfills.

However, su(1) requires authenticating to a new user before switching to its credentials,
typically by asking for the user’s password3, which is not convenient either for humans who
have been assigned roles and are already authenticated or for automated scenarios. It nec-

BY OLIVIER CERTNER

1 of 12

	 Credentials Transitions
with mdo(1)mdo(1)
		 and mac_do(4)mac_do(4)

One of the primary duties
of a system administrator
is to give their users
appropriate access to various
resources of the systems.

30FreeBSD Journal • October/November/December 2025

2 of 12

essarily spawns the target user’s shell, which precludes using it with users who have no valid
login shells, whereas this is typically desired for role users that nobody should be able to log
in as directly. It also makes launching a specific program with arguments more cumbersome
than it should be4.

In order to overcome these limitations, system administrators commonly install other
programs designed to run commands on behalf of other users such as sudo(8) or doas(1).
However, programs like sudo(8) have a non-negligible attack surface, in part due to their
number of infrequently used features, and, in particular, modularity, which can be dangerous
from a security standpoint. More generally, having programs installed with the executable
file’s owner being root and having the set-user-ID
mode bit set is a security concern, as compromis-
ing them can mean gaining full administration rights
through code execution as the root user. But tradi-
tional UNIX did not provide any other way to change
credentials, which is why programs like su(1) and
login(1) are installed this way.

As an alternative to executables with the set-user-
ID mode bit set, more colloquially called “setuid exe-
cutables”, we provide the mac_do(4) kernel module,
built on top of FreeBSD’s MAC framework5. Its pur-
pose is to allow only certain credentials transitions
from unprivileged processes, thus not requiring the
corresponding executable image to be installed “setuid”.

mdo(1) is the companion program to mac_do(4) and actually requests the desired cre-
dentials transitions to the kernel. mdo(1) can be used standalone by the root user who has
all privileges. Otherwise, its requests are vetted by the mac_do(4) kernel module according
to the administrator’s configuration.

In this article, we first describe how to use mdo(1) to launch commands under new cre-
dentials, walking through a series of examples. Then, we explain how to configure mac_
do(4) to enable specific credentials transition in support of role-based schemes, on the
host system as well as in jails, also offering some insights on the current design. Finally, we
ask for user feedback on what should come in the relative short term and possible longer
term future plans.

Using mdo(1)mdo(1)
mdo(1) is designed to run any command with an arbitrary set of credentials. If you have

not yet configured mac_do(4), which is covered in the next section, you can still run all the
examples below as root. For most examples, FreeBSD 15.0 is required as FreeBSD 14.3’s
mdo(1) only supports options -u and -i6.

For safety reasons, the target process credentials have to be fully specified, either explic-
itly by listing all users and groups and their requested values, or indirectly by establishing a
baseline that provides a default value for each of them and can then be amended by addi-
tional options.

In a role-based setting, the most common use case is arguably to endorse the creden-
tials of some user as if he has just logged in. So, mdo(1) supports it in the simplest form

As an alternative to
“setuid executables” in
role-based settings,
we provide the mac_do(4)
kernel module and its mdo(1)
companion program.

31FreeBSD Journal • October/November/December 2025

3 of 12

possible, with the only needed option being -u (for “user”) to establish a baseline from
the named user, as in:

$ mdo -u www /usr/local/bin/occ

To sudo(8) and doas(1) users, this command-line should strike you as extremely similar to
what you use with those tools: Basically, mdo replaces sudo or doas, and the rest is identical.

Obviously, this cannot work if passing some user numerical ID as opposed to a user
name, as the full login credentials are determined by the password and group databases,
which are indexed by names7. Using -u with a user numerical ID only specifies the user (ac-
tually, the real, effective and saved user IDs), and mdo(1) then needs to be told about all tar-
get groups. That has to be done either explicitly as we will see below, or through -i which
means to use the current groups as a baseline, else mdo(1) will simply error.

Keeping the current groups, such as in:

$ mdo -u 10002 -i

can be useful, e.g., if you need to temporarily process alien files whose owner is not in your
password database.

-i also works with -u with a user name, and it means the same. E.g., if foo is some user
in your password database that has ID 10002, then this command is entirely equivalent to
the previous example:

$ mdo -u foo -i

Suppose now you want to explicitly specify groups, either because you are using a nu-
merical user ID as we saw above, or because you want to override the groups associated
with some user. You can use:

•	-g: To set/override the primary groups8.
•	-G: To set/override the full set of supplementary groups. The comma-separated list you

provide here is considered complete, i.e., it should contain all supplementary groups.
Keep in mind that, starting with FreeBSD 15, a user logging in has their initial group, as
specified in the password database, also in its processes’ supplementary groups set.

•	-s: To amend the supplementary groups set. The argument for this option consists of a
list of comma-separated directives. You can ensure a group is part of the supplementa-
ry groups with a + directive, or ensure it is not with a - directive, or reset the list with a @,
making -s work like -G but with a different syntax9.

Some examples:

$ mdo -u unprivileged_user -g wheel -G wheel,staff,operator

starts a shell as user unprivileged_user, but ignores the groups specified in the pass-
word and group databases, replacing them with the passed ones. -g and -G are useful for
testing which rights would be given to a user with a particular set of groups.

However, if the point is only to log in as some user with some additional groups, e.g.,
wheel and operator, in an “augmented” role scenario, -s is the option to use:

$ mdo -u unprivileged_user -s +wheel

or, conversely, if membership of some group must be temporarily revoked, e.g., when this
group is used as a tag to deny access through ugidfw(8) (and mac_bsdextended(4)) for
access control:

32FreeBSD Journal • October/November/December 2025

$ mdo -u unprivileged_user -s -tag_group

If the user should not change, there is no need to specify it explicitly with -u. Instead, you
can just use -k (for “keep”), meaning to start with all current users and groups as the base-
line. -k is exclusive with -u and implies -i (start from current groups).

Note that, in all cases, it is possible to override the credentials’ groups using the explicit
options we have seen (-g, -G, and -s).

Finally, the real, effective and saved variants of users and primary groups can be sepa-
rately overridden if needed, using --ruid, --euid and --svuid, and --rgid, --egid and
--svgid respectively. When all three variants are specified, there is no need to respectively
use -u or -g, although specifying -u with a name is still useful to get its associated groups.

As you can see, in addition to its simplicity for the most common use cases, mdo(1) thus
has the advantage over su(1), sudo(8) or doas(1) that it allows to control every aspect
of the target credentials, making it the tool of choice to test or temporarily use arbitrary
credentials in advance of a modification of the password and group databases, or for role-
based settings where endorsing a role comes from being part of additional groups rather
than switching users.

mdo(1) is only concerned with changing credentials. Consequently, its code is relative-
ly simple, and a special effort was made to make it as clear and as minimal as possible while
being “obviously” correct. This makes for a program that is easy to audit and results in a very
small binary, weighing a little more than 7kB on my stable/14 machines. Compare this
to doas(1) which weighs a little more than 27kB, and sudo(8) at 229kB completed by
sudoers(5), its default security policy plugin, at 628kB, both programs being installed as
“setuid executables” in contrast to mdo(1).

Currently, as it is geared to role-based scenarios, mdo(1) does not ask for any password or
other form of authentication when requesting new credentials, instead relying solely on the
requester’s credentials for this purpose. As one of the possible future directions, listed in the
conclusion of this article, we may add support for asking the current logged-in user’s pass-
word. Additional functionalities related to switching to another user (such as login classes,
login name, scheduling priorities, etc.) may also be considered depending on user feedback.

Configuring mac_do(4)mac_do(4)
For a non-root user to be able to leverage mdo(1), configuring mac_do(4) is compulsory

since mdo(1) is by-design not installed “setuid”.
mac_do(4) is not compiled in the kernel by default, but can easily be loaded as a module:

kldload mac_do

You can then access its parameters below the security.mac.do sysctl(8) node. Cur-
rently (FreeBSD 14.3 and 15.0), the following are available:

•	enabled: Whether the module is enabled (defaults to true). This is a global toggle. It is
possible to deactivate mac_do(4) selectively on the host system or in any jail via rules
(next knob) or jail parameters (see corresponding subsection below).

•	rules: A list of rules indicating which credentials transitions are allowed. We are going
to study several examples in the next subsection. rules has an empty value by default,
meaning that mac_do(4) will not allow any credentials changes by itself.

•	print_parse_error: Whether to print a parse error on the console and system log
when setting rules fails.

4 of 12

33FreeBSD Journal • October/November/December 2025

Let’s start by illustrating rules, and we will then get to how to configure jails.

Rules
Related to some examples we gave above for mdo, let’s authorize user unprivileged_

user with UID 10001 to endorse the www user (UID 80) representing a webmaster role:

sysctl security.mac.do.rules=’uid=10001>uid=80,gid=80,+gid=80’

In this example, there is only a single rule. The > token separates both parts of a rule, the
left part being the “from” one, also called “match”, and the right part being the “to” one, also
called “target”. : has been the historical separator token and still works, but we felt that >
makes for more easily readable rules, especially to UNIX-trained eyes that can easily interpret
: as a list separator between similar elements. Because > is a shell special character, you need
to quote it somehow. For simplicity, we advise to always quote the value passed to sysctl(8).
Any amount of spaces can be used between tokens as another slight help to human users,
and this feature also requires shell quoting.

