
34FreeBSD Journal • July/August/September 2025

 Quantum-Safe Website

1 of 9

Some time ago, at my current workplace, it was brought to my attention that traditional
cryptography will no longer be considered secure.

According to various sources, it is estimated that in the next 10 years, the advance-
ments in quantum computing will reach a point where modern-day cryptographic algo-
rithms that we take for granted will be easily broken within seconds. Naturally, I started
researching this topic to find out how bad the situation is and what we can do today to pre-
pare our systems for this scenario. This so-called “Quantum Threat” is generally described
as the point in the future where quantum computers will possess enough processing power
to break traditional encryption in a matter of minutes or even seconds. Sounds bad, right?
Well, it gets even worse. There is a related phenomenon called “Store now - decrypt later”
or “Harvest now - decrypt later,” which basically means that currently secure data transmis-
sions sent over the internet are captured and stored until a sufficiently powerful quantum
computer is widely available for anyone to utilize it to
decrypt the previously captured data.

But what is “currently secure”? In terms of asym-
metric encryption, there are key exchanges, the
most used method of which is RSA using 2048,
3072, or 4096 bits of key length. These key exchang-
es (not limited to only RSA) can be a part of an SSH
session to a remote server, using a TLS-encrypted
website to enter your bank account details, or even
an IKEv2-based IPSec VPN tunnel between two re-
mote locations. All the data sent over these chan-
nels can be intercepted and stored now and decrypted later. But how does one go about
decrypting RSA keys? The answer to that question is Shor’s algorithm, which was invented
by Peter Shor in the 1990s. It was designed to find the factors of a prime number using a
quantum computer. But what does this have to do with key exchange algorithms? Let’s take
RSA, for example. In simple terms, it works by multiplying two big prime numbers to cre-
ate an even bigger number. The two primes are kept secret and are part of the private key
alongside some other numbers. The product of those two primes is part of the public key
with some extra numbers. What makes this vulnerable is the fact that if you manage to find
out the two starting prime numbers, you can use them to compute part of the private key,
which can be used to find the remainder of it. If you have the private key, you can decrypt
what one side sent. Do it again for the other, and you have yourself a fully decrypted cap-
tured information exchange. Of course, it takes a tremendous amount of computing power

It was brought to
my attention that traditional
cryptography will no longer
be considered secure.

BY GERGELY POÓR

	 Implementing
a Quantum-Safe Website
	on FreeBSD

35FreeBSD Journal • July/August/September 2025

2 of 9

because the bigger the public key is, the more number-crunching you must do. Shor’s al-
gorithm provides a method to speed up the process using a quantum computer, which can
calculate all the possible solutions at once.

But how can we defend our systems against this kind of attack? There are three answers:
You can keep using the standard algorithms, but with longer keys. Currently, it is believed

that RSA keys over 4096 bits of key length are considered long enough that they cannot be
cracked soon. If you want to play it safe, use key lengths of 8192 bits or longer.

However, there are other alternative methods to tackle this problem. The second one is
PQC (Post-Quantum Cryptography). Researchers and mathematicians started working on
other algorithms that would be resistant to Shor’s. These were based on so-called mathe-
matical “trapdoor” functions: easy to get from an equation to a result, but (almost) impos-
sible to do in reverse. The United States’ National Institute of Standards and Technology
(NIST) began collecting these algorithms, and nu-
merous cryptography experts and mathematicians
started testing them to find out whether they are
resistant to Shor’s algorithm or not. This was known
as the Post-Quantum Cryptography project. Over
the years, there were several rounds where various
algorithms were eliminated. In 2024, NIST issued
the FIPS 203 standard naming ML-KEM (previously
known as CRYSTALS-Kyber or Kyber) as the primary
standard for general encryption, and in 2025 stated
that HQC will be a backup in case ML-KEM is ever
compromised.

The third option is called QKD, which stands for
Quantum Key Distribution and is based on the ma-
nipulation of photon particles using quantum physics to securely generate keys. This meth-
od is extremely costly as it requires specialized equipment and a pre-existing optical net-
work connection between the two participating sides and has a current limit of around
100km between the endpoints.

The project’s goal
I have a website that I made some time ago using only nginx without any kind of HTML,

CSS, PHP, or whatever. It’s a simple website that returns the IP address of the client (like
icanhazip.com or ifconfig.me). It started out as a hobby project while I was learning about
nginx, but I started to deploy it in larger networks to test if the client was behind NAT or not.
This was a good starting point for my PQC experiment. The requirements were simple: it
must work with a wide range of software (web browsers, command-line tools like fetch(1)
or curl(1)), and having experienced the UNIX philosophy during my years of working with
FreeBSD and Linux I wanted to keep it as simple as possible but stable as well since it could
also run on a cloud VPS at some point in the future. So naturally, I chose FreeBSD as the OS
and nginx as the platform. The only remaining part was the actual PQC implementation.

