
53FreeBSD Journal • July/August/September 2025

We’ve covered quite a lot of ground over the last year. While I hazard to guess that
most people run FreeBSD on conventional AMD64-based PCs, we examined one of
the embedded boards that FreeBSD works on: the Digilent Arty Z7-20. While not in-

expensive, the Arty Z7 provides an FPGA fabric connected to the CPUs, which differentiates it
from less expensive boards like the Raspberry PI or
Beagle Boards.

We began by discussing how to obtain a pre-
built image for the board and how to communi-
cate with it over a serial port. In the following ar-
ticle, we discuss rolling our own images and how
to use the FreeBSD cross build infrastructure for
the ARMv7 system on the Arty board. This vast-
ly speeds development time. We also discussed
how to customize the FreeBSD build and then
load it onto an SD card, allowing us to create our
own custom images.

Having learned to build and customize our
own images, we learned how to set up a bhyve instance to run the AMD/Xilinx FPGA soft-
ware so that we could experiment with FPGA fabric circuits.

Once we had a Linux instance running, we looked at the basic process for building circuits
and getting them into the FPGA fabric. There were a lot of details to look at here. We had to
create our circuits in a completely new language for hardware design called Verilog. We had
to learn how to use the AMD/Xilinx tools to connect our circuits to pins on our chip, which
were then connected to LEDs on our board. There was a repo that pulled all this togeth-
er so that we could use our Linux bhyve instance to build our circuit. Finally, we learned two
ways to load the circuit into our chip: one before the system boots and the other from within
FreeBSD. We then saw glorious blinking LEDs, reminiscent of lights on a Christmas tree.

Having gotten our first circuit to work, we started exploring more complicated hardware
where the CPU and our fabric circuit could communicate. To do this, we used the FreeBSD
GPIO system, which required us first to figure out why the GPIO system wasn’t working in
our initial image builds. We briefly examined the probing of the GPIO driver and discovered
that it was absent from our system because the hardware wasn’t described in our Device
Tree Binary (DTB). This led us to a brief discussion of Flattened Device Tree (FDT) files and
how they describe the hardware of many embedded boards. We learned how to modify our

BY CHRISTOPHER R. BOWMAN

1 of 4

Embedded FreeBSD:
Looking Back and Forward

We examined one of
the embedded boards
that FreeBSD works on:
the Digilent Arty Z7-20.

54FreeBSD Journal • July/August/September 2025

FDT file and build a DTB from it using the Device Tree Compiler (DTC). We learned how to
get the FreeBSD loader to load our customized DTB before booting the kernel. Finally, once
we had gone through all that, we were able to call the GPIO system from userspace to tog-
gle external pins and, again, light up our LEDs.

In the most recent article, things got interesting. We looked at one of the many avail-
able PMOD modules, a dual seven-segment display. We built hardware in the FPGA fab-
ric that could display values on the two displays and presented a register interface over
the AXI bus to the CPU. We wrote entries for our FDT, describing the register interface
to our hardware, and developed a driver to control the values on the seven-segment dis-
plays. In the end, we used the Unix sysctl framework as an API for the user space to set
the seven-segment displays.

We’ve now reached a point where we can de-
sign circuits in Verilog and put them in the FPGA
fabric of our Zynq chips. We’ve learned to build
register interfaces that communicate over the
AXI bus so that our CPU can easily interface with
our custom hardware. We’ve learned to describe
that hardware to the kernel and to build driv-
ers that allow the FreeBSD system to interact
with our hardware. We also learned how to inter-
face with that hardware from the user space. So,
what’s next?

Once we had the basic capability to build cir-
cuits and put them in the FPGA fabric, we start-
ed learning ways to communicate between our
hardware and the CPU subsystem of our Zynq
chip. This opens a vast space for exploration and implementation, but there are some limita-
tions. One of those limitations is bandwidth and concurrency. While extremely powerful and
flexible, a register interface to hardware is bandwidth-limited. The CPU can only write to the
registers so fast, especially when it needs to perform other tasks. Currently, our hardware is
bandwidth-limited. It was great for the seven-segment displays, but if we wanted something
more bandwidth-intensive, it wouldn’t suffice.

Think about a video display. Our Arty board contains an HDMI output port. While a regis-
ter interface might be viable for a character display, it wouldn’t cut it for bit-mapped graph-
ics. A 24-bit color depth 1280x720x60Hz display requires about 166 MB of data per second.
We don’t want to try to provide that via a register interface. For bit-mapped graphics, the
conventional approach is to dedicate a chunk of memory into which the CPU can write and
from which the display hardware can read. We need to explore how to build hardware to
fetch (or store) data in main memory without using the CPU to move the data. We can uti-
lize our register interface knowledge to enable a processor to configure parameters, such as
the base address. However, we prefer our hardware handle the specifics of fetching the dis-
play buffer from main memory 60 times a second without CPU intervention.