The “from” part (uid=10001 in the above rule) is pretty straightforward and indicates to
match processes whose user ID10 is 10001, thus matching unprivileged_user (and possibly
other users with the same user ID). Note that only numerical IDs are allowed, not user names.
The kernel indeed does not know about user names, which are irrelevant credentials-wise.

The “to” part (uid=80,gid=80,+gid=80) is a bit more involved. It contains three clauses
separated by ,. The uid=80 and gid=80 ones should be pretty straightforward: They allow
switching to www in terms of user and initial (“primary”) group ID. The last clause, +gid=80, is
about supplementary groups, and says that 80 as a supplementary group ID is allowed but
not mandatory. In general, gid preceded by a flag, here +, applies to supplementary groups.
Other possible flags are ! and -, and will be illustrated below.

Such a rule allows, e.g., the example command we saw in the previous section to be exe-
cuted by unprivileged_user:

$ mdo -u www /usr/local/bin/occ

Note that the uid=10001>uid=80,gid=80,+gid=80 rule is quite stringent, and for exam-
ple would not allow mdo -u www to succeed if, e.g., user www was also a member of another
group than www, as mdo -u www would try to install the supplementary groups mandated
by the password11 and group databases, and that other group does not appear in the rule.

It also forbids, e.g., mdo -u www -i, meaning to switch to user www but to keep the
current groups, presumably those associated to unprivileged_user if they were not
changed in the meantime. If an administrator wants this to work, it needs to relax the checks
on groups. Assuming unprivileged_user is only a member of a group with the same
name and GID 10001, they could use:

sysctl security.mac.do.rules='uid=10001>uid=80,gid=80,gid=10001,+gid=80,+gid=10001'

As you can probably infer from this example, specifying multiple target clauses with gid
and +gid means that any of the specified groups can be present in the target credentials12.

In addition to the two last mdo(1) use cases, this last rule also allows unprivileged_
user to become www while endorsing both groups 80 and 10001 at the same time29. If this
is not desired at all, then the following setting could be used instead:

5 of 12

34FreeBSD Journal • October/November/December 2025

sysctl security.mac.do.rules='uid=10001>uid=80,gid=80,+gid=80;uid=10001>uid=80,gid=1
0001,+gid=10001'

This time, there are two rules separated by ;. When there are multiple rules, it is enough
for one of them to validate the transition for it to be possible13. This setting still allows for
mdo -u www and mdo -u www -i to work while ruling out something like mdo -u www
-i -s +www or mdo -u www -g 10001.

If for some reason mdo -u www -i should work also when the current groups do not
reflect what the databases say for user unprivileged_user, you can alternatively use:

sysctl security.mac.do.rules='uid=10001>uid=80,gid=80,+gid=80;uid=10001>uid=80'

The second rule above, uid=10001>uid=80, allows a change of user ID with-
out changing the current groups, so is exactly adapted to the use of -i with mdo(1)
when any set of current groups can be kept. That second rule is in fact a shortcut for
uid=10001>uid=80,gid=.,!gid=., where . stands for the current primary groups2 in
the case of gid, and for the current supplementary groups in the case of !gid, and
more broadly in the case of gid preceded by another flag. Note that this default part,
gid=.,!gid=., is implied only when no target clause has gid as its type (with or without
flags). In particular, the following rule: uid=10001>uid=80,gid=. would prevent any switch
that does not drop all supplementary groups, as no gid clause with flags appear.

An additional gid flag, -, can be used to indicate that a group shall not be part of the
final supplementary groups. You may at first find this strange, as allowed groups have to
be explicit in rules, barring the default explained in the previous paragraph. This is actu-
ally useful in conjunction with . used with +gid or !gid, in order to rule out some of the
current groups. For example, if you want to allow unprivileged_user to switch to user
www but retaining its current groups while ensuring that wheel does not appear in the fi-
nal supplementary groups, instead of the above uid=10001>uid=80, you could use
uid=10001>uid=80,gid=.,+gid=.,
-gid=014.

Finally, in place of user or group IDs in rules,
you can use * or any to mean any possible ID.
For example, if you do want to allow members of
wheel to become root, you could use a rule like
gid=0>uid=0,gid=*,+gid=*, basically saying that
any set of target groups will do. Going even further,
if you do not want to impose switching to root be-
fore becoming another user, you could as well use
gid=0>uid=*,gid=*,+gid=*, which can be abbre-
viated to gid=0>any. Let us remind you that, cur-
rently, mdo(1) is geared to role-based schemes and
consequently, as in any other case, will not ask for a
password to be entered to switch to another user, even if the latter is root.

We have just demonstrated a large practical assortment of possibilities offered by mac_
do(4)’s rules, which as you can see are very flexible and able to express precisely the target
credentials that are to be allowed15. We have tried hard to keep the syntax as easy as possi-
ble to understand with the constraints of an essentially single-line sysctl(8) value, imply-

6 of 12

When there are multiple rules,
it is enough for one of them
to validate the transition
for it to be possible.

35FreeBSD Journal • October/November/December 2025

ing terseness, sufficient expressive power and the kernel dealing only with numerical IDs
and not accessing the password and group databases. Even if you do not immediately grasp
what a particular setting of security.mac.do.rules means, it should not take long before
you do, so do not get overwhelmed by the examples and take some time to study them as
necessary.

An exhaustive and more formal specification of rules can be found in the mac_do(4)
manual page.

Jails
Jails in FreeBSD form a hierarchy16, whose top is the host system17. Each individual jail has

parameters, some of which can only be set at jail creation, and others also while the jail runs,
from outside the jail.

mac_do(4) supports per-jail configuration thanks to the following parameters:
•	mac.do: The per-jail module’s mode.
•	mac.do.rules: The per-jail rules that apply.
Parameter mac.do.rules contains the applicable rules, with exactly the same format as

the security.mac.do.rules sysctl(8) knob we saw in the previous section.
It is usually desirable to control security parameters from outside a jail, and that is actually

the only possibility at jail creation. However, it is also useful to have jails behave as closely as
possible to the host system. Since mac_do(4) is a tool for an administrator to authorize cre-
dentials transitions, an administrator in a jail should also be able to use it.

For this reason, the security.mac.do.rules sysctl(8) knob was made jail-aware,
i.e., it reflects the current jail’s setting and can be set from the jail itself. security.mac.
do.rules inside a jail and the corresponding jail’s mac.do.rules parameter are in fact
the same variable, so their values are always the same. An outside modification of mac.
do.rules is immediately in force inside the jail, and conversely reading the jail parameter re-
veals any inner modification to security.mac.do.rules.

Parameter mac.do indicates how mac_do(4) works in a jail. As typical for the master pa-
rameter of a module supporting jails, it accepts or reports the following values:

•	new: Jail’s configuration is independent from that of the parent jail.
•	inherit: Jail’s configuration is inherited from the parent jail.
•	disable: mac_do(4) is disabled in the jail.
For obvious security reasons, the default value is disable, except if mac.do.rules is ex-

plicitly set.
You may wonder what the exact interactions of this parameter with mac.do.rules

are, as both parameters appear to be somewhat redundant. As said in this section’s intro-
duction, setting rules to an empty string causes mac_do(4) to ignore credentials change re-
quests, and since rules are per-jail, this also works as a per-jail toggle to disable mac_do(4),
similarly to the disable value. Conversely, setting mac.do.rules from outside the jail, or
security.mac.do.rules inside it, always has the effect of establishing per-jail settings,
which conceptually corresponds to new.

We introduced18 the mac.do jail parameter for two reasons. First, most kernel modules
supporting jails provide a single knob to enable or disable its functionality inside a jail, and we
found it good to have one, both for system consistency but also to provide a perhaps more
natural way of disabling mac_do(4) than setting the rules to an empty string. Second, it

7 of 12

36FreeBSD Journal • October/November/December 2025

gives us the opportunity to introduce a new inheritance mode, through the inherit value,
which can be very useful to administrators who want a set of jails to behave the same.

Before examining what inheritance exactly means, let’s first see how mac.do and mac.
do.rules stay consistent. Internally, each jail holds
a kind of flag indicating whether it inherits from its
parent and, if it does not, a copy of the rules setting
(mac.do.rules) and an internal representation for
them, avoiding any information redundancy19. We do
not actually store any value that directly corresponds
to the mac.do parameter. Rather, the latter gets syn-
thesized from the available data when it is read. After
this description, you probably have an idea of how it
goes: If the inheritance flag is set, then reading mac.
do returns inherit, else, if no rules were specified
(empty string), disable, else new. When setting
mac.do explicitly, mac_do(4) checks that its value is
consistent with that of mac.do.rules. If mac.do is set to new, mac.do.rules must be spec-
ified. For the other cases, we apply the robustness principle20, tolerating the presence of
mac.do.rules with an empty string in jail parameters, even if strictly speaking it should be
absent.