I did a little research and found a project called oqs-provider by the Open Quantum Safe
project, which is an open-source C library and provider for OpenSSL version 3, implement-
ing ML-KEM among other algorithms. It is available for FreeBSD and for various Linux distri-
butions as well.

But how can we defend
our systems against
this kind of attack?
There are three answers:

https://github.com/open-quantum-safe/oqs-provider

36FreeBSD Journal • July/August/September 2025

3 of 9

How it works
Simply put, it integrates various PQC algorithms for key exchange and signature with

OpenSSL. In terms of key exchanges (alongside others), it supports ML-KEM with several
elliptic curve-based Diffie-Hellman key exchanges like X25519, p384, p521, and SecP384r1.
These can be easily identified based on their names, like X25519MLKEM768, which uses
Curve 25519 with 768-bit long ML-KEM keys. PQC algorithms require TLSv1.3, but for com-
patibility reasons, we will define TLSv1.2 as the minimum version, so legacy systems will still
be able to reach the website. One thing to keep in mind is the “TL;DR fail” error, which can
happen if the client software is not properly set up to support PQC algorithms over TLSv1.3,
resulting in a TLS failure, but this will gradually be a smaller nuisance over time as software
gets updated and rolled out to clients. If you are not concerned with legacy clients or buggy
software and want a 100% quantum-safe website, feel free to disable TLSv1.2 altogether (as
you’ll see in the nginx configuration file later). With the theory part out of the way, let’s get
to the fun stuff: the actual implementation!

Implementation
The oqsprovider requires OpenSSL version 3.2 or

higher. According to their GitHub page, they have
added some extra functionality starting with version
3.4. My FreeBSD installation has OpenSSL version
3.0.16, which doesn’t support oqsprovider.

At the time of this writing, OpenSSL 3.5.0 was re-
leased with native PQC algorithm support, but a note
from pkg(8) indicated that it was in beta stage, not
suitable for production. So, for the rest of the imple-
mentation, I will stick with OpenSSL version 3.4.1.

To start things off, I updated my VM to FreeBSD
14.3-RELEASE. We will have to install a newer version
of OpenSSL as well as nginx, but with the ability to use the newer OpenSSL. To do this as
hassle-free as possible, we will install openssl34 and openssl-oqsprovider via pkg(8), and ng-
inx will be built using the ports system. For this reason, we will need to have the ports tree
present under /usr/ports. I don’t have security/openssl34 present on my system, so I will be
pulling the 2025Q2 branch of the ports tree. I will need that so nginx can be linked against
openssl34. First, I will install git(1), which is the recommended method to install/update the
ports tree as stated by the FreeBSD handbook.

pkg install -y git

Once git(1) is on the system, it can manage the ports tree. However, I installed the ports
tree with the base system some time ago, so I will be removing the current /usr/ports direc-
tory, so when I clone the repository, it will not complain about /usr/ports being already pres-
ent. There are other ways around this, but I like to start things off clean.

rm -rf /usr/ports
git clone --depth 1 https://git.FreeBSD.org/ports.git -b 2025Q2 /usr/ports

Afterwards, we need to install OpenSSL 3.4.1 and oqsprovider.

Simply put, it integrates
various PQC algorithms
for key exchange and
signature with OpenSSL.

https://tldr.fail/

37FreeBSD Journal • July/August/September 2025

pkg install -y openssl34 openssl-oqsprovider

Then, as the installation message suggests, we will need to merge the contents of /usr/
local/openssl/oqsprovider.cnf with /usr/local/openssl/openssl.cnf. Since we just installed the
new version of OpenSSL, after the merge, the contents of /usr/local/openssl/openssl.cnf will
look like this:

…
[provider_sect]
default = default_sect
oqsprovider = oqsprovider_sect
….
[default_sect]
activate = 1

[oqsprovider_sect]
activate = 1
module = /usr/local/lib/ossl-modules/oqsprovider.so
…

Now we will compile nginx.

cd /usr/ports/www/nginx

I will export some environmental variables to make nginx link against the newly installed
OpenSSL 3.4.1

export OPENSSL_BASE=/usr/local
export OPENSSL_LIBS=”-L/usr/local/lib”
export OPENSSL_CFLAGS=”-I/usr/local/include”

Then we will configure nginx to make sure that “HTTP_SSL” is supported (it should be en-
abled by default, but it’s always better to double-check). I will not adjust any other settings.

make config

Now we are ready to start compiling nginx. Set some environmental variables to indicate
the path of the newly installed OpenSSL and hit enter.

make OPENSSLBASE=/usr/local OPENSSLDIR=/usr/local/openssl install clean

While nginx is compiling, go and grab your favorite beverage, work on some tickets, or
show the compilation output to your friends so they can see how cool you are.

