
43FreeBSD Journal • July/August/September 2025

T his is the second article in a series on hacking on WiFi in FreeBSD. In the first article,
we introduced some terminology around WiFi/80211 networks, gave a crash course in
a typical network architecture, and presented examples of using ifconfig and some

wireless adapters to create station, host ap, and monitor mode WLAN interfaces. We also
introduced the two distinct kernel layers that implement the WiFi subsystem — drivers and
net80211.

Drivers Things like iwx, rtwn, and ath, which speak to wireless adapters over a physical bus
such as USB or PCIe, usually via a firmware interface.

net80211 The abstract state machines required to join networks, send packets, and per-
form other complex operations are common across many drivers.

To enable flexibility in what hardware is required to
provide, the net80211 layer can implement most parts
of the IEEE 802.11 state machine itself. This architec-
ture allows us to have a standard interface to integrate
with the rest of the networking stack, abstracting away
the specifics of what a card can support. It also enables
purely software-based WLAN adapters, which can be
very useful for creating test environments.

Network Adaptors can provide various levels of sup-
port from a FullMAC interface, where almost all of the
processing is handled on the card directly to devices
where all most all support is handled by the net80211
stack and the card just manages the radios. In a Full-
MAC card, the firmware exposes a configuration in-
terface for the OS driver to use. All packet transmis-
sion, reception, and management operations, such as
moving channel or scanning, are handled by the card’s
firmware. The bwfm Broadcom driver in OpenBSD and NetBSD is an example of a Full-
MAC driver.

Other cards need the net80211 stack to provide a variety of services to support the driv-
er’s operations. Some devices, like iwx, provide an interface to management operations
such as scanning and joining networks, but most other operations are handled by net80211.

Older drivers have to implement more of the net80211 state machine themselves rather
than reproducing a lot of very similar code.

BY TOM JONES

1 of 9

Network Adaptors can
provide various levels
of support from a FullMAC
interface.

FreeBSD WiFi Development
Part 2: Working on a Driver

https://freebsdfoundation.org/our-work/journal/browser-based-edition/networking-3/freebsd-wifi-development/

44FreeBSD Journal • July/August/September 2025

All WiFi drivers exist at some point on this scale, ranging from firmware handling almost
all the work to the OS managing most of the radio and transmission. The best way to see
how this works practically is to look at a driver.

Let’s start by looking at how a driver attaches and appears in the net.wlan.devices list,
and then we will look into how a packet leaves the net80211 stack and heads toward the
WiFi radio.

In this article, we will primarily focus on the if_iwx
driver for a couple of reasons: I am very familiar with
it, having brought the driver into the tree from the Fu-
ture Crew source release, and as a new driver, there is
still a lot to do in terms of low-hanging fruit.

Connecting a driver to hardware
The life cycle of a driver is usually:
•	 probe
•	 attach <do some work>
•	 detach
Many drivers only ever detach when the machine is

turned off. The probe and attach phases are where we
need to start to add support for new hardware to an
existing driver or when adding a new driver.

When a device is discovered by a bus, the bus will
ask each registered driver if it can work with that hardware. Once all drivers have been que-
ried, the bus will, in probe response order, ask the driver if it can attach to the device. The
first device to attach wins.

At some point in the future, the driver will have to stop playing and go home. This can
happen due to a bus error, if a device is removed, such as a USB, or if the system shuts down
or restarts.

For each of these phases, a callback is registered with the bus. As an example here is the
pci_methods struct from if_iwx.c

static device_method_t iwx_pci_methods[] = {
 /* Device interface */
 DEVMETHOD(device_probe, iwx_probe),
 DEVMETHOD(device_attach, iwx_attach),
 DEVMETHOD(device_detach, iwx_detach),
 DEVMETHOD(device_suspend, iwx_suspend),
 DEVMETHOD(device_resume, iwx_resume),

 DEVMETHOD_END
};

if_iwx registers probe, attach, and detach methods, and suspend and resume methods.
All of which are called when needed.

Probe
WiFi devices are typically made from a chipset and some supporting hardware. The

chipset is made by a company such as Realtek or Intel, but the actual device is manufac-

2 of 9

All WiFi drivers exist at
some point on this scale,
ranging from firmware
handling almost all the
work to the OS managing
most of the radio and
transmission.

45FreeBSD Journal • July/August/September 2025

tured around the chipset by another company. This arrangement means we get rtwn-based
devices made by a company such as TP-Link. The company building a device around the
chipset provides drivers and configuration data, resulting in a larger number of device IDs
being supported by a smaller number of drivers.

This means that a very common first patch for a new FreeBSD contributor is to add a de-
vice ID for something not yet covered (my first patch was a flash chip ID in a MIPS router!).

Your first change in FreeBSD WiFi could be straightforward, buy a device you think
should work and test it (follow the instructions from the first article in this series).