When setting mac.do to inherit, mac_do(4) simply uses the configuration that ap-
plies to the parent jail, which itself may come from a jail higher in the tree. The main con-
sequence is that a change of rules in any of the parent jails up to the first that does not in-
herit automatically and immediately does apply in a jail with inherit. This alleviates the
administrator from having to change the configuration of multiple jails in a tree when all of
them are supposed to stay in sync. As already noted, explicitly setting rules on a jail, whether
through mac.do.rules or security.mac.do.rules, establishes independent per-jail set-
tings, effectively breaking inheritance. Re-enabling it later is always possible, by just setting
mac.do to inherit again.

As with any jail parameters, you can use these to easily configure a jail at its creation, ei-
ther directly on jail(8)’s command-line, e.g.:

jail -c name=test_jail path=/ mac.do=inherit

or through jail.conf(5). To modify some parameters as the jail is running, use jail -m
as usual, e.g.:

jail -m name=test_jail mac.do=disable

Boot-up
Since mac_do(4) configuration on the host happens via sysctl(8) knobs that are also

tunables, you can use either of the two different mechanisms that the base system provides
to set them at boot.

As a first possibility, you can tune your loader.conf(5) configuration, by adding a line like:

security.mac.do.rules=’uid=10001>uid=80,gid=80,+gid=80;uid=10001>uid=80’

This is adapted to cases where rules really have to be available very early at boot, or, e.g., if
you are not using the base system’s rc(8) bring-up framework.

8 of 12

We introduce a new
inheritance mode,
which can be very useful
to administrators who
want a set of jails to behave
the same.

37FreeBSD Journal • October/November/December 2025

Else, you can add the exact same line to sysctl.conf(5), and the sysctl(8) knob will
be set accordingly when rc(8) executes21.

We have had some limited feedback that a few people do not find it very practical that
mac_do(4) only deals with numerical IDs and find the sysctl(8) knob syntax quite terse.
These are essentially the consequences of having the transition rules in the kernel, which al-
lows to cope with a strong threat model where some userland parts may have been com-
promised. However, we understand that most people do not require such a level of securi-
ty, and that having userland tools produce final rules from references to the content of the
password and group databases could be useful to them. There has been a proposal in this
direction consisting of a dedicated executable and configuration file for mac_do(8) which
for the moment is stalled as, among others, we have been reflecting on the overall design,
including how to organize executables and possible future configuration files and how to
avoid conflicts. If more people are interested in such functionality, we may make progress
on this front sooner rather than later. See also, in this article’s last section, the short-term
features we plan to add to mdo(1), one of which will bridge an important part of the gap.

Some Notes on mac_do(4)mac_do(4)’s Design
Baptiste Daroussin initially launched the mac_do(4)/mdo(1) project with the goal to en-

able role-based credentials transitions without using “setuid executables”. In high-security,
norm-constrained settings, installing these executables, if at all possible, may be subject to
long and complex security audits, which often need to be renewed as the executables are
upgraded. Thus, mac_do(4) was conceived as a kernel-based alternative that, thanks to the
MAC framework5, can authorize unprivileged processes to successfully change credentials. In
addition to alleviating the need for “setuid executables”, this architecture instantly reduces the
impacts of a successful attack on or a programming bug of credentials-changing programs.

The original implementation of mac_do(4) only monitored the setuid() system call,
authorizing a specific call to it according to rules matching the original user and the target
one. In order to allow mdo(1) to change groups as prescribed by the password and group
database for the target user, mac_do(4) then needed to accept any setgroups() and set-
gid() system calls. In order to avoid arbitrary programs from being able to leverage these
calls independently, mac_do(4) would only authorize credentials transition requests from
processes spawned from the mdo(1) program.

Because allowing any request from setgroups() and setgid() was a serious dent in
reducing the impacts of an attack or a flaw, we modified mac_do(4) to validate the full cre-
dentials transition and its rules to say which groups can appear in the final credentials.

Validating or rejecting the full transition fundamentally requires atomicity, implying chang-
es to the security API from traditional UNIX. A natural approach would be to add to the lat-
ter a transactional mode where successive calls amending credentials would not immediately
apply changes but rather accumulate them for atomic application at final “commit”. This ap-
proach would somehow facilitate amending existing programs as well as possible additions of
credentials’ attributes but was deemed relatively invasive in terms of kernel code and a para-
digm change for the existing system calls’ MAC hooks22. Instead, we settled for the alternative
to have a new, separate system call, setcred(2), that can set all credentials attributes at once.
They are passed via a structure that can be extended or versioned through flags as needed.
New MAC hooks are defined and are passed the current and requested credentials, allowing
mac_do(4) to see the current and desired state at once and make decisions based on them.

9 of 12

38FreeBSD Journal • October/November/December 2025

Even after these changes, we have kept the restriction that mac_do(4) can only autho-
rize processes spawned from the mdo(1) executable, as it may allow implementing addition-
al transition restrictions in mdo(1) proper. A Google Summer of Code 2025 (GSoC 2025)
student, Kushagra Srivastava, was tasked, among others, to bring configurability to this re-
striction, allowing an administrator to specify which executables mac_do(4) can authorize.

Some people may find strange, and even a potential security hazard, that code respon-
sible for checking and deciding on credentials transitions based on rules is moved to the
kernel instead of being executed in userland. While the ability to compromise the kernel
would certainly be even more catastrophic than “setuid executables”, we believe the former
is much less likely to occur than the latter for the fol-
lowing reasons.

First, rules accepted by mac_do(4) are complete-
ly well-defined, self-contained, relatively simple to
parse and hopefully to comprehend.

Second, “setuid executables” performing creden-
tials changes generally involve a lot more compo-
nents than mac_do(4) actually uses. The latter are
essentially some parts of the MAC framework and
the jail and OSD subsystems, which are pervasive-
ly used and tested and do not frequently or deeply
change. The former are the libraries to read the password and group databases, which may
involve network access, the userland configuration parser, and the code establishing all char-
acteristics of the new session, including the credentials, which is sometimes part of a sepa-
rate library, not even mentioning the usual userland support code, such as the dynamic linker.

Third, we have taken special care to design and write mac_do(4) in some of the cleanest
and clearest ways, with special attention to understanding the constraints of the underlying
subsystems and ensuring that the ones we rely on cannot be changed without our noticing
via assertions. The result is that, despite copious testing, we have yet to find a bug in mac_
do(4)’s core functionality (famous last words). Out of the few bug reports we received, only
two turned out to be real problems in scenarios that admittedly were not well-considered
nor tested initially23, which led to performing another audit of the code. Our GSoC student
was also tasked with developing automated tests, which should enter the official tree in the
coming weeks. They will represent additional safeguards and will help maintain code quality
as mac_do(4) and its dependent subsystems evolve.

What Lies Ahead
The essential message here is that, while we have a few simple short-term plans and

more loose longer-term ones, future directions will depend for the most part on current
or potential users’ feedback. We are eager to hear suggestions for small improvements or
entirely new features, whether you are already using mac_do(4)/mdo(1), are planning to, or
would like to but cannot because your use case is not covered by existing functionality. This
will help us select what to work on while keeping the overall design sound. Even just saying
you’re using them is useful feedback, as it is good to know how many users we have and
how they are using these tools.

In the short term, we expect to add auditing-like functionalities to mac_do(4)/mdo(1).
Displaying the final credentials passed to the kernel would help check if the invocation was
correct with respect to the expected goals. Producing the target part of a mac_do(4)’s rule

10 of 12

“Setuid executables”
performing credentials
changes generally involve
a lot more components than
mac_do(4) actually uses.

39FreeBSD Journal • October/November/December 2025

authorizing exactly a specific mdo(1) call could help administrators build mac_do(4)
configurations or better understand why some do not work as expected. Integration to the
audit(4) subsystem would allow tracking credentials changes after the fact. Logging failed
attempts through syslog(3) would match what login(1) and other credentials-chang-
ing program do. mac_do(4) will soon allow configuring the executables whose processes
it will consider, with the aim to support thin-jails scenarios and other userland programs24.
It should also monitor traditional system calls such as setuid(2) in addition to just set-
cred(2), considering each call as a full transition on its own24.

Longer term, we may consider providing su-like and doas-like functionalities, e.g., to ask
for a password or perhaps more generally leveraging
pam(3), establish resource limits and other attributes
as in a full login, or allow only certain commands to
be launched. However, it is not yet clear how these
functionalities could be fit into mdo(1), as it is not a
“setuid executable”, and if different paths should be
pursued instead.