After the compilation is done, let’s verify that nginx now links against OpenSSL 3.4.1 that
we installed under /usr/local:

nginx -V 2>&1 | grep -i openssl
built with OpenSSL 3.4.1 11 Feb 2025
ldd /usr/local/sbin/nginx | grep ssl
 libssl.so.16 => /usr/local/lib/libssl.so.16 (0x16a83b849000)

Note: the hex identifier in parentheses may differ.

4 of 9

38FreeBSD Journal • July/August/September 2025

If your output is the same as mine, you have successfully added OpenSSL 3.4 support for
nginx. Next, we will create a configuration file for our website to include PQC. Let’s head to /
usr/local/etc/nginx, where we will first make a backup of the original nginx.conf file:

cd /usr/local/etc/nginx
mv nginx.conf nginx.conf.orig

And now let’s create a new configuration:

vi nginx.conf

Add the following lines to the file:

events{}
http{
 server{
 listen 443 ssl;
 ssl_certificate /usr/local/etc/nginx/server.crt;
 ssl_certificate_key /usr/local/etc/nginx/private.key;
 ssl_protocols TLSv1.2 TLSv1.3; #remove TLSv1.2 if you don’t need backwards
compatibility
 ssl_prefer_server_ciphers off;
 ssl_ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECD-
HE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305-
:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:D-
HE-RSA-CHACHA20-POLY1305; #if using pure TLSv1.3 you can remove this line according to
Mozilla’s SSL Configuration Generator’s “modern” settings
 ssl_ecdh_curve X25519MLKEM768:X25519:prime256v1:secp384r1; #this is the PQC
part, the others are for non-pqc compatibility only.
 location /{
 return 200 “$remote_addr\n”;
 }
 }
 server{
 listen 80;
 location /{
 return 301 https://$host$request_uri;
 }
 }
}

This configuration will do the following:
•	listen on ports 80 and 443
•	redirect plaintext HTTP requests to HTTPS
•	utilize TLS1.3 and TLS1.2 for compatibility
•	use balanced ciphers for the widest compatibility while still providing decent security. I

got the cipher and curve list from the Mozilla SSL Configuration Generator.
Next, for this demo, I will create a self-signed certificate, but for production use (and for

compatibility reasons), you should acquire a valid certificate that is signed by a trusted CA.
You can use Let’s Encrypt certificates and automate the certificate renewal with certbot(1).

5 of 9

39FreeBSD Journal • July/August/September 2025

For that, you can simply run:

pkg install -y py311-certbot

After that, follow the walkthrough found at Certbot’s instructions.
To create the self-signed certificates, you can use this one-liner (remember to change the

DNS and IP fields to match your setup):

openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
 -keyout private.key -out server.crt \
 -subj “/CN=quantum” \
 -addext “subjectAltName=DNS:quantum,IP:192.168.2.40”

It will use a 2048-bit long RSA key, but you might want to bump this all the way to 8192
(remember keys over 4K are considered quantum-safe for now), but keep in mind that could
break compatibility with some older systems, and will be valid for 1 year, which is more than
enough for this testing purpose. (Here, the phrase ”Nothing is more permanent than a tem-
porary workaround” comes to my mind). It also includes the IP address and the hostname of
my FreeBSD VM. If this were not the case, some software (like PowerShell) would complain
that it cannot trust the certificate and would not be able to initiate/complete the TLS ses-
sion with the website.

Once the certificate and its private key are both ready, you can start nginx, but first, we
need to tell /etc/rc.conf that we would like to start it at boot time.

sysrc nginx_enable=YES
service nginx start

It will verify the syntax of the nginx.conf and test our configuration briefly before starting
it. If everything is fine, you should see this:

Performing sanity check on nginx configuration:
nginx: the configuration file /usr/local/etc/nginx/nginx.conf syntax is ok
nginx: configuration file /usr/local/etc/nginx/nginx.conf test is successful
Starting nginx.