If no driver probes for the hardware, you can list out the USB or PCIe device IDs and use
those to determine from other platforms which driver should support them.

Two recent changes I committed to FreeBSD for an external contributor were just this,
adding device IDs for hardware supported by if_run and if_rum. The driver part for the
run change was:

diff --git a/sys/dev/usb/wlan/if_run.c b/sys/dev/usb/wlan/if_run.c
index 00e005fd7d4d..97c790dd5b81 100644
--- a/sys/dev/usb/wlan/if_run.c
+++ b/sys/dev/usb/wlan/if_run.c
@@ -324,6 +324,7 @@ static const STRUCT_USB_HOST_ID run_devs[] = {
 RUN_DEV(SITECOMEU, RT2870_3),
 RUN_DEV(SITECOMEU, RT2870_4),
 RUN_DEV(SITECOMEU, RT3070),
+ RUN_DEV(SITECOMEU, RT3070_1),
 RUN_DEV(SITECOMEU, RT3070_2),
 RUN_DEV(SITECOMEU, RT3070_3),
 RUN_DEV(SITECOMEU, RT3070_4),

Your first FreeBSD change could be as simple as adding a single line to the device IDs for
a device. Once you have that, you need to add an entry to the relevant driver, test it, email
me thj@freebsd.org a diff, and I will commit it.

Attaching to net80211
The state required for a WiFi driver is stored in an ieee80211com variable (usually called

the ic) on the driver’s softc.
A driver uses the IC to set flags for capabilities and override function pointers to hook or

replace default functionality provided by the net80211 stack.
In the previous article in this series, I showed you how to create virtual WLAN interfaces

(VAPs) on top of a driver using the ifconfig command. VAPs allow us to have multiple in-
terfaces on top of a single card operating in different modes, sta, host ap, monitor, etc. The
driver manages the availability of each of these modes using the ic_caps bit field.

The values in this field are set as part of the driver attach process. Here is an example
from the iwx_attach function from the if_iwx driver:

...
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(sc->sc_dev);
ic->ic_phytype = IEEE80211_T_OFDM;	 /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA;	 /* default to BSS mode */

3 of 9

mailto:thj@freebsd.org

46FreeBSD Journal • July/August/September 2025

/* Set device capabilities. */
ic->ic_caps =
 IEEE80211_C_STA |
 IEEE80211_C_MONITOR |
 IEEE80211_C_WPA |		 /* WPA/RSN */
 IEEE80211_C_WME |
 IEEE80211_C_PMGT |
 IEEE80211_C_SHSLOT |	 /* short slot time supported */
 IEEE80211_C_SHPREAMBLE |	 /* short preamble supported */
 IEEE80211_C_BGSCAN		 /* capable of bg scanning */
...

attach from if_iwx
This snippet of code resides near the end of the attach method in if_iwx. The preceding

attach code performs driver housekeeping state with independent tasks, discovering which
PCIe device this is, and determining the exact Intel Wireless model of the card.

if_iwx supports the station mode (IEEE80211_C_STA) and monitor modes
(IEEE80211_C_MONITOR); if the driver supported hosts AP mode (as rtwn does), it would
have the additional IEEE80211_C_HOSTAP flag in its capability bit mask.

Beyond modes iwx supports: WPA encryption (IEEE80211_C_WPA), multimedia exten-
sions for differential service (IEEE80211_C_WME), power management (IEEE80211_C_PMGT),
short time slots (IEEE80211_C_SHSLOT), preambles (IEEE80211_C_SHPREAMBLE), and back-
ground scanning (IEEE80211_C_BGSCAN).

The complete list of capabilities lives in the ieee80211.h header files. The capabilities a
driver can advertise depend on both hardware features and support in the driver. While a
driver is in development, it might not yet implement features such as WPA offload, so just
because a flag is missing in a driver, it doesn’t mean the hardware feature is unavailable.

The second task performed by the driver attachment phase is to take over or implement
net80211 functions, which is done through the iwx_attach_hook configuration callback.
Here, the driver overrides function pointers for a lot of the features advertised by the `ic_
caps̀ bit field.

First, if_iwx creates the channel map. For this card, the driver must ask the card’s firm-
ware to provide a set of supported channels.

iwx_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
 ic->ic_channels);

ieee80211_ifattach(ic);
ic->ic_vap_create = iwx_vap_create;
ic->ic_vap_delete = iwx_vap_delete;
ic->ic_raw_xmit = iwx_raw_xmit;
ic->ic_node_alloc = iwx_node_alloc;
ic->ic_scan_start = iwx_scan_start;
ic->ic_scan_end = iwx_scan_end;
ic->ic_update_mcast = iwx_update_mcast;