As an example, we have conducted a preliminary
study on how to add support for requesting a pass-
word for certain credentials transitions. As mdo(1)
can be launched by any user, we need a mechanism
to check for a password against a password database which is not directly readable by every-
body25. This situation is comparable to that of programs leveraging CAPSICUM’s capability
mode26 which sometimes need to access data that require more privileges than they direct-
ly keep. That can be resolved by having an unrestricted process perform the necessary ac-
cesses on behalf of the process in capability mode. libcasper(3) is FreeBSD’s implemen-
tation of that idea for a number of services, including cap_pwd(3) to access the password
and group databases. Unfortunately, using libcasper as-is cannot work as cap_enter()
creates and connects to a process launched with the same credentials. mdo(1) is going to
need an outside daemon with privileges to provide the cap_pwd(3) service. We can also
imagine a number of alternative approaches with varying development effort. They include
pushing the password configuration entirely into mac_do(4) as for the rules, or turning
mdo(1) into a “setuid” executable that however relinquishes root rights for most of its oper-
ation and crucially when calling setcred(2), or instead leaving mdo(1) as it is and having a
different “setuid” executable for these needs27. However, all of these alternatives except the
first provide fewer security guarantees than the initial solution, and the first one is less flex-
ible as it does not allow other forms of authentication nor additional transition restrictions
that can be best imposed by userland28.

We hope you will find mac_do(4)/mdo(1) useful! Please share your feedback and more
generally other security needs you would like to see addressed, even if not necessarily di-
rectly connected to the framework presented here.

Footnotes
1.	 In reality, the special user ID 0. The name root resolves to ID 0, as may other names such as toor.
2.	 More precisely, the effective and saved user IDs, and the effective and saved group IDs, respectively. The saved user and

group IDs are officially called the “Saved Set-User-ID” and “Saved Set-Group-ID” in the POSIX specification.
3.	 Other authentication mechanisms can be configured using PAM, see pam(3) for an introduction, pam.conf(5) for con-

figuring particular applications, and pam_unix(8) for the canonical module.

11 of 12

Future directions will depend
for the most part on current or
potential users’ feedback.

40FreeBSD Journal • October/November/December 2025

4.	 As additional arguments to su(1) are passed to the target user’s shell, the program and its arguments have to be passed
through the shell’s -c argument (or equivalent). For sh(1) and descendants, they must be grouped in a single argument
that will be interpreted by the launched shell, sometimes requiring an additional level of quoting.

5.	 Mandatory Access Control. See mac(4).
6.	 The updated mdo(1) described here will normally be shipped with FreeBSD 14.4.
7.	 There may be multiple users mapping to the same numerical ID. doas(1) has the flaw that it will silently consider the

first matching user name. mdo(1) generally follows the conservative approach of not doing non-obvious operations si-
lently, here not trying to use a matching user name, even if there is only one.

8.	 I.e., the real, effective and saved group IDs, by contrast with the supplementary groups.
9.	 To ease scripting, -s is actually compatible with -G and can be used to amend it, so it is in effect processed after -G even

if it appears earlier on the command-line. Currently, though, using both @ and -G is treated as an error (redundant speci-
fication), a limitation which may be lifted in the future.

10.	 The real user ID is matched, as it represents the user’s identity, rather than the effective user ID, preventing by default
another set of rules to apply for “setuid executables”. That said, since unprivileged users are allowed to set the real user
ID to the effective user ID on FreeBSD, this distinction is currently not an absolute restriction.

11.	 Since FreeBSD 15, a user’s initial group from the password database is also installed as a supplementary group, which is
also the case on Linux/glibc, NetBSD, OpenBSD, and illumos. For compatibility with FreeBSD 14.3, we demonstrate the
target clause +gid=80 here, which also works on 15.0, instead of !gid=80, which would allow the transition only on 15.0.

12.	 In more formal parlance, gid and +gid target clauses form a logical disjunction.
13.	 In more formal parlance, rules form a logical disjunction.
14.	 If +gid=. was replaced by !gid=., the rule would allow a transition if and only if the current supplementary groups do not

include 0, and not a transition to all current groups but 0. We may relax this constraint in the future.
15.	 There are some exceptions. We have seen one in the previous footnote. Another one is that, on one hand, the real,

effective, and saved user IDs, and on the other hand, the real, effective, and saved group IDs are treated indifferent-
ly. Treating them separately was deemed to introduce additional complexity for meager benefit since FreeBSD’s se-
tresuid() currently allows an unprivileged process to set any of its user IDs to the value of any other one. We might
want to disallow this behavior in the future.

16.	 Since FreeBSD 8.0.
17.	 Which always has a global jail ID of 0. Jail IDs are global, except that any process sees the ID of its immediately enclosing

jail as 0.
18.	 In an earlier implementation, that parameter was called mdo and was intended to work like described here but did not

due to bugs.
19.	 And thus, consistency issues.
20.	 Also known as Postel’s Law. “Be liberal in what you accept, and conservative in what you send.”
21.	 By the /etc/rc.d/sysctl script.
22.	 Either these hooks’ existing implementations would need to start supporting the transactional mode, or we would by-

pass the hooks entirely, a change deemed too surprising to consumers.
23.	 Namely, using mac_do(4) when running with resource accounting functionality enabled, and running a 32-bit mdo(1) on

a 64-bit architecture.
24.	 Most of the code for this functionality has been written during GSoC 2025 and should be integrated soon.
25.	 In order to avoid leaking password hashes that would allow offline attacks.
26.	 A process mode where most accesses to the global namespaces are restricted, and only existing file descriptors can

be used.
27.	 That could take the form of first importing doas(1) into the base system and then tailoring it to our unique security fea-

tures, although that would be a regression in terms of the granularity of target credentials. Alternatively, we could create
an executable that would share part of its code and command-line interface with mdo(1). Mixing both approaches to get
the best of both worlds could also be viable.

28.	 But it has the benefit of not lessening the currently existing security guarantees, since the password would be checked
by the kernel as well.

29.	 In the different real, effective and saved group IDs.

OLIVIER CERTNER has been continuously using FreeBSD on all his machines and those
of some of the companies he worked with since the end of 2004. During this time, he has
grown a set of private customizations including modifications to rc scripts and some ker-
nel bits. After having worked for over 15 years in the CAD and finance sectors, he lately
switched back to pure IT topics, and in particular operating system development. His main
interests are centered around kernel development, with particular focuses on power man-
agement, security, scheduling, file systems and jails. He’s currently a contractor for the
FreeBSD Foundation.

12 of 12

41FreeBSD Journal • October/November/December 2025

F reeBSD developers and devsummit attendees have likely heard of the newish srcmgr
(“source manager”) team at some point. But seeing as it’s been a year or so since srcmgr
started having regular calls, it seems time to introduce ourselves a bit more widely.

srcmgr is a team of src developers whose goal is to help organize FreeBSD src develop-
ment. For context, FreeBSD’s development model is somewhat unusual among OSS proj-
ects: rather than having an individual or small team of developers who direct the project
and make high-stakes decisions, FreeBSD’s src developers belong to a relatively flat hierar-
chy, subject, of course, to maintainership rules and conventions. Developers are collectively
obliged to help push along src development, be it by finding or fixing bugs, writing docu-
mentation, reviewing code, adding features and tests, etc.

This development model works reasonably well — consider, for instance, that the
FreeBSD project itself is older than some of our developers — but it has shortcomings too.
Individual developers have few formal responsibili-
ties; they are expected to contribute and work with
each other, but there is little formal oversight. This
model works well with small groups of develop-
ers who know and trust each other and can moti-
vate one another; unsurprisingly, this characterized
FreeBSD development during its early days. Over
time, however, challenges arise. Long-time develop-
ers move on, the system grows more complex and
harder to maintain, and the number of new devel-
opers increases, putting strain on experienced men-
tors, who typically have little free time.

Historically, the FreeBSD Core Team provid-
ed fallback support: whenever there was a dispute
or a problem with a neglected part of the tree, they would step in. This worked historical-
ly, as Core was for a long time mainly composed of src developers despite representing all
of FreeBSD. But in the last couple of terms, the ports team has gained more representa-
tion within the Core team. Thus, recent Core teams have had fewer resources to devote to
src-specific issues, and Core’s attention should be focused on the project’s long-term stra-
tegic direction rather than day-to-day matters.

Enter srcmgr. srcmgr was officially announced on the internal FreeBSD developer mail-
ing list on October 8th, 2024, and currently consists of me, Ed Maste, Warner Losh, and John
Baldwin. We also have five “lurkers,” developers who attend srcmgr calls and participate
without formally being srcmgr members; they aim to test the waters and decide whether
they want to commit to becoming official members. At a glance, srcmgr plays the same role
in the src tree as the portmgr and doceng teams do in the ports and doc trees, respectively:
we try to provide oversight and help tackle challenges specific to our area.

Although the idea for a srcmgr team had been floated before, my first exposure came
from conversations with John Baldwin and Ed Maste at BSDCan in 2023. It was recognized
that Core tended to be overburdened and not have the capacity to do proactive work to

BY MARK JOHNSTON

1 of 3

printf(“Hello, srcmgr\n”);

FreeBSD’s src developers
belong to a relatively flat
hierarchy

42FreeBSD Journal • October/November/December 2025

2 of 3

shepherd src development. Meanwhile, I was frustrated by our overall handling of bug re-
ports, new contributors, and code reviews. As an individual developer, it was too much work
to keep on top of everything while also doing regular paid work.