Adding the capability for the CPU to describe objects in memory to which the hardware
should read and write opens a whole new set of possibilities for our Zynq system designs.
It also makes me wonder what the impact of that kind of bandwidth competition will be
on our dual-processor Arm Cortex A9 system. Digilent makes another Zynq-based board
that is like our Arty Z7-20. The Digilent Zybo Z7 is more expensive than the Arty Z7, priced

2 of 4

We’ve now reached
a point where we can
design circuits in Verilog
and put them in
the FPGA fabric of
our Zynq chips.

55FreeBSD Journal • July/August/September 2025

at $399 for the dual processor version compared to $249 for the Arty. However, the Zybo’s
memory bus is twice as wide as the Arty’s, operating at nearly the same frequency. Further,
the Zybo offers 6 PMOD interfaces in comparison to the Arty’s two. However, you’ll lose
the Arduino shell pinout. I think I’m more interested in the PMOD ports. Otherwise, both
boards are based on the same chip. There shouldn’t be any new drivers that need to be
written. The FDT should remain essentially unchanged; it would be interesting to investigate
the necessary changes to run this board.

Other things that might be interesting to investigate would be new PMOD modules. You
can find a whole slew for sale on the Digilent site. We used the PMOD SSD: Seven-Seg-
ment Display in an earlier article. Digilent has retired the PMOD GPS, but I bought one be-
fore they did. It uses a UART interface, which, conveniently, is an onboard peripheral in our
Zynq chip that can be connected to external pins via the fabric. It should be straightforward
to connect this to the system, and I suspect there’s open-source software that can com-
municate with this device via the UART link, enabling various GPS functions such as position
and time. What I find interesting about this device is that it also provides a Pulse Per Second
(PPS) output. I know that Poul-Henning Kamp has done some work with FPGAs and time-
keeping in the past, and I would like to see how that is applicable here.

We haven’t done any work with interrupts so
far. Still, it should be relatively easy for a fabric cir-
cuit to generate an interrupt to the processor and
then keep a register with the number of clock
cycles between the PPS and the current time.
When interrupt servicing software is scheduled, it
could read this register and account for the laten-
cy between the interrupt and when the driver or
time software runs. This might be useful to NTP
software, I really have no idea, but it’s something
I’m curious about. It might be nice to have a local
GPS syncronized stratum 1 time server.

I’ve got a variety of PMOD modules, includ-
ing accelerometers, OLED displays, and LCDs. It
might be interesting to interface with some of them. For example, if you ran an NTP serv-
er on your board (perhaps using hardware described above to improve accuracy), you could
use an LCD to display atomic time and location continuously.

It almost slipped my mind, but the Zynq boards have Analog to Digital Converters
(ADCs) built in. This would undoubtedly be an interesting area for exploration. Still, it may
require some external analog circuitry for signal conditioning or buffering before passing
on to the FPGA, and this might be outside the scope of an article in the FreeBSD Journal. It
might be interesting to look at what is required to interface to these on-chip peripherals.

Of course, you can build your own hardware and easily interface it to the pins of the
FPGA. I’m curious to hear what you would build if you could.

One obvious place I was going to explore that I hadn’t mentioned is running Vivado
under FreeBSD. If you’ve looked at some of my repos, you may have noticed that there
is some experimental support for running Vivado under FreeBSD. However, it seems like
someone has beaten me to the punch. Michał Kruszewski has written a detailed blog post
on the topic. For most of what I do, this is perfect; I can build and simulate my circuits.

3 of 4

Other things that
might be interesting to
investigate would be
new PMOD modules.

56FreeBSD Journal • July/August/September 2025

4 of 4

Things that aren’t quite there yet are loading bitstreams from my FreeBSD host system and
using the Vivado Logic Analyzer. The latter two don’t work in my behyve Linux instance ei-
ther, but perhaps I’ll experiment with pass-through when FreeBSD 15.0 is released.

I hope you’ve found these columns useful. I’d appreciate your comments or feedback.
You can contact me at articles@ChrisBowman.com.

CHRISTOPHER R. BOWMAN first used BSD back in 1989 on a VAX 11/785 while working
2 floors below ground level at the Johns Hopkins University Applied Physics Laborato-
ry. He later used FreeBSD in the mid 90’s to design his first 2 Micron CMOS chip at the
University of Maryland. He’s been a FreeBSD user ever since and is interested in hard-
ware design and the software that drives it. He has worked in the semiconductor design
automation industry for the last 20 years.

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

Contents