4 of 9

https://cgit.freebsd.org/src/tree/sys/dev/iwx/if_iwx.c#n10127

47FreeBSD Journal • July/August/September 2025

ic->ic_getradiocaps = iwx_init_channel_map;

ic->ic_set_channel = iwx_set_channel;
ic->ic_scan_curchan = iwx_scan_curchan;
ic->ic_scan_mindwell = iwx_scan_mindwell;
ic->ic_wme.wme_update = iwx_wme_update;
ic->ic_parent = iwx_parent;
ic->ic_transmit = iwx_transmit;

sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
ic->ic_ampdu_rx_start = iwx_ampdu_rx_start;
sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
ic->ic_ampdu_rx_stop = iwx_ampdu_rx_stop;

sc->sc_addba_request = ic->ic_addba_request;
ic->ic_addba_request = iwx_addba_request;
sc->sc_addba_response = ic->ic_addba_response;
ic->ic_addba_response = iwx_addba_response;

iwx_radiotap_attach(sc);
ieee80211_announce(ic);

Then the driver either replaces or intercepts calls that net80211 will make using the de-
vice’s IC. Implementations are provided for ic_vap_create and ic_raw_xmit, but other
calls, such as sc_ampdu_rx_start and stop, are intercepted.

Finally, the driver attaches to the radiotap subsystems, which allows raw packets to be fed
to BPF and then announces the existence of the driver to the net80211 system.

The two ieee80211_ calls in the attach methods are examples of our interface to the
net80211 system. The first call attaches our driver to the net80211 subsystem (it is here that
we get added to the list behind the net.wlan.devices sysctl). This makes the driver avail-
able for ifconfig to use.

The second call (ieee80211_announce) handles declaring that the device has been creat-
ed; this is where we print the channel and feature support for the card.

Once the driver has attached to the net80211 subsystem, it will idle until external events
cause it to move into an operating state. The next part of operating is handled by net80211,
and it calls out to the hooked methods we overrode in the attach_hook callback.

Implementing station mode
In the first article, we created a station mode VAP for our first example. The command

we ran was:

ifconfig wlan create wlandev iwx0

The wlan argument lets the system allocate a device number for us, and the iwx0 tells
the net80211 subsystem to use the device called iwx0 to create this VAP.

This command is translated by ifconfig via a library to a net80211_ioctl call. The final
result is net802211 calling the ic->ic_vap_create callback on our drivers ic. From above,
you know that this is mapped to iwx_vap_create.

5 of 9

48FreeBSD Journal • July/August/September 2025

struct ieee80211vap *
iwx_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
 enum ieee80211_opmode opmode, int flags,
 const uint8_t bssid[IEEE80211_ADDR_LEN],
 const uint8_t mac[IEEE80211_ADDR_LEN])
{
 struct iwx_vap *ivp;
 struct ieee80211vap *vap;
 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
 return NULL;
 ivp = malloc(sizeof(struct iwx_vap), M_80211_VAP, M_WAITOK | M_ZERO);
 vap = &ivp->iv_vap;
 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
 vap->iv_bmissthreshold = 10; /* override default */
 /* Override with driver methods. */
 ivp->iv_newstate = vap->iv_newstate;
 vap->iv_newstate = iwx_newstate;

 ivp->id = IWX_DEFAULT_MACID;
 ivp->color = IWX_DEFAULT_COLOR;

 ivp->have_wme = TRUE;
 ivp->ps_disabled = FALSE;

 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4;

 /* h/w crypto support */
 vap->iv_key_alloc = iwx_key_alloc;
 vap->iv_key_delete = iwx_key_delete;
 vap->iv_key_set = iwx_key_set;
 vap->iv_key_update_begin = iwx_key_update_begin;
 vap->iv_key_update_end = iwx_key_update_end;

 ieee80211_ratectl_init(vap);
 /* Complete setup. */
 ieee80211_vap_attach(vap, ieee80211_media_change,
 ieee80211_media_status, mac);
 ic->ic_opmode = opmode;

 return vap;
}

The iwx_vap_create performs some housekeeping to manage memory and establish-
es callbacks to be used by the net80211 system. For iwx, it establishes per-driver state (the
IWX_DEFAULT_MACID and IWX_DEFAULT_COLOR values), which is used to coordinate with
firmware about which station we use as a default.

6 of 9

49FreeBSD Journal • July/August/September 2025

For some functions that iwx_vap_create hooks into, we retain the default method and
intercept calls to it. For instance, we override the iv_newstate callback and filter it through
iwx_newstate.

The firmware for iwx manages a lot of state itself; one example is probing, where the
hardware can be asked to send probes for networks across supported channels, and we ar-
en’t able to send these packets directly ourselves.

The iwx driver must hook the newstate methods to make requests to the firmware, up-
dating its state machine. In this way, the net80211 and firmware state machines are kept in
sync with host-level changes.