So, what does srcmgr do in practice? Well, our charter gives an outline. We meet every
two weeks for roughly two hours; the first hour is spent reviewing agenda items, discussing
them, and providing status updates. The second hour is typically spent triaging recent src
bug reports and/or GitHub pull requests.

The primary responsibility of the group is to vote on src commit bits: when an src com-
mitter has been working with a contributor and believes that the contributor would make
good use of src commit access themselves, they can send a proposal to srcmgr, who then
votes on whether to grant the commit bit. This process tends to be uncontroversial and
straightforward and consumes little time in practice.

We also spend time on “maintenance” tasks, such as disabling commit bits of inactive de-
velopers, pushing forward the deprecation of obsolete or unmaintained features that con-
sume project resources, and updating developer
policies and — with much help from FreeBSD’s clus-
ter admin team — bits of infrastructure such as git
commit hooks.

Most of our time is spent pushing along various
initiatives, the principal aims being to 1) make expe-
rienced developers more productive, and 2) make
it easier for newcomers to contribute. For the first
goal, we have tried to push the creation of tools to
make FreeBSD development easier. Today, it is far
too difficult for new FreeBSD developers (inter-
ested contributors, GSoC students, employees at
FreeBSD-using companies, etc.) to set up an envi-
ronment where they can quickly and reliably test
changes to the src tree. We have an extensive re-
gression test suite, but actually running it requires a fair bit of setup and is tricky to auto-
mate. Setting up an efficient, interactive compile-edit-test loop is also tricky. Many de-
velopers have custom scripts and workflows to enable this, but that means that many
developers end up reinventing the wheel; moreover, we do not have a good “canned” set-
up that newcomers can quickly adopt and customize. Solving this problem in general is a
challenge, as FreeBSD is a large codebase with many components that require specialized
development approaches. Still, there is a lot of room for improvement.

Following the theme of tooling, we have also been working on scripts to make MFCs eas-
ier and to programmatically catch certain classes of problems, such as missing backports
on stable branches, particularly when commit B fixes a bug in commit A but is missed when
merging commit A. Another area of focus is triaging incoming work for project members:
bug reports, code review requests, and contributor patches. While individual FreeBSD de-
velopers spend a lot of time handling day-to-day requests of this nature, there is little over-
sight that ensures that high-priority issues don’t fall through the cracks. srcmgr is composed
of developers who are familiar with the src tree and can quickly identify who should be
“tagged” on a particular issue to help move it forward.

The primary responsibility
of the group is to vote
on src commit bits

https://www.freebsd.org/srcmgr/charter/
https://bugs.freebsd.org/bugzilla/
https://bugs.freebsd.org/bugzilla/
https://github.com/freebsd/freebsd-src/pulls

43FreeBSD Journal • October/November/December 2025

3 of 3

Finally, one ongoing initiative is the hosting of “bug-busting” sessions, typically on Zoom
or meet.freebsd.org. We announce these sessions in advance on the developer mailing list
and invite folks to join us for roughly 3 hours of triaging and bug work. I typically lead these
sessions by reviewing individual bug reports and looking for opportunities to make quick
progress: assigning them to a subject matter expert, asking follow-up questions of the sub-
mitter, and discussing the problem with others on the call. People are free to participate as
they see fit; some will quietly work on specific bugs in the background while keeping an ear
on the chatter, and others will follow along or triage bugs in parallel.

These sessions (and srcmgr participation in general) do a lot to keep me motivated: re-
al-time interaction with other developers helps keep up engagement for most of us who
work remotely, and being able to make fast, tangible progress on bugs and pull requests
keeps the backlog from feeling overwhelming. It’s much easier to take pride in the project
when we can stay on top of incoming issues and work requests, and this collaboration helps
maintain our sense of shared responsibility.

There is a lot more srcmgr would like to do to help the project, and we have a lot of initia-
tives that we will be pushing along in the coming year, especially as the FreeBSD 15.0 release
date edges closer and we get some time to recharge over the holidays.

If you have any feedback or ideas, please always feel free to email us at: srcmgr@FreeBSD.org.

MARK JOHNSTON is a FreeBSD developer living in Toronto, Ontario, Canada. When not
sitting at a computer, he enjoys playing in a city dodgeball league with friends.

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number
of applications, off ers powerful solutions, and cutting edge
features. The best part? It’s FREE of charge and comes with
full source code.
Did you know that working with a mature, open source
project is an excellent way to gain new skills, network
with other professionals, and diff erentiate yourself in a
competitive job market? Don’t miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

The FreeBSD Project is looking for

• Programmers • Testers

• Researchers • Tech writers

• Anyone who wants to get involved

Find out more by

Checking out our website
freebsd.org/projects/newbies.html

Downloading the Software
freebsd.org/where.html

We’re a welcoming community looking
for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don’t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Help Create the Future.
Join the FreeBSD Project!

mailto:srcmgr@FreeBSD.org
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://www.freebsdfoundation.org

44FreeBSD Journal • October/November/December 2025

T he successful completion of Google Summer of Code (GSoC) 2025 marks FreeBSD’s
21st consecutive year participating in the program. Three factors made this year stand
out. First, we received 64 applications, which is more than double last year’s total and

roughly four times the number received in 2023. AI tools likely contributed to the surge, pro-
ducing some low-quality submissions; however, the overall quality of most applications re-
mained high. Second, we saw a notable increase in interest from South Asia. Given that the
FreeBSD Community Survey results indicate that 85% of respondents were from Europe or
North America, this interest from Asia and other parts of the world is welcome. Third, the
number and quality of accepted projects were encouraging. Out of 1200 total GSoC proj-
ects across 185 participating organizations, FreeBSD’s 12 accepted projects nearly doubled
the average per organization, and unlike last year, all 12 were successfully completed.

Before we discuss individual projects, let’s reflect on why we participate in GSoC. The
program requires significant effort, from organizing the application process and defining
project ideas to mentoring contributors. Is this investment of time and resources, which
could otherwise go toward direct development, worthwhile? From a short-term techni-
cal perspective, it’s debatable; while some projects lead to committed code, many do not.
However, considered from a long-term perspective, the answer is clearer. GSoC is play-
ing an important role in attracting and developing new contributors. Since 2022, five new
FreeBSD committers have come through GSoC, and one 2017 participant went on to serve
on the 12th Core Team.

GSoC 2025 Projects
Sockstat UI Improvements

For those unfamiliar with sockstat(1), it is a command to list open Internet or Unix do-
main sockets. Damin Rido’s goal for this project was to enhance the flexibility of the com-
mand’s output by allowing dynamically sized columns and integrating libxo for structured
output support. All three of Damin’s pull requests linked below were pushed to the src tree.

•	 Add automatic column sizing and remove -w option: freebsd/freebsd-src#1720
•		Reintroduce -w flag to automatically size the columns: freebsd/freebsd-src#1746
•		Add libxo support: freebsd/freebsd-src#1770

vmm(4)vmm(4) Accelerator Support for QEMU
The VMM (Virtual Machine Monitor) module is the kernel component of the bhyve(4)

hypervisor, accessible through vmm(4). Other than bhyve, another widely used machine em-
ulator and virtualizer with official support for FreeBSD is QEMU. However, prior to this proj-
ect, QEMU on FreeBSD could only make use of software emulation (via its Tiny Code Gen-
erator) because it lacked support for hardware-accelerated virtualization. In other words,

BY JOE MINGRONE

1 of 7

FreeBSD and Google
Summer of Code 2025

https://github.com/freebsd/freebsd-src/pull/1720
https://github.com/freebsd/freebsd-src/pull/1746
https://github.com/freebsd/freebsd-src/pull/1770

45FreeBSD Journal • October/November/December 2025

2 of 7

QEMU on FreeBSD could not take advantage of the host CPU’s virtualization extensions to
run guest code directly on the hardware. This limitation resulted in significantly higher CPU
overhead and slower guest performance compared to hardware-assisted virtualization.

The primary objective of Abhinav Chavali’s GSoC 2025 project was to integrate VMM
acceleration support into QEMU on FreeBSD. He accomplished this by modifying QEMU’s
memory management layer to interoperate with VMM’s kernel-allocated guest memory.
He also adapted VMM to make certain non-critical devices such as the HPET and RTC op-
tional, allowing QEMU to emulate them in user space instead. This enables a hybrid inter-
rupt model (with the virtual LAPIC handled in the kernel and the IOAPIC emulated in user
space), which has the potential to deliver perfor-
mance levels comparable to bhyve under FreeBSD.

The latest from from Abhinav is that he was able
to successfully boot FreeBSD 14 under QEMU with
the VMM acceleration. You can view his code here.

Testing and Development for Rust FreeBSD
Device Drivers

Over the past few years, there has been interest
in incorporating Rust in both FreeBSD and Linux de-
velopment. For a sample of some discussions, re-
fer to an RFC for Rust support that was posted to
the Linux Kernel mailing and to discussions on the
FreeBSD hackers list. In both communities, debates
have emerged: some opponents warned of issues
such as “doubling build times”, whereas proponents argued that Rust would make certain
tools easier or even possible to implement. Beyond discussions, tangible progress has been
made. In his Master’s thesis project, Johannes Lundberg created a Rust KPI and network
driver, while David Young created a simple “Hello World” FreeBSD kernel module in Rust
and summarized existing community efforts to adopt Rust.