Testing
Now that we have a website up and running, let’s check if it works. For the tests, I will use

several methods: a web browser and various command-line clients, like curl(1). I have curl in-
stalled already, but if that is not the case for you, install it with pkg:

pkg install -y curl

You can check the website with curl (keep in mind the self-signed certificate — hence
we’ll use the --insecure flag).

curl --insecure https://127.0.0.1

It will return 127.0.0.1 and a newline character. To get a bit more info, you can throw in a -v
flag to make the output verbose.

curl --insecure -v https://127.0.0.1

6 of 9

40FreeBSD Journal • July/August/September 2025

In my case, since curl links against the default OpenSSL version, it doesn’t support PQC
algorithms, so it falls back to X25519:

…
* SSL connection using TLSv1.3 / TLS_AES_256_GCM_SHA384 / X25519 / RSASSA-PSS
…

You can also verify the redirect with this command:

curl --insecure -vL http://127.0.0.1

If you see this, it worked:

…
* Request completely sent off
< HTTP/1.1 301 Moved Permanently
….
* Clear auth, redirects to port from 80 to 443
…

For Microsoft Windows-based hosts, if you are using a self-signed certificate, you’ll need
to import that (in our case, it’s server.crt) to the “Trusted Root Certification Authorities”
store and run the following PowerShell command:

(Invoke-WebRequest https://192.168.2.40).Content

Or if you want a bit more verbosity:

	Invoke-WebRequest https://192.168.2.40

Using curl also works, but it’s just a frontend to the Invoke-WebRequest and doesn’t have
the same flags as the FreeBSD or Linux versions.

To test compatibility with other hardware, I have logged on to my MikroTik router and
called the URL from the command line:

/tool fetch url=”https://192.168.2.40” output=user check-certificate=no
 status: finished
 downloaded: 0KiB
 total: 0KiB
 duration: 1s
 data: 192.168.2.1n

Note the “n” at the end. If you want to get rid of it, change the following line in /usr/local/
etc/nginx/nginx.conf:

	return 200 “$remote_addr\n”;

to this:

	return 200 “$remote_addr”;

This will not return a newline character if called from a tool like curl. Decide which version
you want. If you plan to use this IP address in scripts, get rid of the “\n”. For me, it is currently
just for debugging, so I’ll leave it as-is.

In the case of web browsers, you might need to enable some features in certain versions

7 of 9

41FreeBSD Journal • July/August/September 2025

if you wish to have PQC support. I am testing on Firefox version 139.0.4, which has PQC sup-
port enabled since version 132. In the case of Chrome, it has PQC support since version 124,
but in some cases, you’ll need to enable it by hand:

chrome://flags/#enable-tls13-kyber

You can check if Firefox supports it by going to about:config and looking for this:

security.tls.enable_kyber

Next, open the developer tools by pressing F12 and navigate to ”network” if using Firefox
or ”Privacy and security” in case of Chrome. Then input the IP address of your FreeBSD in-
stallation and press enter. You should see only an IP address on screen (that’s where the re-
quest originated from). In the developer tools, click on the entry that has your FreeBSD’s IP
address, and if using Firefox, also click on the ”Security” tab on the right side.

If your browser supports PQC, you should see that the key exchange uses either
mlkem768x25519 on Firefox or X25519MLKEM768 on Chrome.

If that’s the case, then congratulations! You have successfully deployed a PQC-secured
website with legacy support on FreeBSD. Welcome to the future!

Conclusion
While it is not so difficult to add PQC support for a TLS key exchange, the overall pro-

cess does include several extra — but needed — steps. One key concern is that you must
compile nginx from source to use the newer OpenSSL version. This means that every time a
security patch comes out, you will have to recompile it, which takes more time than simply
applying the hotfix with either freebsd-update(8) or pkg(8). However, OpenSSL 3.5.0, which
adds native support for various PQC algorithms, was recently released, and being a long-
term stable (LTS) release, it will be supported until 2030 according to their website. With
the ever-present quantum threat and the sudden rush to implement PQC as soon as pos-
sible, I would welcome it if this version were integrated into the FreeBSD base. That would
eliminate most of the steps to get PQC working with nginx (and possibly other software).
I also know, however, that stability is a major concern for FreeBSD, and until OpenSSL 3.5
has been thoroughly tested and vetted for bugs, we will probably find an older version of
OpenSSL in the base install. This website was only a small example of quantum-safe encryp-
tion, but it is not hard to imagine additional software benefiting from PQC. Let’s say bank-
ing, healthcare, or governmental sites started rolling out ML-KEM. It would be almost im-
possible to decrypt communications between the servers and the clients, so bank account

8 of 9

details, patient information, and personally identifiable information would be safe in transit
against future quantum computers. It is not going to happen anytime soon, but as more
people encounter the term “quantum-threat”, the more awareness is raised and the closer
we all get to a world where post-quantum cryptography is part of our everyday lives.

GERGELY POÓR is a Linux/BSD System and Network Engineer, an Electrician, and a
FreeBSD enthusiast who has been working in IT since he graduated from high school
in 2018. Having experience ranging from SMB desktop support to enterprise-level hy-
brid-cloud and industrial/IoT systems, he is always keen on learning something new. He lives
in Budapest, Hungary, with his beloved wife Kriszti and likes to program in sh/bash and de-
velop his own smart home system in his free time.

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

42FreeBSD Journal • July/August/September 2025

9 of 9