Sending packets
We have now covered enough of the driver that we can bring it up with ifconfig and

ask the operating system to start sending packets.
When we are testing an interface, we might go through the following flow using ifconfig:

ifconfig wlan0 ssid open-network up

These commands instruct ifconfig to bring up the interface and request that the
net80211 stack join the open WiFi network open-network. It sets an address for the inter-
face, but this doesn’t lead to any packets on the wire (well, air).

Let’s see what driver methods this series of commands translates into.
In our attach hook, we established two callbacks for the net80211 layer to use when it

needs to send a packet: ic_transmit and ic_raw_transmit, and one to control the state
of the interface (ic_parent).

ic->ic_raw_xmit = iwx_raw_xmit;
...
ic->ic_parent = iwx_parent;
ic->ic_transmit = iwx_transmit;

The up part of the ifconfig command eventually calls the ic_parent callback. For iwx,
this is iwx_parent:

static void
iwx_parent(struct ieee80211com *ic)
{
 struct iwx_softc *sc = ic->ic_softc;
 IWX_LOCK(sc);

 if (sc->sc_flags & IWX_FLAG_HW_INITED) {
 iwx_stop(sc);
 sc->sc_flags &= ~IWX_FLAG_HW_INITED;
 } else {
 iwx_init(sc);
 ieee80211_start_all(ic);
 }
 IWX_UNLOCK(sc);
}

7 of 9

50FreeBSD Journal • July/August/September 2025

iwx_parent directly controls the hardware, calling a function to tear down all hardware
state if we are running iwx_stop, or if we aren’t running yet, asking the hardware to be ini-
tially configured with iwx_init. Once the hardware is ready, we then notify the net80211
stack that we are prepared to start with ieee80211_start_all.

The seemingly simple ifconfig action up results in a lot of hardware state being mod-
ified with the iwx driver. This contributes partially to “bringing the interface up and down”
being a suggested magic fix to resolve network inconsistencies.

The second part of the ifconfig command results in the net80211 stack taking quite a
few steps. By passing ssid open-network to ifconfig, we are asking the net80211 subsys-
tem to discover and join a network called open-network.

The IEEE 802.11 process to join a network is made up of several steps:
•	probe for a network
•	authenticate to the network
•	associate with the network
Each of these steps requires a device to send man-

agement frames. First, we need to discover the net-
work we want to join; networks regularly beacon their
presence (this is what fills the network list in your menu
bar). This gives the operating system a list of networks
to try. When a device wants to join a network, it sends
out a probe request for the target network and waits
for a probe response. This process facilitates the trans-
fer of configuration parameters between the network
and the host, indicating to the host that the network is
truly available.

The next step involves authentication to the net-
work, followed by association. At this point, we move
into the RUN state and can start using the wireless in-
terface like any other network device.

As the stack moves between each state, it triggers a
call to the iv_newstate function, which for iwx is first
intercepted by iwx_newstate. This allows the driver to control the sending of packets for
state transitions. We need this in iwx because some of these transitions are handled by the
device firmware rather than through direct packet transmission.

Rather than sending out probe requests directly, there is a firmware interface to trigger
a scan of available networks. Once we have discovered the network and want to join it, we
send a message to the firmware to add a station rather than sending out packets from the
net80211 stack.

Not all management frames are sent by the firmware via an abstraction, and in those
cases, the iwx_raw_xmit callback is used by the system. If you are debugging a driver and
wondering why the transmit path isn’t always hit, it could be management frames exiting
the raw path.

Conclusion
In this article, we have looked at how a driver probes, attaches, and sends some first

packets. By using an existing driver, we can cover a lot of ground in the driver quite quickly.

8 of 9

By passing ssid
open-network to ifconfig,
we are asking the net80211
subsystem to discover
and join a network called
open-network.

51FreeBSD Journal • July/August/September 2025

However, if you read through, you will see that if_iwx.c is a whopping 10,000 lines of code.
That is more than we can address here.

This article, which has started to dig into hacking, has also glossed over many details. To
join a network, we need to be able to both send and receive packets from the network in-
terface.

If we don’t get any packets, can we debug? What is offered by the system?
In Part 3 of the series, we will cover the built-in debugging features of the net80211 stack

and how they hook into a driver for developer, testing, and troubleshooting.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

9 of 9

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number
of applications, off ers powerful solutions, and cutting edge
features. The best part? It’s FREE of charge and comes with
full source code.
Did you know that working with a mature, open source
project is an excellent way to gain new skills, network
with other professionals, and diff erentiate yourself in a
competitive job market? Don’t miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

The FreeBSD Project is looking for

• Programmers • Testers

• Researchers • Tech writers

• Anyone who wants to get involved

Find out more by

Checking out our website
freebsd.org/projects/newbies.html

Downloading the Software
freebsd.org/where.html

We’re a welcoming community looking
for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don’t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Help Create the Future.
Join the FreeBSD Project!