The Testing and Development for Rust FreeBSD Device Drivers project builds on past ef-
forts to incorporate Rust into FreeBSD development. One of its primary goals was to cre-
ate a testing and continuous-integration framework for Rust kernel modules. Aaron gives
an overview of his Rust echo driver in this video and summarizes the project in this write-up.
His code is available here:

•		https://github.com/Acesp25/rustdrv
•		https://github.com/Acesp25/freebsd-kernel-module-rust
•		https://github.com/Acesp25/RustKLD

Full-Disk Administration Tool for FreeBSD
Prior to this GSoC 2025 project from Braulio Rivas, FreeBSD lacked a user-friendly tool

for full-disk administration, i.e., a utility comparable to Linux’s GParted for partitioning, resiz-
ing, moving, and managing file systems. The goal of this project was to fill that gap by cre-
ating a new partitioning tool called geomman. Upon completion of the project, geomman
supports the following operations:

•		copy and paste partitions on the same disk or across disks
•		grow UFS, NTFS, ext2, ext3 and ext4 filesystems
•		shrink NTFS, ext2, ext3 and ext4 filesystems

The latest from Abhinav is
that he successfully booted
FreeBSD 14 under QEMU
with VMM acceleration.

https://github.com/freebsd/freebsd-src/compare/main...dumrich:freebsd-src:vmm-qemu-mods-16
https://lkml.org/lkml/2021/4/14/1023
https://lists.freebsd.org/archives/freebsd-hackers/2024-January/002823.html
https://lists.freebsd.org/archives/freebsd-hackers/2024-January/002823.html
https://github.com/johalun/rustkpi
https://www.nccgroup.com/research-blog/writing-freebsd-kernel-modules-in-rust/
https://www.youtube.com/watch?v=y82-t1tDLWg
https://gist.github.com/Acesp25/8928e35e710fdce1896b5448fc6327df
https://github.com/Acesp25/rustdrv
https://github.com/Acesp25/freebsd-kernel-module-rust
https://github.com/Acesp25/RustKLD
https://www.freshports.org/sysutils/geomman

46FreeBSD Journal • October/November/December 2025

3 of 7

•		visually select free space to place a partition
•		create exFAT, NTFS, ext2, ext3 and ext4 filesystems
•		check filesystems: fsck_ufs (UFS), fsck_msdos (FAT), fsck.exfat (exFAT), ntfsfix (NTFS),

and e2fsck (ext)
•		create and label a partition
•	 create and encrypt a partition

Remaining work:
•		ZFS support
•		resolve issues when moving a partition
•		test cases

The upstream repository can be found at: https://gitlab.com/brauliorivas/geomman.

Adding QCOW2 Compressed Image Support to mkimg
QCOW2 (QEMU Copy-On-Write version 2) is a widely used disk image format for vir-

tualization, recognized for features such as thin provisioning and built-in compression.
FreeBSD’s mkimg(1) tool can create disk images in a variety of formats, including QCOW2.
Until now, however, mkimg’s QCOW2 support was limited and did not allow for the creation
of compressed QCOW2 images.

This summer, Christos Komis enhanced mkimg by completing these milestones:
•	add support for QCOW2 v2 compressed images
•	add support for QCOW2 v3 compressed and uncompressed images
•	update the user interface to expose the new features
•	extend the test suite to verify correctness
•	update the man pages with the new functionality
•	perform code refactoring to improve readability and maintainability.

The implementation has been thoroughly tested and is ready for commit. Users can now
generate compressed QCOW2 images directly with mkimg, simplifying workflows for virtu-
al machine image generation and reducing reliance on external conversion tools. Check out
Christos’s code at https://github.com/ckkomis/freebsd-src/commits/mkimg/qcow2-com-
pression/.

ACPI Initialization in Loader With Lua Bindings
Kayla Powell’s project extends the ACPICA library’s initialization into the FreeBSD loader,

ensuring the full ACPI namespace is available before the kernel is loaded. The work replaces a
somewhat ad hoc bootloader approach to ACPI by invoking standard ACPICA routines (e.g.,
AcpiInitializeSubsystem, AcpiLoadTables, AcpiWalkNamespace, AcpiEvaluateObject) within
the loader. This gives consistent discovery and interrogation of ACPI objects early in the boot
process. To maintain the loader’s lightweight design, only the necessary ACPICA compo-
nents were ported, omitting many functions unnecessary for initialization or scripting.

On top of the foundational layer, the project introduces Lua bindings that expose the
ACPI namespace and object-evaluation facilities to scripts running under the loader. In oth-
er words, we can now write Lua loader code to walk the ACPI tree, examine device-table en-
tries, and attach or read data from ACPI nodes, before the kernel loads. Along with the im-
plementation, unit and regression tests were included (e.g., comparing namespace dumps
between C and Lua and building the loader across architectures).

Refer to Kayla’s summary of the project on her blog at https://kmpow.com/content/
gsoc-writeup and her pull requests: 1818, 1819, and 1843.

https://gitlab.com/brauliorivas/geomman
https://github.com/ckkomis/freebsd-src/commits/mkimg/qcow2-compression/
https://github.com/ckkomis/freebsd-src/commits/mkimg/qcow2-compression/
https://kmpow.com/content/gsoc-writeup
https://kmpow.com/content/gsoc-writeup
https://github.com/freebsd/freebsd-src/pull/1818
https://github.com/freebsd/freebsd-src/pull/1819
https://github.com/freebsd/freebsd-src/pull/1843

47FreeBSD Journal • October/November/December 2025

mac_do(4)mac_do(4) and mdo(1)mdo(1) Improvements
Kushagra Srivastava’s project aims to enhance FreeBSD’s credential transition infrastruc-

ture by improving both the kernel-side MAC module, mac_do(4), and its companion user-
land tool, mdo(1). Rather than relying on traditional setuid executables (which carry inherent
risks), the goal is to enable controlled, fine-grained credential transitions under the umbrel-
la of FreeBSD’s MAC framework. On the kernel side, mac_do(4) was extended to support
per-jail configuration of authorized executables (so that an admin can specify exactly which
binaries in a given jail are allowed to request credential transitions, instead of being limited
to a hardcoded path). Also, it now intercepts standard credential-changing syscalls such as
setuid(2), setgid(2), setgroups(2), and treats
them as full transition requests that are subject to
the mac_do(4) policy module.

For userland work, the mdo(1) tool was improved
to provide fine-grained credential transition re-
quests. It now supports explicit overrides of user/
group IDs, as well as supplementary groups, via flags
such as -g, -G, and -s. It also includes a --print-
rule option to display the matching mac_do(4) rule
for a requested transition, which helps administra-
tors with rule creation and debugging.

Together, these enhancements make credential
transitioning more flexible, secure, and integrated
with FreeBSD’s jail and MAC frameworks. This re-
duces the need for risky setuid binaries and brings improved auditability and control.

Refer to Kushagra’s project write-up at https://thesynthax.hashnode.dev/my-google-
summer-of-code-journey-part-3 for details.

Speed up the FreeBSD Boot Process
Lahiru Gunathilake’s project is a continuation of past projects to speed up FreeBSD’s

boot time by profiling the boot sequence, identifying bottlenecks, and implementing op-
timizations. Using the built-in TSLOG tracing framework, Lahiru generated flame charts of
the boot path to understand where time was being spent and where unnecessary delays
could be eliminated.

Once the profiling revealed hotspots such as device attach phases, initialization of
large filesystem subsystems (especially ZFS), and sleeps in vfs_mountroot (root filesystem
mount), the work progressed to the implementation phase. This included:

•	reducing a benchmarking buffer size from 16MB to 256KB, cutting startup from 989
ms to 67 ms

•	reducing long wait loops in keyboard and mouse initialization, and introducing the tun-
able hw.atkbd.short_delay

•	eliminated unnecessary waits for USB devices.
Overall, Lahiru reported reductions of 8.2 s in kernel initialization, 3.5 s after the ZFS and

input device optimizations, and 1.9 s when skipping the USB boot wait.

WiFi Management UI
Muhammad Saheed took on a project to develop cohesive CLI (wutil) and TUI (wutui)

utilities for managing WiFi networks on FreeBSD. The aim was to cover “station mode op-

4 of 7

These enhancements make
credential transitioning
more flexible, secure, and
integrated with FreeBSD’s jail
and MAC frameworks.

https://thesynthax.hashnode.dev/my-google-summer-of-code-journey-part-3
https://thesynthax.hashnode.dev/my-google-summer-of-code-journey-part-3

48FreeBSD Journal • October/November/December 2025

erations, such as scanning, connecting/disconnecting from wireless networks,” and to wrap
these into a clearer, more consistent user interface. Other completed work includes:

•	updating related man pages
•	creating a port for wutil
•	adding libwpa_client build option to security/wpa_supplicant port
•	creating a port for libifconfig
•	extracting required ifconfig helpers into libifconfig (D52130, D52131)

Refer to Muhammad’s blog for more information about his work.

Journaling for FreeBSD ExtFS
This project by Pau Sum set out to bring Linux-compatible journaling to FreeBSD’s

ext2fs filesystem implementation. With FreeBSD’s existing ext2fs driver, FreeBSD users
could already mount and use ext2/3/4 filesystems, but the driver lacked journaling support,
meaning unclean shutdowns required lengthy recovery via fsck. Pau’s work introduced
on-disk journal awareness and transaction logging to improve crash recovery and
filesystem integrity, allowing FreeBSD to mount and replay journals on ext3/4 volumes and
interoperate more closely with Linux systems.

Rather than replicating Linux’s full journaling framework, the design implements a tradi-
tional metadata-only journal using the same on-disk structures for compatibility. The new
code defines key data structures, including ext2fs_journal (representing the active journal),
ext2fs_journal_transaction (grouping atomic metadata updates), and ext2fs_journal_buf
(tracking per-block state). Core filesystem operations like ext2_link, ext2_mkdir, and
ext2_write were extended with journal hooks to begin, dirty, and end transactions. Com-
mitting a transaction writes descriptor, metadata, revoke, and commit blocks, followed by
checkpointing to flush updates to disk. Recovery proceeds in three passes: validating trans-
action ranges, collecting revoked blocks, and replaying non-revoked metadata.

By the end of the project, 11 of 12 journal hooks were complete, with work in progress on
truncation and extent-based operations. Planned extensions include journaling support for
extents and truncation, checksum validation for journal integrity, more extensive crash sim-
ulation, and documentation cleanup. The implementation was tested using fsx and dirconc.
Pau’s code is available from his fork of FreeBSD’s src repository.

Power Profiling Tool
The goal of Kasyap Jannabhatla’s project was to provide granular, process-level insights

into power usage on FreeBSD. This addressed the limitations of ACPI’s whole-system power
statistics. Inspired by Performance Co-Pilot (PCP) and RAPL (Running Average Power Lim-
it) support, the project implemented a FreeBSD-native framework rather than porting Li-
nux PowerTop. The solution consisted of a kernel-level component to collect power-related
metrics and a user-space daemon with a command-line interface that provides CPU usage
and energy consumption per process tracking. By combining RAPL readings with per-process
CPU utilization derived from kvm_getprocs, the tool can estimate energy usage for individ-
ual processes and threads, providing a foundation for fine-grained power profiling and fu-
ture enhancements in FreeBSD’s power management ecosystem.

Throughout the development, the project focused on building a lightweight dae-
mon-based architecture, implementing a library (librapl) for structured RAPL data access,
and integrating it with process accounting to calculate per-thread energy consumption.
Testing involved stress benchmarks such as OpenSSL Speed and careful handling of multi-

5 of 7

https://www.freshports.org/net/wutil
https://cgit.freebsd.org/ports/commit/?id=edaddcd1a5bb374e58de0d4f99a7cccf6aed09ec
https://www.freshports.org/net/libifconfig
https://reviews.freebsd.org/D52130
https://reviews.freebsd.org/D52131
https://saheed.tech/writings
https://www.freshports.org/devel/fsx/
https://www.netbsd.org/~riastradh/tmp/dirconc.c
https://github.com/pxsum/freebsd-ext34/tree/extfs-journaling
https://github.com/pxsum/freebsd-ext34/tree/extfs-journaling

49FreeBSD Journal • October/November/December 2025

core runtime accounting using thread IDs. By the end of the project, the framework could
reliably report per-process energy usage over time, and all deliverables, including the dae-
mon, library, and documentation, were completed. The implementation is available here.

Port FreeBSD to QEMU microvm
QEMU microvm is a minimalist virtual machine inspired by Firecracker. While FreeBSD

was ported to Firecracker, that platform is Linux-specific, limiting portability. For this project,
Wyatt Geckle aimed to develop a QEMU microvm version of the FreeBSD kernel inspired
by the Firecracker port. To do this, Wyatt replicated prior porting attempts and analyzed
kernel initialization issues, particularly timer configuration, which caused long boot times. By
studying NetBSD’s working microvm implementation and Intel documentation, the project
identified differences in FreeBSD’s timecounter and APIC initialization.

The current FreeBSD microvm kernel boots under QEMU microvm but does not call
tc_init, which limits the available timers. The Firecracker port remains broken due to MPT-
ables issues, requiring further investigation. Despite
these limitations, the project broadened Wyatt’s
understanding of FreeBSD and NetBSD kernel in-
ternals, virtualization, and microvm platforms, and
produced extensive documentation for building,
running, and debugging FreeBSD in microvms and
Firecracker. The work also provides a foundation for
future contributions to FreeBSD, QEMU microvm,
and Firecracker support, as well as reproducible de-
bugging workflows for other microvm projects.
Those interested in this work can find more informa-
tion on Wyatt’s blog. The code can be found at Wy-
att’s fork of the src tree.

Mentor Summit
Robert Clausecker, a FreeBSD GSoC co-admin-

istrator and mentor, represented FreeBSD at this
year’s Mentor Summit that was held from October 23 to 25 in Munich, Germany. Topics
discussed included AI-generated and spam applications. While no definitive solutions have
emerged, one approach under consideration is to require applicants to meet with potential
mentors before applying. This is something FreeBSD has already encouraged in previous
years to help ensure good matches between mentors, contributors, and projects. Robert
also met with representatives from the Linux Foundation to brainstorm potential collabora-
tion between the Linux and FreeBSD Foundations, such as attracting more students to op-
erating systems development.

Other summit sessions covered funding in open source projects. Robert spoke with a
developer working on RTEMS, a real-time operating system used in various devices and
learned that they incorporate FreeBSD’s network stack in their system. He also met GSoC
organizer Stephanie Taylor and shared the positive impact GSoC has had on FreeBSD. Of
course, he returned with some swag, including a T-shirt and a pair of GSoC(k)s.

6 of 7

It’s gratifying to review
the success of our GSoC 2025
program, but the time
before GSoC 2026 starts
will come quickly.

https://github.com/cheeseburger9309/freebsd-src/tree/gsoc2025-powerprofilingtool
https://www.qemu.org/docs/master/system/i386/microvm.html
https://firecracker-microvm.github.io/
https://wgeckle80.github.io/blog/categories/port-freebsd-to-qemu-microvm/
https://github.com/wgeckle80/freebsd-src/tree/microvm-port
https://github.com/wgeckle80/freebsd-src/tree/microvm-port

50FreeBSD Journal • October/November/December 2025

Final Thoughts
It’s gratifying to review the success of our GSoC 2025 program, but the time before

GSoC 2026 starts will come quickly. As usual, our most significant challenges to repeat-
ing this year’s success will be developing suitable projects, finding dedicated mentors, and
matching applicants to mentors. Fortunately, recent changes to the Google Summer of
Code program should help.

•	Flexible Timelines and Scope: Project timelines are more flexible. Contributors and
mentors can choose from small (90-hour), medium (175-hour), or large (350-hour)
projects, and the total time for the projects can be extended from the standard 8
weeks (small) or 12 weeks (medium and large).

•	Expanded Contributor Pool: The pool of applicants has grown. Contributors do not
have to be university students, so everyone new to open source is eligible to partici-
pate.

But for now, let’s bask in our collective success and acknowledge the considerable effort
that went into this year’s program.

Thank you
Thank you to everyone who contributed project ideas to https://wiki.freebsd.org/Sum-

merOfCodeIdeas and especially to our 2025 mentors:
•	John Baldwin
•	Olivier Certner
•	Robert Clausecker
•	Pedro Giffuni
•	Tom Jones
•	Warner Losh
•	Ed Maste
•	Getz Mikalsen
•	Joe Mingrone
•	Mehdi Mokhtari
•	George Neville-Neil
•	Colin Percival
•	Alfonso Sabato Siciliano
•	Alan Somers
•	Toomas Soome
•	Fedor Uporov
•	Aymeric Wibo

JOE MINGRONE is a FreeBSD ports developer and works for the FreeBSD Foundation. He
lives with his wife and two cats in Dartmouth, Nova Scotia, Canada.

7 of 7

https://wiki.freebsd.org/SummerOfCodeIdeas
https://wiki.freebsd.org/SummerOfCodeIdeas
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

51FreeBSD Journal • October/November/December 2025

A reader wrote to me that he had trouble building U-boot, so I thought I’d walk through
the process since I wanted to bring up a different Zynq board and would have to go
through it anyway. I need to provide a disclaimer: what I’ve written below is accurate,

but these are complex systems, and I could have gotten some details wrong. I’d be grateful to
hear from you if you think I have.

As we’ve discussed before, U-boot is both the second- and third-stage boot loader that
runs and loads the FreeBSD loader, which, in
turn, loads the FreeBSD kernel itself. U-boot is an
open-source community project used on a wide
variety of systems to provide boot services. Doc-
umentation is available through their website: The
U-boot Documentation.

On AMD/Xilinx Zynq chips, the first-stage
boot loader is in BootROM on the Zynq chip it-
self. The Zynq boot process is described in Chap-
ter 6, “Boot and Configuration” of the Zynq 7000
SoC Technical Reference Manual. The short de-
scription is that when powering on the device, it
samples some pins and, depending on their state,
chooses one of several boot methods. This allows
a jumper on the board (JP5 according to Fig. 2.1 of the Zybo Z7 Reference Manual) to se-
lect a boot method, one of which is loading from an SD card. If you select this method, the
BootROM code looks for a file named boot.bin on a FAT16 or FAT32 partition on the SD
card. This is what U-boot calls the secondary program loader or SPL. The Zynq chip contains
a small amount of onboard RAM, thus limiting the size of the program that the BootROM
can load. In non bare metal applications, the SPL must contain enough code to configure
the Zynq chip (PLL’s, memory interfaces, and more) so that it can bring up the memory sys-
tem and load U-boot proper. U-boot proper is a larger version with more features (like file
systems) supported.

We’re quite lucky as the Zybo Z7 is already supported in U-boot. So, we just need to get
the build process to work. U-boot is typically built on a host system for a target system. The
U-boot documentation referenced above suggests that we should set the compiler to be
used for this cross-compiling using an environment variable. We will use the GCC compiler
and GNU tools to do the cross-compiling, so we need to install those packages and set the
cross compiler. U-boot is also built using gmake, not the standard BSD make, so we’ll need
to install that, as well as some other packages:

BY CHRISTOPHER R. BOWMAN

1 of 4

Building U-boot

U-boot is both
the second- and
third-stage boot loader
that runs and loads
the FreeBSD loader.

https://u-boot.org/
https://docs.u-boot.org/en/latest/index.html
https://docs.u-boot.org/en/latest/index.html
https://docs.u-boot.org/en/latest/index.html
https://docs.u-boot.org/en/latest/index.html
https://digilent.com/reference/programmable-logic/zybo-z7/reference-manual?redirect=1
https://u-boot.org/

52FreeBSD Journal • October/November/December 2025

pkg install gmake
pkg install arm-none-eabi-gcc
pkg install bison
pkg install gnutls
pkg install gmake
pkg install pkgconf
pkg install coreutils
pkg install dtc
pkg install gdd

setenv CROSS_COMPILE arm-none-eabi-

Odd that you use arm-none-eabi-, and not arm-none-eabi-gcc, but it’s not a typo.
Next, we need to configure the U-boot source tree for the board we want to target. The

Zybo Z7 board is supported by the xilinx_zynq_virt_defconfig located in the configs
directory. This configuration supports multiple boards, one of which is the Zybo Z7. To con-
figure the source tree, we run:

make xilinx_zynq_virt_defconfig

But we have to be careful that we pull in the GNU make, not the BSD make. To do this,
I’ve created a directory with a symlink named make that points to /usr/local/bin/gmake,
and I’ve set this directory to be first in my path. This seems to work well. From there, we can
just call make and wait (I highly recommend using the -j flag if you have extra cores). Did it
error out for you as it did for me?

I get this output:

make[1]: *** [scripts/Makefile.xpl:257: spl/U-boot-spl-align.bin] Error 1
make: *** [Makefile:2358: spl/U-boot-spl] Error 2
make: *** Deleting file 'spl/U-boot-spl'

The relevant lines from scripts/Makefile.xpl are

$(obj)/$(SPL_BIN)-align.bin: $(obj)/$(SPL_BIN).bin
 @dd if=$< of=$@ conv=block,sync bs=4 2>/dev/null;

If you remove the redirection of output to /dev/null, you’ll see a complaint from dd:

dd: record operations require cbs

Seems FreeBSD’s dd is not command line equivalent with the GNU version. Origi-
nally, I simply used the GNU version of dd by installing the package and then creating
a symlink in my local bin directory, but it turns out you can simply remove “block” from
the dd command.

Also, the V make variable can be set to control the verbosity of build output. If your build
doesn’t work, I highly recommend running again with only one processor and V=1:

make V=1

If everything builds without error, you should have a U-boot.img file and an spl/boot.bin
file. These are U-boot proper and the secondary program loader. Copy these to your SD
card and give it a whirl!

2 of 4

53FreeBSD Journal • October/November/December 2025

Wha, wait, didn’t work? Huh! As I said, this configuration supports multiple boards, and its
default device tree isn’t for the Zybo Z7. Consulting the board-specific documentation ref-
erenced above, we can specify which device tree is the default by setting DEVICE_TREE:

setenv DEVICE_TREE zynq-zybo-z7

This will override the default DTS in the configuration file. Build it again and try it. Wait,
what? Another problem? The kernel loads, but it crashes in probing? Oh right. FreeBSD DTS
requirements are not the same as Linux. The compat strings required to get some hardware
recognized are different, and FreeBSD seems to require some clock-frequency properties,
though I’m not sure the values are used. It might make sense to add compat values to the
FreeBSD drivers that match what Linux expects, but I’m not a committer. I had to add the
following to the DTS file in arch/arm/dts/zynq-zybo-z7.dts:

&sdhci0 {
 compatible = “arasan,sdhci-8.9a”, “xlnx,zy7_sdhci”;
 U-boot,dm-pre-reloc;
 status = “okay”;
};

&devcfg {
compatible = “xlnx,zynq-devcfg-1.0”, “xlnx,zy7_devcfg”;
status = “okay”;
};

&global_timer {clock-frequency = <50000000>;};
&ttc0 {clock-frequency = <50000000>;};
&ttc1 {clock-frequency = <50000000>;};
&scutimer {clock-frequency = <50000000>;};

Now that we’ve learned to build U-boot, let’s see if we can make it a port. There are
a whole bunch of U-boot ports, all of which are built off the U-boot-master port. To use
them, we need to include the master port Makefile. We have to specify the board, the
model, and the config that should be used. We have a few patches for the changes we
made above, and we end up with the following.

MASTERDIR= ${.CURDIR}/../U-boot-master

MODEL= zybo-z7
BOARD_CONFIG= xilinx_zynq_virt_defconfig
FAMILY= zynq_7000

EXTRA_PATCHES= ${.CURDIR}/files

BUILD_DEPENDS+= gdd:sysutils/coreutils

COMMENT= ported by Christopher R. Bowman <my_initials>@ChrisBowman.com

.include “${MASTERDIR}/Makefile”

3 of 4

54FreeBSD Journal • October/November/December 2025

4 of 4

I hope you’ve found these columns useful. I’d appreciate your comments or feedback.
You can contact me at articles@ChrisBowman.com.

CHRISTOPHER R. BOWMAN first used BSD back in 1989 on a VAX 11/785 while work-
ing two floors below ground level at the Johns Hopkins University Applied Physics Lab-
oratory. He later used FreeBSD in the mid 90’s to design his first 2 Micron CMOS chip
at the University of Maryland. He’s been a FreeBSD user ever since and is interested in
hard-ware design and the software that drives it. He has worked in the semiconductor
design automation industry for the last 20 years.

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

mailto:articles@ChrisBowman.com
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
mailto:maurer.jim@gmail.com

BSD Events taking place through March 2026
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

55FreeBSD Journal • October/November/December 2025

Code and Compliance
FOSDEM Edition
January 26, 2026
Brussels, Belgium
https://www.eclipse-foundation.events/event/code-compliance-2026/

Join us in Brussels for the next Code & Compliance gathering. In this open, community-driv-
en event, open source developers, project maintainers, and industry leaders come together
to delve into the EU Cyber Resilience Act, enhance open source compliance practices, and
share practical approaches to improving software security.

FOSDEM 2026
January 31 - February 1, 2026
Brussels, Belgium
https://fosdem.org/2026/

FOSDEM is a two-day event organized by volunteers to promote the widespread use of free
and open source software. Taking place on January 31 & February 2026, FOSDEM offers
open source and free software developers a place to meet, share ideas, and collaborate.
Renowned for being highly developer-oriented, the event brings together some 8000+
developers from all over the world. This year, there will also be a BSD Dev Room and Stand.

SCALE 23X
March 5-8, 2026
Pasadena, CA
https://www.socallinuxexpo.org/scale/23x

SCaLE 23X – the 23rd annual Southern California Linux Expo is the largest community-
run open-source and free software conference in North America. It is held annually in the
greater Los Angeles area. The Foundation will be exhibiting this year.

AsiaBSDCon 2026
March 19-22, 2026
Taipei, Taiwan
https://2026.asiabsdcon.org/

AsiaBSDCon is a conference for users and developers on BSD based systems. It is a technical
conference and aims to collect the best technical papers and presentations available to
ensure that the latest developments in our open-source community are shared with the
widest possible audience.

1 of 1

mailto:freebsd-doc@FreeBSD.org
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://www.freebsd.org/events/events.ics
https://www.eclipse-foundation.events/event/code-compliance-2026/
https://fosdem.org/2026/
https://www.socallinuxexpo.org/scale/23x
https://2026.asiabsdcon.org/

	contents_button 1:
	contents_button 2:
	contents_button 3:
	contents_button 4:

