
July/August/Septmeber 2025

Topic: Embedded

Starting Firewall Development:
Tom Jones Interviews Igor Ostapenko
CHERIoT
FreeBSD, Home Assistant, and rtl_433
Writing Effective Bug Reports
Implementing a Quantum-Safe Website
On FreeBSD
Getting Started with WiFi Development,
Part 2, Working on a Driver

Nov/Dec 2019 57

2025 Editorial Calendar
• Jan/Feb/March Downstreams

• April/May/June Networking

• July/August/Sept Embedded

• Oct/Nov/Dec FreeBSD 15.0

https://freebsdfoundation.org/journal

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
John Baldwin •	 FreeBSD Developer and Chair of

		 the FreeBSD Journal Editorial Board

Tom Jones •	FreeBSD Developer, Software Engineer,
		FreeBSD Foundation

Ed Maste •	 Senior Director of Technology,
FreeBSD Foundation and Member of
the FreeBSD Sec Team

Benedict Reuschling •	 FreeBSD Documentation Committer

Jason Tubnor •	 BSD Advocate, Senior Security Lead
at 	Latrobe Community Health Service
(NFP/NGO), Victoria, Australia

Mariusz Zaborski •	 FreeBSD Developer

Advisory Board
Anne Dickison •	 Deputy Director

FreeBSD Foundation

Justin Gibbs •	 Founder of the FreeBSD Foundation,
President of the FreeBSD Foundation
Board, and a Software Engineer at

		 Facebook

Allan Jude •	 CTO at Klara Inc., the global FreeBSD
Professional Services and Support

		 company

Dru Lavigne •	 Author of BSD Hacks and
		 The Best of FreeBSD Basics

Michael W Lucas •	 Author of more than 40 books including
		 Absolute FreeBSD, the FreeBSD
		 Mastery series, and git commit murder

Kirk McKusick •	 Lead author of The Design and
		 Implementation book series

George Neville-Neil •	 Past President of the FreeBSD Foundation
Board and co-author of the Design and
Implementation of the FreeBSD Operating

		 System

Hiroki Sato •	 Chair of AsianBSDCon, Member of
the FreeBSD Core Team, and Assistant
Professor at Tokyo Institute of Technology

Robert N. M. Watson •	 Director of the FreeBSD Foundation
Board, Founder of the TrustedBSD
Project, and University Senior Lecturer
at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

	 Editor-at-Large •	James Maurer
		maurer.jim@gmail.com

	Design & Production •	Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 4 times
a year (January/February/March, April/May/June,

July/August/September, October/November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2025 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written

permission from the publisher.

3FreeBSD Journal • April/May/June 2025

Welcome to the third FreeBSD Journal
issue of 2025! Summer has ended in
the northern hemisphere, along with

the resulting change in weather in many places.
In the FreeBSD project, we are racing towards the
finish line for 15.0 with the release scheduled near
the end of the year. Our next issue will focus on
15.0, highlighting several of the new features and
changes in 15.0.

This issue includes articles spanning a range of
topics. Chris Bowman continues his excellent article
series on using FreeBSD with the Arty Z7. Christos
Margiolis describes his experience at BSDCan 2025
and the associated FreeBSD developer summit.
David Chisnall introduces CHERIoT, an application
of the CHERI architecture to 32-bit RISC-V. Vanja
Cvelbar narrates his adventure of using SDR with
FreeBSD as part of a home automation system,
and Gergely Poór explores the use of quantum-
safe cryptography on FreeBSD. Lastly, Tom
Jones is quite busy in this issue, interviewing Igor
Ostapenko, continuing his Wi-Fi development
series, and providing sage advice on submitting
bug reports.

As always, we love to hear from readers. If you
have feedback, suggestions for topics for a future
article, or are interested in writing an article, please
email us at info@freebsdjournal.com.

John Baldwin
Chair of the FreeBSD Journal Editorial Board

mailto:info@freebsdjournal.com

4FreeBSD Journal • July/August/September 2025

July/August/September 2025

8	 Starting Firewall Development:
Tom Jones Interviews Igor Ostapenko
By Tom Jones

12	 CHERIoT
By David Chisnall

20	 �FreeBSD, Home Assistant, and rtl_433
By Vanja Cvelbar

28	 �Writing Effective Bug Reports
20	 By Tom Jones

34	 �Implementing a Quantum-Safe Website On FreeBSD
By Gergely Poór	

43	 �Getting Started with WiFi Development,
Part 2, Working on a Driver
By Tom Jones

3	 Foundation Letter
 By John Baldwin

5	 We Get Letters
By Michael W. Lucas

53	 Embedded FreeBSD: Looking Back and Forward
By Christopher R. Bowman

57	 Conference Report: BSDCan 2025
By Christos Margiolis

60	 Events Calendar
By Anne Dickison

Topic: Embedded

Greetings, Letters Columnist!

Before you treat my letter like those IRS notices and fling
it into /dev/null, please note that — if I timed this correctly
— a delivery driver will be knocking on your door any
minute now with a gallon of handmade gelato, all in the
hopes of evoking a useful answer from you.

What does your average sysadmin need to know about
embedded systems?

	 —�Mostly Expecting Derision, Sadly

Dear BAD,
A valiant effort. Your email was delayed by greylisting, however, so it arrived after the

delivery truck. I have no idea where you found pickled salmon and durian gelato, but I
commend the effort you put into achieving a new height of appalling. Well done. You’re a
natural sysadmin.

What does a sysadmin need to know about embedded systems? An embedded system
is just a computer. What makes embedded
systems different from regular hosts? Ab-
solutely nothing, except you must do ev-
erything correctly.

You can tune a regular host. When
/var/log/ on your web server consumes an
inordinate amount of disk, you can adjust
the log rotation conditions or tweak what
you log. System tuning in ossified enterpris-
es with rigorous change control processes
enforced by an authoritarian goon whose
soul was crushed by discovering he was
born too late to offer his services as an un-
paid intern to Gaius Julius Caesar Germani-
cus is lax compared to changing proper embedded systems. Changing an embedded sys-
tem requires a system update, and do you know how often these devices get reflashed?
That’s right, never. Maybe you let your streaming media device reboot when it downloads
the newest firmware, but when was the last time you updated your fridge? I avoid this
class of problem by walking into the appliance store and saying, “You can sell me anything
so long as it includes a complete lack of Internet connectivity.” They promptly lead me to

1 of 3

What does a sysadmin
need to know about
embedded systems?
An embedded system
is just a computer.

5FreeBSD Journal • July/August/September 2025

by Michael W Lucas

the 20th Century Room. I leave with a botnet-resistant dishwasher. Expensive, but worth
it. If you’re even asking this question, you have chosen poorly.

An embedded system configured less than perfectly will stop working. Maybe that’s
“stop working correctly,” maybe it starts again once you restart it, maybe it full-on bricks
itself. Whatever. It’s fixable, of course. Many embedded systems are designed for repair by
replacement. A few have terminals where you can check for full disks or wedged process-
es but hide it. Disk drives all have firmware, and many manufacturers offer arcane tricks
to access the terminal. Run a few wires from a DB9 to select pins on a disk drive, type the
secret code, and poof — you have hard-wired access directly into the drive’s feeble little
brain. There’s even a menu system. Once you exclude the treachery, the menu consists
primarily of lies, but it exists.

Everything is embedded systems. All the way down.
Your RAID controller? It runs an embedded operating system that lets it emulate a

wholly different RAID controller from the 1980s because sysadmins insist that they be al-
lowed to set a “stripe size” that doesn’t map
to anything inside the actual storage me-
dium. Hit F1 or DELETE during boot, and
you’ll get into the mainboard’s embedded
system. The “BIOS Log” is full, by the way.
It’s been full for years. Nothing useful has
been logged since your predecessor was
hired. Everything in your computer is a sep-
arate embedded system supporting your
non-embedded system. Your “bare metal”
server isn’t bare metal, because “bare met-
al” does not exist.

I’ve griped about virtualization many
times, but everything is virtual and the
whole world merits that same scorn.

Why put an operating system in your hard drive, mainboard, or USB chipset? Hardware
changes are expensive and require talking to the manufacturer. Software changes are in-
expensive and can be jammed into existing hardware. We weasel around hardware bugs
with differently buggy software. Yes, releasing correct hardware would be better, but the
people in charge assure us that’s not possible, so reality once again demonstrates that
what seemed like a good idea was actually a horrible idea. The embedded system saves
the manufacturer money but increases pain.

Don’t give me that look. All computers increase pain.
The purpose of a system is what it does, and a computer does pain.
We cope with the pain by adding more computers.
The first Rule of System Administration declares “computers were a mistake,” and ex-

amining the mental health impact of the teetering cataclysm of systems inside your com-
puter proves it, let alone the systems in your car. Don’t get me started on your car. Requir-
ing everyone in the United States to borrow, purchase, or otherwise “acquire” a multi-ton
kinetic energy weapon was bad enough, but add in separate computers for the brakes
and the accelerator and the climate control, and congratulations! You’ve built a Rolling
Debacle. When your drive-by-wire steering catches a SIGABRT the only question is who

2 of 3

Everything is
embedded systems.
All the way down.

6FreeBSD Journal • July/August/September 2025

gets debacled, you or bystanders. I would say “innocent bystanders,” but nowadays ev-
erybody uses a computer, so nobody is innocent. Even folks who want to remain unsoiled
are compelled to use a website or an app because the guilty make themselves feel better
by dragging everyone down to their sewer. (“Come to my party! It’ll be great! Never mind
the floaters!”)

Can you even find a computer without a gratuitous embedded system somewhere?
Certainly. It’s called an abacus. My abacus has a series of five-bit bytes and a separate
register with two-bit bytes. Quite sophisticated. The operating system is implemented in
hand position. Best of all, nobody has written a TCP/IP stack for the abacus.

The bad news is that embedded systems have become more accessible than ever. In-
expensive, low-power systems are available from your least abhorred retailer, enabling you
to build tiny systems to control your whole home if you wish. If you want a custom remote
control for the big door on the shed where you store your multi-ton kinetic energy weap-
on, you can do so for the low cost of a hundred bucks of hardware, several man-months
of effort, and your will to live.

So, what should you know about embedded systems? If you’re stuck with one and it
breaks, pretend you’re an idiot and call tech support. Otherwise, you’ll delve into the sys-
tem and discover just what atrocities the designer committed in the name of system sta-
bility. That won’t go anywhere pleasant.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of Absolute FreeBSD, Dear Abyss, SSH Mastery, and
more. The new edition of Networking for System Administrators has recently escaped.
https://mwl.io

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

Contents 7FreeBSD Journal • July/August/September 2025

mailto:letters@freebsdjournal.org
https://mwl.io

8FreeBSD Journal • July/August/September 2025

Starting Firewall Development
AN INTERVIEW WITH IGOR OSTAPENKO
BY TOM JONES

1 of 4

TJ: There are numerous paths into working on FreeBSD, some through university courses
and others through work experience. How did you learn about the project, and what initially
drew you to Operating System development?

IO: In the 1990s, during my school years, I had the chance to work with several program-
ming languages and technologies, e.g., I spent hours tinkering with TR-DOS, carefully plan-
ning line numbers (which triggered flashbacks when I started using ipfw) and crafting DA-
TAs and GOTOs for yet another game I envisioned, as well as experimenting with interrupt
vectors for resident programs in MS-DOS. Because
of that, a minimalistic command-line interface was
not new to me. So, when I encountered FreeBSD
during my Computer Science studies at university,
my only question was which books to get.

It was clear that mastering FreeBSD would be chal-
lenging but incredibly rewarding, as I’d have to ac-
quire some fundamental knowledge along the way.
Why FreeBSD? The seniors promoted FreeBSD be-
cause our entire dorm network was built on it. This
was the early 2000s, still carrying the inertia of the
previous decade, when FreeBSD was the de facto
standard for networking. In recent years, I’ve been fo-
cusing more on operating system development. With
a broad background in software development, I’ve built a collection of ideas for how OS in-
ternals could be leveraged for high-level solutions.

TJ: What were your steps to making your first FreeBSD changes? How did you decide what
to work on initially?

IO: The first steps were about preparation. I wanted to refine my existing knowledge of
FreeBSD, fill gaps, and develop a more structured vision. A well-known resource for this is
The Design and Implementation of the FreeBSD Operating System book by Marshall Kirk
McKusick, George V. Neville-Neil, and Robert N.M. Watson.

The FreeBSD source code was not entirely new to me; I already had a general sense of
its structure formed over the years. However, I wanted a professional guide to ensure I did
not miss key concepts, stylistic nuances, or structural elements. The world is lucky to have
the FreeBSD Kernel Internals: An Intensive Code Walkthrough course by Marshall Kirk McK-

INTERVIEW

When I encountered FreeBSD
during my Computer Science
studies at university,
my only question was
which books to get.

”
“

9FreeBSD Journal • July/August/September 2025

2 of 4

usick. It saved a lot of my time, covered all my questions, and provided valuable historical
context to address the “Why?” questions in the best possible way. Additionally, the FreeBSD
Networking from the Bottom Up course by George V. Neville-Neil offered further refine-
ment of the networking stack side.

I considered the pros and cons of starting with big projects versus smaller ones and
discussed it with mckusick@ and kib@. Konstantin Belousov recommended starting with
a smaller task, such as bug fixing, which proved to be the most effective approach. I start-
ed working on the most recent pf bugs reported, which spawned other related improve-
ments in the jail subsystem, test tools like Kyua’s execenv=jail project, and even a new
module, dummymbuf, for specific network tests. As a result, I continue to contribute to
improving the project, in collaboration with Kristof Provost, Mark Johnston, and other
FreeBSD developers.

TJ: Bugs are a great way for a newcomer to start in any project. Do you have any recom-
mended areas for new FreeBSD contributors to begin in 2025?

IO: With official guidance and specific directions for new contributors available on the proj-
ect website, e.g., https://wiki.freebsd.org/IdeasPage, I would like to consider an alternative
approach. There are many possible paths to contributing, and the best ones are likely those
that align with personal interests.

For example, if there is an interest in learning and
using a FreeBSD network tool or kernel module such
as netstat, route, pf, ipfw, netgraph, etc., then work-
ing with respective documentation and manual pages
might open opportunities to improve them by pro-
viding extra examples, reworking complex concepts,
or adding missing parts. If such a tool or module is
not present in FreeBSD, then adding useful programs
to the FreeBSD Ports Collection or keeping them up
to date is another vital way to help. Such projects are
usually fun and educational, as they may require a
deeper understanding of FreeBSD kernel interfaces
to succeed.

If the goal is a deeper understanding of the ker-
nel code, then a similar formula could be applied
— choosing the topic that is in use or is planned to be used could provide more benefits.
For instance, if it’s a firewall, then a better understanding of how its rules work behind the
scenes gives power users an edge. It could involve investigating the routing mechanisms if
there is an interest in finding a solution for a non-generic problem. There might be a need
to implement missing features or RFCs in the kernel. There is periodic interest in porting
existing solutions from other platforms, such as Netlink implementation in FreeBSD, with
the respective work-in-progress migration of the existing tools or Vector Packet Processing
(VPP) framework porting, with open doors for further enhancements. Sooner or later, work-
ing with the existing code reveals opportunities for optimizations — spending less resourc-
es, such as time, per unit of data transferred or processed, benefits all businesses relying on
FreeBSD.

If the contribution is something
more than a small patch,
I recommend two initial steps:
homework and communication.

”
“

https://wiki.freebsd.org/IdeasPage

10FreeBSD Journal • July/August/September 2025

3 of 4

If the contribution is something more than a small patch, I recommend two initial steps:
homework and communication. There are many ways to reach FreeBSD developers (see
https://www.freebsd.org/community/), and the basic one is the mailing lists like hackers@
FreeBSD.org. It’s a good idea to discuss a potential project first to find a general agreement
on the direction or to discover if someone is already working on it, as is usual for open-
source projects; the more homework done, the better the communication outcome.

TJ: The development process is quite daunting, and there are many dead ends. Are there
any shortcuts you would like to share with new developers to make debugging and develop-
ment easier?

IO: I believe the FreeBSD Journal is an excellent source of shared professional experience. I
recommend scanning the TOCs of the previous issues to find topics that fill gaps or offer
a new perspective on a familiar subject. For instance, new developers may be interested in
articles such as “Kernel Development Recipes” and “DeBUGGING the FreeBSD Kernel” by
Mark Johnston [FreeBSD Journal, Sep/Oct 2021][FreeBSD Journal, Nov/Dec 2018], “FreeBSD
Kernel Development Workflow” by Navdeep Parhar [FreeBSD Journal, Mar/Apr 2024], and
“More Modern Kernel Debugging Tools,” which you wrote [FreeBSD Journal, Mar/Apr 2024].
These and similar articles provide a quick overview of build system capabilities and shortcuts
(such as avoiding lengthy rebuilds), or how virtualization and other 3rd-party software could
be leveraged to improve productivity. Each article is not a complete book that covers all de-
tails or mentions all available options, but they do provide good starting points.

To begin forming good practices encouraged within the project, I recommend checking
the article “Writing Good FreeBSD Commit Messages” by Ed Maste [FreeBSD Journal, Sep/
Oct 2020]. Sooner or later, it’s a good idea to become acquainted with the article “FreeBSD
Code Review with git-arc” by John Baldwin [FreeBSD Journal, Sep/Oct 2021]. This tool signifi-
cantly improves the process of patch publishing, reviewing, updating, and landing.

In terms of work on the networking part of the kernel, I suggest taking a closer look at
FreeBSD’s Jails and VNET features. If the work does not involve specific hardware support or
other non-generic topics, then VNET-based

Jails can be leveraged to ease the testing of a new networking feature during develop-
ment. To interest a new developer, VNET-based Jails can be roughly treated to build a net-
work of lightweight virtual machines to test specific packet paths or network stack behav-
ior. This approach can be easier than other methods, even if the same packet buffer (mbuf)
may end up playing all the roles in the scene, since nothing leaves the host. Another im-
portant outcome of this exploration is that such a playground may become a good starting
point for developing a new automated test for a newly implemented feature or a fixed bug.
This leads to the article “The Automated Testing Framework” by Kristof Provost [FreeBSD
Journal, Mar/Apr 2019], which introduces the FreeBSD Test Suite. The source of existing fire-
wall tests based on VNET Jails (src/tests/sys/netpfil) and Kristof’s talks [https://www.youtube.
com/watch?v=gTyt7KLz1mw] about that can be used for inspiration.

Nevertheless, I would invest time in setting up work with the code. The kernel is an un-
usual type of software that supports multiple architectures, compilers, and exceptional cas-
es, where the preprocessor’s ifdefs may not be enough, and some conditions are resolved
outside of the code itself. In addition, the source code includes some generated code, such
as the boilerplate parts of system calls or VFS operations. Hence, greping or using an

https://www.freebsd.org/community/
https://www.youtube.com/watch?v=gTyt7KLz1mw
https://www.youtube.com/watch?v=gTyt7KLz1mw

11FreeBSD Journal • July/August/September 2025

editor/IDE with default settings is not sufficient. This is a subjective topic, and my “Neovim
+ clangd + intercept-build” setup works fine for me, so it’s better to get an overview of avail-
able options:

https://docs.freebsd.org/en/articles/freebsd-src-lsp/
Using Language Server Protocol greatly simplifies code comprehension and navigation,

which is essential for a new developer.

TJ: Thank you for your time for this interview. Is there any final advice to new contributors or
anything you would like to add?

IO: Thanks for your time as well. The general advice applies to any international open-
source project with a considerable volunteer base: maintain an open-minded attitude and
some level of patience. Let me add a networking-based allegory here. There are many other
hosts (contributors) in the community network, and they are not available at any time using
any protocol we prefer. Each host is likely busy with its workload, and its network interfac-
es may already be overloaded. So, a metaphorical connection timeout towards us doesn’t
necessarily mean a strict RST; more likely, it means that more time is needed to process our
SYN. Communication approaches like email can provide deep buffering, which may be
handled as first-in, last-considered, so a polite retransmission is often a practical step. Laten-
cy expectations also need reconsideration due to time synchronization issues (time zones),
priorities (work over volunteering), or downtimes (weekends, vacations, etc.).

This network has been running for decades, with some hosts participating since the early
days. Their accumulated knowledge and experience can help us with new challenges, guide
us in case of dilemmas, or keep us away from issues not yet visible to us. At the same time,
newly joined hosts may bring fresh ideas or new visions to consider. Each contributor brings
something unique to complete or extend the whole puzzle. Hence, staying open-minded
and striving to understand the intent or idea behind a message received should provide new
contributors with better connectivity.

Although not mandatory or expected, leaning towards the symmetrical bandwidth of
your host improves overall network capacity and fosters its expansion. In other words, be
prepared to open some ports to accept incoming connections on your side.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

IGOR OSTAPENKO is a contributor to FreeBSD and OpenZFS with extensive software de-
velopment experience across various domains, including systems for manipulating and test-
ing navigation devices, enterprise solutions for optimizing business processes, reverse-engi-
neering, and B2B/B2C startups.

4 of 4

Contents

https://docs.freebsd.org/en/articles/freebsd-src-lsp/

12FreeBSD Journal • July/August/September 2025

CHERIoT
1 of 8

The CHERI project has always had a close relationship with FreeBSD. It began from ob-
serving that Capsicum-based compartmentalization was great for new code but ret-
rofitting it to existing libraries (with one process per library instance) was difficult for

two reasons:
First, libraries want to share complex data structures, which imposes a lot of serialization

overhead when turning the interfaces into messages sent over some inter-procedural com-
munication (IPC) channel. A function call in a normal
library would simply share a data structure by passing
a pointer to an object. A privilege-separated library
would need to authorize everything moved between
the caller and callee. Libraries also often want long-
term sharing, which imposes additional synchroniza-
tion overhead.

Second, processes are isolated using a memo-
ry management unit (MMU), which provides a vir-
tual-memory abstraction with mappings from ad-
dresses in a virtual address space to the underlying
physical memory. Modern MMUs are fast because
they have a translation look-aside buffer (TLB), a
fast cache of translations. The TLB caches virtual
to physical address translations. If a single page is
shared between ten processes, it will take ten TLB
entries. MMUs are great for isolation but poor for
sharing.

These two problems led to the general observation: Isolation is easy, sharing is hard.
CHERI is a set of architectural extensions that provide fine-grained memory safety for

everything from assembly code on up. CHERI, like Capsicum, is a capability system. In a ca-
pability system, every action must be accompanied by a capability, an unforgeable token of
authority, that authorizes the action.

In contrast, a lot of other optimized mechanisms have a notion of ambient authority: you
can perform an action simply because you are you. For example, if a process runs with UID
0 on a traditional UNIX system (without something like the FreeBSD MAC framework or SE-
Linux), it can do a lot of privileged operations, whether it intended them or not.

Processes running as root are often security problems because it’s easy to trick them into
doing things that they shouldn’t. In a capability system, a privileged process would instead
hold a set of tokens that each authorize specific actions. It would need to choose the one to
use at each point, preventing accidental use of elevated privileges.

CHERI is a set of architectural
extensions that provide
fine-grained memory safety
for everything from assembly
code on up.

BY DAVID CHISNALL

https://cheri-cpu.org
https://cheri-cpu.org

13FreeBSD Journal • July/August/September 2025

2 of 8

MMUs have a similar notion of ambient authority. A running program can access any
memory for which there is a valid mapping. If you have a buffer overflow, the MMU doesn’t
care that you didn’t mean to access an adjacent object: you have the right to access that
memory and so you can. The relevant piece of code may also hold a pointer to the other
object, and so be authorized to access that object, but it didn’t mean to at that point.

Capsicum extends file descriptors to be capabilities.
A Capsicum file descriptor has a rich set of permissions and, after entering capability

mode (via the cap_enter system call) a process cannot access anything outside of its own
memory without providing a valid file descriptor (capability), with the correct permissions, to
a system call.

For example, in a normal POSIX process, you can call open to access any file that the user
(or some MAC policy involving the user, the process, and maybe other things) has access to.
In contrast, a capability-mode process must call openat and pass it a capability that autho-
rizes access to a specific directory. This enforces the principle of intentionality and avoids a
large class of vulnerabilities.

For example, if you mean to access something in a temporary directory, but happen to
be given a path to some more important directory that you should not be accessing (for ex-
ample, ../etc/rc.conf), openat with a file descriptor to your temporary directory will fail
(correctly, preventing an exploit) but open would succeed.

CHERI protects memory accesses in a way analogous to how Capsicum protects filesys-
tem accesses. A conventional instruction set architecture has load, store, and jump instruc-
tions (sometimes, as with x86, combined with more complicated operations) that take an
address as a base. This provides a model of memory that’s similar to conventional UNIX’s
view of the filesystem: Any load or store can work if the process is allowed to load or store at
that location. Buffer overflows or use-after-free bugs
are to memory what path-traversal vulnerabilities are
to the filesystem.

In a CHERI system, this address is replaced by a
CHERI capability, an unforgeable value that authoriz-
es access to a range of the address space. These val-
ues are stored in registers and memory and are pro-
tected by the hardware from tampering.

How does this make it easy to program?
Does a programmer have to track capabilities as

some additional thing?
No, not at all.
It turns out that most programming languages al-

ready have an abstraction for a token that authorizes you to access a region of memory.
They call it a pointer (or, in some cases, a reference). As a programmer, targeting a CHERI
system, you mostly don’t think about CHERI capabilities at all, you simply think about
pointers.

If you do some arithmetic that takes a pointer out of the range of the object, you can’t
use it for loads or stores anymore. And, because the hardware knows precisely which things
in memory are pointers and which aren’t, it is possible to invalidate pointers when objects
are freed. This means that you can share objects with a library on a CHERI system simply by
passing pointers to those objects as arguments to a function exposed from the library.

Buffer overflows or
use-after-free bugs are to
memory what path-traversal
vulnerabilities are to
the filesystem.

14FreeBSD Journal • July/August/September 2025

3 of 8

The very earliest operating system for CHERI was a tiny microkernel but the vast majori-
ty of it was done on FreeBSD. CheriABI (a CHERI userspace ABI for FreeBSD) demonstrated
a complete memory-safe userspace and a kernel on a friendly fork of FreeBSD (CheriBSD),
which aims to upstream the changes before the 16.x release. A CHERI base architecture is
currently being standardized as part of RISC-V, and FreeBSD 16 should have first-class sup-
port for all of the upcoming application-class CHERI cores implementing this instruction set.

FreeBSD was essential to the CHERI project. CHERI was a long-term hardware-software
co-design project, which required modifying both hardware and software parts of the stack
to explore where and how various ideas could best be implemented. This required a pro-
duction-grade operating system that was easy to modify. The clear structure and well-de-
fined abstractions of FreeBSD made this easy. We’ve seen with later Linux-on-CHERI work
that the effort of adapting FreeBSD was far lower, and the project would probably not have
had enough software engineers to have done the same on Linux as an initial target. The
permissive license also made it easy to show vendors of other operating systems how var-
ious hardware features were used. FreeBSD was also
an early adopter of LLVM, which has similar advan-
tages in terms of ease of modification and license. It’s
easy to compile the entire FreeBSD base system with
a modified LLVM, which makes testing new CPU fea-
tures trivial. Brooks Davis wrote a much longer article
about the benefits of FreeBSD for CHERI research in
the May / June 2023 edition of the FreeBSD Journal.

Scaling down CHERI
CheriABI demonstrated that you could run real

POSIX applications, including large programs such as
Chromium, on a full KDE desktop with Wayland and
3D drivers, in a memory-safe world. This could coexist
with existing binaries, via a COMPAT64 layer, which worked much like the COMPAT32 layer
that allows FreeBSD to run 32-bit programs on 64-bit systems. Most systems from mobile
phones up to servers use the set of abstractions that were shown to work.

In 2019, a few of us at Microsoft decided to see whether we could scale down the same
abstractions to the smallest systems.

We had three questions:
•	Can you make the things that work well with CHERI on 64-bit systems work on 32-bit

ones?
•	If you have CHERI, what can you discard?
•	What does an operating system look like if you can assume CHERI from the ground up?
The first is a slightly non-obvious problem. The abstractions that CHERI provides don’t

seem to be dependent on the size of an address, except for one thing: all of the metadata
for a CHERI capability must fit in the same number of bits as the address. This means that
on a 32-bit system we have half as much space for metadata.

CHERI uses a compressed encoding for the bounds that takes advantage of the fact
that there is a lot of redundancy between the base of an object, the top of an object, and
the address of a pointer to that object. On a smaller system, there is less redundancy and

In 2019, a few of us at
Microsoft decided to see
whether we could scale down
the same abstractions to the
smallest systems.

https://cheribsd.org
https://freebsdfoundation.org/wp-content/uploads/2023/06/davis_cambridge.pdf

15FreeBSD Journal • July/August/September 2025

less space for the bounds. Fortunately, on embedded systems, the total amount of address
space tends to be smaller, so there’s less need to be able to precisely represent very large
regions of the address space. A high-end microcontroller typically has well under 4 MiB of
total RAM, so most objects are very small.

We also had fewer bits available for permissions than on a 64-bit system and had to com-
press our permission encoding, eliminating combinations that were either bad for security,
not useful, or not meaningful.

How I used FreeBSD in developing CHERIoT
When we built the first CHERIoT prototypes, there were three core components:
•	A CPU core written in BlueSpec SystemVerilog.
•	A port of LLVM.
•	A clean-slate RTOS.
BlueSpec SystemVerilog is a Haskell-based high-level hardware description language,

which makes rapid prototyping easy. The BlueSpec
compiler required a few small tweaks to build on
FreeBSD, which we upstreamed, and FreeBSD is now
a supported platform. It isn’t yet in ports, but that
would be great to see. With this, we could build a sim-
ulation of the core that ran on FreeBSD. Later, we
moved to a production-quality code implemented in
SystemVerilog and used verilator (from packages) to
build a simulator on FreeBSD.

LLVM development on FreeBSD is very easy.
FreeBSD is a first-class target for LLVM and LLVM is
trivial to build. In some ways, it was too easy: when we
needed to support people on LTS releases of some
Linux distributions, we found that bootstrapping the
version of LLVM that we were using was hard because it used a newer version of C++ than
their stock toolchain supported.

For cutting-edge work, FreeBSD was far easier: multiple versions of GCC and LLVM were
available in ports. This also made it easy to reproduce some of the build failures on other sys-
tems, by simply installing the old version of GCC that they shipped and configuring a build
to try using it. Once those were working, cross-compiling and testing the RTOS was easy.

Lessons learned from FreeBSD
Like FreeBSD, CHERIoT RTOS is a permissively licensed, community-developed, operat-

ing system.
Most importantly, CHERIoT aims to copy FreeBSD’s model of designing features be-

fore implementing them. The easiest time to change code is before it’s written. This is how
FreeBSD ended up with features like Jails, kqueue, and Capsicum: careful thought and de-
sign iteration, rather than throwing an API at users, hoping it works, and then living with the
consequences.

We learn from Capsicum that we can make things that look to programmers like conven-
tional file descriptors or handles into capabilities. Our software abstractions follow this model.

Like FreeBSD, CHERIoT RTOS
is a permissively licensed,
community-developed,
operating system.

4 of 8

https://cheriot.org
https://github.com/B-Lang-org/bsc
https://github.com/B-Lang-org/bsc

16FreeBSD Journal • July/August/September 2025

We also learned from kqueue that a single, simple, unified way of polling for any block-
ing event is easy. The kqueue design does not map particularly well to a privilege-separated
RTOS, but the core idea does. Our scheduler exposes futexes (a simple atomic compare-
and-wait-if-equal operation) as the only blocking event source. Interrupts are mapped to
futexes, so a thread waits for an interrupt by simply waiting on a futex. The scheduler then
layers a multiwaiter API on top, allowing a thread to wait for multiple events, either from
hardware or software.

Perhaps most importantly, we’ve learned from FreeBSD that documentation is king. It
doesn’t matter how amazing your system is if no one can figure out how to use it. Between
well-written man pages and the Handbook, FreeBSD is easy to learn. Writing a book for de-
velopers wanting to pick up CHERIoT RTOS was a priority and it was published earlier this
year. On top of that, we have doc comments for every API, which are parsed by modern
IDEs (and vim with our version of clangd as the language-server protocol implementation).

Lessons FreeBSD could learn from CHERIoT
CHERIoT RTOS is currently written entirely in C++. C++ has a lot of advantages over C

for systems programming. It’s easy to create rich abstractions that are checked at compile
time. For example, we have a message queue design that uses a single counter for each of
the producer and consumer pointers and has to handle the cases where these values wrap.

In C++, we can define constexpr functions to do the increments, and then write tem-
plates that static_assert over their behavior. Every
time that we compile the file that defines these, the
compiler will exhaustively check the overflow behav-
ior on every possible value of producer and consumer
pointers for some small queue sizes.

Using rich types also lets us avoid a lot of errors by
construction. For example, we have a Permission-
Set class that manages the set of permissions on a
CHERIoT capability. This is a constexpr set that lets
you construct permissions by name and will generate
the bitmap that the instructions that operate on per-
missions expect.

In the loader, we use this to describe both the per-
missions that we want on a capability and the permissions that each of the roots have. We
will get a compile failure if we try to derive a permission that is not present in the original,
which is far easier to debug than a later instruction failing because it lacks an expected per-
mission in one of its operands.

We make a lot of use of a pattern where we have an inline templated function that does
some compile-time checks and is optimized away, and a calls a type-erased function. Our
type-safe logging works like this, for example. We have a printf-like function that takes an
array of the arguments to print and the union discriminators. This is constructed by some
templates that generate the discriminator values based on the types, so whether you want
to log a pointer, an enumeration value, or a MAC address, you’ll get the correct output,
without having to correctly match the type in the string and with compile-time checks.

This is extensible. MAC addresses, for example, are not built in, the network stack defines
a callback for them and a template specialization that handles the mapping.

Using rich types
also lets us avoid a lot
of errors by construction.

5 of 8

17FreeBSD Journal • July/August/September 2025

We don’t yet have a Rust compiler (it’s coming soon!) but when we do, we expect to start
using Rust for some components as well. Richer types in systems programming languages
let us both avoid bugs at compile time and also write a lot less code.

In a lot of key places in the RTOS, we’d need much more source code if we used C, and
that code would be harder to maintain. It would also be far harder to find developers who
are familiar with the language. Today, the number of lines of new code that we see written
for systems languages are ordered:

1.	C++
2.	C
3.	Rust
It’s easier today to find C++ developers than either of the other two, but that ignores the

trend. C++ has been seeing fairly slow growth since C++11 was introduced. C has been see-
ing a much sharper steady decline in the same time. Rust was seeing steady growth, but it’s
accelerated over the last three years. I expect that it will be easier to find Rust developers
than C developers very soon and probably easier to find Rust developers than C++ within a
decade or so.

This is unsurprising.
Developers tend to favor languages in which they can be more efficient. There is ongo-

ing work in FreeBSD to support Rust in the base system but there’s a much simpler path to
adopting modern C++, which can make it far simpler to express complex concepts than C
and provide a lot more compile-time checks.

FreeBSD has also done some fantastic work using Lua for things that are not absolutely
performance critical, including userspace parts, policies in the bootloader, and ZFS channel
programs. Lua is a far simpler language to learn than any of the above list and is easy for rel-
atively inexperienced programmers to be productive in. We use Lua in our build system (and
for typesetting the CHERIoT book!), but sadly the Lua VM takes about as much memory as
a typical microcontroller has in total, so we can’t use it in the RTOS.

Richer systems programming languages are important but FreeBSD’s use of Lua is a
good reminder that a lot of things—even in the kernel—don’t actually need a systems pro-
gramming language.

Developing for CHERIoT on FreeBSD
The CHERIoT toolchain is in ports on FreeBSD, as is the xmake build tools, and so you

can install them simply with:

pkg ins cheriot-llvm xmake-io git

That gives you the prerequisites for building CHERIoT firmware. Note that, at the time of
writing, the version of CHERIoT LLVM in the quarterly branch is 18, whereas the version in
the latest branch is 20 (and about to be updated to 21), so it’s a good idea to use the latest
branch for development.

You should now be able to try cloning the RTOS and building a simple firmware image.
First, clone the RTOS:

$ git clone --recurse https://github.com/CHERIoT-Platform/cheriot-rtos
$ cd cheriot-rtos

6 of 8

18FreeBSD Journal • July/August/September 2025

Next, you need to configure the build:

$ cd examples/01.hello_world/
$ xmake config --sdk=/usr/local/llvm-cheriot
checking for platform ... cheriot
checking for architecture ... cheriot
Board file saved as build/cheriot/cheriot/release/hello_world.board.json
Remapping priority of thread 1 from 1 to 0
generating /tmp/cheriot-rtos/sdk/firmware.rocode.ldscript.in ... ok
generating /tmp/cheriot-rtos/sdk/firmware.ldscript.in ... ok
generating /tmp/cheriot-rtos/sdk/firmware.rwdata.ldscript.in ... ok
$ xmake
...
[100%]: build ok, spent 13.796s

If you have a lowRISC Sonata board, you can add --board=sonata to the end of the
xmake config line and you’ll get an ELF file targeting their board. The board shows up as a
USB mass-storage device with a FAT filesystem that can load a UF2 file. If you do xmake run,
it will point you to the missing Python package that you need to install from pip to convert
the ELF to a UF2 file. Once this is installed, it will either tell you which file to copy, or copy it
with no further interaction if the SONATA filesystem is mounted in a common location.

If you don’t, then you can run the resulting firmware in a simulator. By default, these ex-
amples will target the Sail simulator. This requires OCaml and does build on FreeBSD, but
requires some manual steps. The project also ships a Linux dev container, which works very
nicely in the FreeBSD Linuxulator with Podman:

pkg ins podman-suite
podman run --rm -it --os linux -v path/to/cheriot-rtos:/home/cheriot/cheriot-rtos
ghcr.io/cheriot-platform/devcontainer:x86_64-latest

This will drop you into an ephemeral container with your clone of the RTOS source code
mounted in /home/cheriot/cheriot-rtos. Note that the current version of Podman in
ports doesn’t like using the tag that refers to a multi-arch container when the OS doesn’t
match the host. We provide binaries for x86-64 and AArch64, so if you’re on AArch64 sim-
ply replace x86_64 with aarch64 in the above line.

The dev container has all of the tools installed in /cheriot-tools, so you can try building
the example again in the same way as earlier:

$ cd examples/01.hello_world/
$ xmake f --sdk=/cheriot-tools
...
$ xmake
...
[100%]: build ok, spent 13.524s
$ xmake run
Board file saved as build/cheriot/cheriot/release/hello_world.board.json
Remapping priority of thread 1 from 1 to 0
Running file hello_world.
ELF Entry @ 0x80000000
tohost located at 0x80006448

7 of 8

19FreeBSD Journal • July/August/September 2025

Hello world compartment: Hello world
SUCCESS

Congratulations, you’ve run memory-safe C++ code in a simulator built from a formal
model of the ISA!

The dev container contains three other simulators:
•	The cycle-accurate verilator simulator for the Ibex core with a minimal set of peripherals.
•	The simulator for lowRISC Sonata boards.
•	The MPact simulator from Google that provides a high-performance simulator with an

integrated debugger
The MPact simulator is compatible with the Sail (simplified) machine.
You can try running it directly:

$ /cheriot-tools/bin/mpact_cheriot build/cheriot/cheriot/release/hello_world
Starting simulation
Hello world compartment: Hello world
Simulation halted: exit 0
Simulation done: 106508 instructions in 0.2 sec (0.5 MIPS)
Exporting counters

You can do the development in FreeBSD and run just the simulators in the container, or
do all of the development in the container. On other platforms, most developers use an ed-
itor such as Visual Studio Code that has dev container integration. This should also be possi-
ble on FreeBSD, configuring Podman to run the Linux version of the container.

Alternatively, you can build all of the simulators natively for FreeBSD. The instructions for
this are too long for this article, but look at the documentation in the RTOS repository for
guidance. All of the dependencies for them are in ports and hopefully the simulators them-
selves will be soon!

DAVID CHISNALL’s background spans operating systems, compilers, hardware, and secu-
rity. He is the author of the Definitive Guide to the Xen Hypervisor, has been an LLVM com-
mitter since 2008 and was a member of the FreeBSD Core Team from 2012 to 2016. He
joined the CHERI project to lead the compilers and languages thread of the research at the
University of Cambridge in 2012. He continued to work on CHERI, including leading the cre-
ation of CHERIoT, at Microsoft from 2018 to 2023. He is co-founder and Director of Systems
Architecture at SCI Semiconductor, which makes CHERIoT SoCs, and co-maintainer of the
CHERIoT Platform open-source project.

8 of 8

Contents

20FreeBSD Journal • July/August/September 2025

A long time ago, I started playing with Home Assistant, and I’m very proud of a few au-
tomations. There is a motion sensor in the bathroom that turns on the light. If the
sun has already set, the light turns on with a very dim orange light; otherwise, it uses

the maximum power and white color. There is an automation that turns on the dehumid-
ifiers if the relative air humidity exceeds a predefined value. Additionally, there is a safety
measure. Unfortunately, we have a cellar window that is prone to flooding if the rain comes
from the south, which is a rare occurrence. I have installed an external and an internal mois-
ture sensor; when triggered, we get a message on Telegram and can act accordingly. The
whole system is hosted on a bhyve virtual machine running HAOS.

The need
With two radio-controlled thermometers on the balcony and in the garden, I sought a

simple overview and, more importantly, a clear graph of the outside temperature. Those are
simple units periodically sending their data over the radio on 433MHz. After researching the
topic, it was clear that a standard Software Defined Radio adapter could listen to the signals
and process them further. Combining it with the great rtl_433 and rtl-sdr projects was the
answer.

After connecting an RTL 2832-based dongle to my laptop, I started getting data from my
thermometers, but also from the neighbors and from the TPMS systems of the cars passing by.

The nice part was that the rtl_433 software already supports posting data to a MQTT
server. There was already one running on Home Assistant for the ZigBee network, so that
involved just creating a new user to post to it.

/var/log/rtl_433.log

{“time” : “2025-04-13 18:42:55.702554”, “protocol” : 19, “model” : “Nexus-TH”, “id” :
209, “channel” : 1, “battery_ok” : 1, “temperature_C” : 13.200, “humidity” : 61, “mod”
: “ASK”, “freq” : 433.910, “rssi” : -0.431, “snr” : 30.360, “noise” : -30.791}

{“time” : “2025-04-13 18:42:56.539182”, “protocol” : 8, “model” : “LaCrosse-TX”, “id”

: 31, “temperature_C” : 11.300, “mic” : “PARITY”, “mod” : “ASK”, “freq” : 433.892,
“rssi” : -12.208, “snr” : 19.251, “noise” : -31.459}

JSON log of rtl_433 decoding the external thermometers radio transmissions.

The first implementation
The main rack is located in the basement, which is why the radio signal there was poor. I

placed the SDR on the first floor and connected it to the existing pfSense router. That

BY VANJA CVELBAR

	 FreeBSD,
Home Assistant, and rtl_433

1 of 8

21FreeBSD Journal • July/August/September 2025

2 of 8

involved manually installing packages and struggling to have it start at boot. The pragmatic
solution was to start a screen session with rtl_433 running in it.

That worked; the data was sent to MQTT, and Home Assistant was plotting nice graphs
of the temperature sensors I selected. This solution was not very stable. After each reboot,
upgrade, or firewall failure, I had to remember to restart it. It was not reliable, and I was not
satisfied with it.

Home assistant smoothly plots the temperature captured by the Garden temperature sensor.

Plot of the temperatures of both sensors captured by the Home Assistant system.

The second implementation
I had a Pine A64+ lying around with no real purpose. I started verifying the FreeBSD sup-

port for it, but I quickly dismissed it due to some troubles with the reboot. The issue persists
after a software reboot, indicating a hardware problem. I recall that physically accessing the
board and disconnecting the power supply was too much trouble and not very practical.

EuroBSDCon to the rescue
At EuroBSDCon 2019 in Norway, there was a tutorial by Tom Jones titled “An Introduction

to Hardware Hacking with FreeBSD.” Every participant received a nice little box containing

22FreeBSD Journal • July/August/September 2025

3 of 8

switches, LEDs, cables, and other components, and most importantly, an Arm SBC.
It was a NanoPi NEOLTS from FriendlyELEC After the conference, I used it for a bit, but

now it is mainly stored in a drawer. So, I started eval-
uating it as the platform on which to run rtl_433 and
acquire the radio data.

The installed software was outdated, so I acquired
a new MicroSD card and, following the instructions
published by Tom Jones on his pages, successfully
moved the acquisition system to it. (https://adventur-
ist.me/posts/00297)

It was all fun and worked correctly for a few days,
but then it abruptly stopped; the system was not
reachable over SSH, so I resorted to power cycling
it. It would have been better to attach a serial con-
sole to it to find out what the problem was, but now,
I didn’t have the time to troubleshoot it properly.

Suspecting some incompatibility with the operating system release, I later wrote a crude
shell script to automate the image creation based on Tom’s instructions. After a few runs,
I started parameterizing it to have a quicker way to change releases and added a few other
nice-to-have features.

The final implementation — NanoPi with the USB SDR dongle sitting on the firewall.

Scripting
The script in its final form has a few more steps than the first version. First, we define the

FreeBSD version we want to download and the source URL.

!/bin/sh

VERSION=”14.2”

RELEASE_VERSION=”$VERSION-RELEASE”
URL_IMG=”https://download.freebsd.org/releases/arm/armv7/ISO-IMAGES/$VERSION/
FreeBSD-$RELEASE_VERSION-arm-armv7-GENERICSD.img.xz”

URL_CHECKSUM=”https://download.freebsd.org/releases/arm/armv7/ISO-IMAGES/$VERSION/
CHECKSUM.SHA512-FreeBSD-$RELEASE_VERSION-arm-armv7-GENERICSD”

 It was all fun and worked
correctly for a few days,
but then it abruptly stopped.

https://adventurist.me/posts/00297
https://adventurist.me/posts/00297

23FreeBSD Journal • July/August/September 2025

Next, we define the target image name, the directory tree, the needed packages, the
u-boot bootloader location, the time zone, the packages to be installed on the target im-
age, and the initial target image size.

TARGET_IMG=”nanopi-rtl-433-FreeBSD-$RELEASE_VERSION.img”
IMG_TARGET_DIR=”img-target”
IMG_MNT_DIR=”img-mnt”
IMG_RELEASE_DIR=”img-release”
CUSTOM_DIR=”customization”
PACKAGES=”u-boot-nanopi_neo-2024.07”
BOOTLOADER=”/usr/local/share/u-boot/u-boot-nanopi_neo/u-boot-sunxi-with-spl.bin”
TIME_ZONE=”/usr/share/zoneinfo/CET”
TARGET_PACKAGES=”rtl-433 monit”
SD_SIZE=”6G”

For security reasons, we create a personalized user password.

user password
TARGET_USER_PW=`date +%s | sha256sum | base64 | head -c 13`

The further steps involve preparing the directory tree and defining the checksum files
and the image’s location.

prepare the directory tree
echo “Preparing the directory tree ...”
mkdir -p “$IMG_TARGET_DIR”
mkdir -p “$IMG_MNT_DIR”
mkdir -p “$IMG_RELEASE_DIR”
mkdir -p “$CUSTOM_DIR/usr/local/etc”
digest=”$IMG_RELEASE_DIR/CHECKSUM.SHA512-FreeBSD-$RELEASE_VERSION-arm-armv7-GENERICSD”
image=”$IMG_RELEASE_DIR/FreeBSD-$RELEASE_VERSION-arm-armv7-GENERICSD.img.xz”
digest_ext=”$IMG_RELEASE_DIR/CHECKSUM.SHA512-FreeBSD-$RELEASE_VERSION-arm-armv7-GENER-
ICSD.img”
image_ext=”$IMG_RELEASE_DIR/FreeBSD-$RELEASE_VERSION-arm-armv7-GENERICSD.img”

The images are downloaded to the $IMG_RELEASE_DIR, but only if the image check-
sum is different from the existing one.

if ! [-f $digest_ext]; then
 echo “Digest=Initial” > $digest_ext
fi
get the release image checksum and check the existing image
echo “Checking compressed image checksum”
fetch -o “$IMG_RELEASE_DIR” “$URL_CHECKSUM”
if ! sha512 -q -c $(cut -f2 -d= $digest) $image; then
 echo “Download compressed image”
 fetch -o “$IMG_RELEASE_DIR” “$URL_IMG”
 # reset extracted image checksum
 echo “Digest=Refresh” > $digest_ext
 rm -f $image_ext
else
 echo “Compressed image OK”
fi

4 of 8

24FreeBSD Journal • July/August/September 2025

The image is extracted if its checksum differs from the existing one.

extract the image
echo “Checking extracted image ...”
if ! sha512 -q -c $(cut -f2 -d= $digest_ext) $image_ext; then
 echo “Extracting image and creating checksum”
 rm -f $image_ext
 xz -dk $image
 sha512 $image_ext > $digest_ext
else
 echo “Extracted image OK”
fi

Now the packages required on the host system are installed.

Install needed packages
echo “Installing packages”
pkg install -y $PACKAGES

A target image is created with the size defined above and connected to a memory disk.

Create target image
echo “Create target image and connect to the memory disk”
truncate -s $SD_SIZE $IMG_TARGET_DIR/$TARGET_IMG
mdisk=`mdconfig -f $IMG_TARGET_DIR/$TARGET_IMG`
echo $mdisk

We write the image and the bootloader to the target.

write the extracted image to the memory disk
echo “Writing the extracted image to the memory disk”
dd if=$image_ext of=/dev/$mdisk bs=1m
write the bootloader to the memory disk
echo “Writing the bootloader to the memory disk”

if [-f $BOOTLOADER]; then
 dd if=$BOOTLOADER of=/dev/$mdisk bs=1k seek=8 conv=sync
else
 echo “The bootloader $BOOTLOADER does not exist. Aborting ...”
 exit
fi

Finally, the target image is mounted, and the packages are installed leveraging the pkg–
chroot option, which allows us to install packages meant for a different hardware platform
elegantly. Note that a correct resolv.conf should exist on the target system.

mount the target image
echo “Mounted target image on $IMG_MNT_DIR”
mount /dev/”$mdisk”s2a $IMG_MNT_DIR

install target packages
echo “Installing packages on target”
cp /etc/resolv.conf $IMG_MNT_DIR/etc/
pkg --chroot $IMG_MNT_DIR install -y $TARGET_PACKAGES

5 of 8

25FreeBSD Journal • July/August/September 2025

The services are being enabled on the target. Again, we use a handy option of the sys-
rc utility to access the configuration file directly on the mounted image. Not strictly need-
ed, but we also enable the remote syslog, which should be enabled with “-a <peer>” on the
destination host. This was enabled while debugging the system, which had been hanging for
a day and a half, as mentioned above.

enable services on target

sysrc -f $IMG_MNT_DIR/etc/rc.conf hostname=”nanopi” ntpdate_enable=”YES”
ntpd_enable=”YES” rtl_433_enable=”YES” monit_enable=”YES” syslogd_enable=”YES”
syslogd_flags=”-s -v -v”

In the customization directory, we replicate the needed parts of the system tree:

customization/
├── home
│ └─ freebsd
│ └─ .ssh
│ └─ authorized_keys
├── usr
│ └─ local
│ └─ etc
│ ├─ monitrc
│ ├─ rtl_433.conf
│ └─ syslog.d
│ └─ remote_anirul.d112.conf
└── var
 └─ log
 └─ rtl_433.log

copy the customisations
echo “Copy $CUSTOM_DIR to $IMG_MNT_DIR”
cp -a $CUSTOM_DIR/* $IMG_MNT_DIR

The time zone is set by simply copying the definition to /etc/localtime on the target.
Fun note — copying the CET definition on a desktop machine will cause issues in the

Mozilla products. For example, in Thunderbird, the time in the email list is in UTC, but when
you open the email, the time is displayed correctly. In that case, it’s better to use tzsetup and
specify the correct city or copy over a city definition. I still must figure out how to report this
bug.

set the timezone
echo “Set the timezone: copy $IMG_MNT_DIR/$TIME_ZONE to $IMG_MNT_DIR/etc/localtime”
cp $IMG_MNT_DIR/$TIME_ZONE $IMG_MNT_DIR/etc/localtime

Next, the new password for the FreeBSD user is set up and copied to a file in the home
directory, and next to the image file. The final cleanup unmounts the image, removes the
memory disk, and provides the user with some final instructions.

configure users
echo “Configuring users on target”
change freebsd user password
echo “$TARGET_USER_PW” | pw -R $IMG_MNT_DIR mod user freebsd -h 0

6 of 8

26FreeBSD Journal • July/August/September 2025

echo “$TARGET_USER_PW” > $IMG_MNT_DIR/”home/freebsd/.pwd”

unmount the target image
echo “Unmounted target image from $IMG_MNT_DIR”
umount $IMG_MNT_DIR

create the password file
echo “$TARGET_USER_PW” > $IMG_TARGET_DIR/$TARGET_IMG”.pwd”

remove the memory disk
echo “Removing memory disk $mdisk”
mdconfig -d -u $mdisk

Final instructions
echo “You can copy the image with \”dd if=$IMG_TARGET_DIR/$TARGET_IMG of=/dev/<USB
Disk> status=progress bs=1m\””
echo “The password for the user freebsd is \”$TARGET_USER_PW\””
echo “The password is also available in the file \””$IMG_TARGET_DIR/$TARGET_IMG”.
pwd\””

In the customizations, we have the configuration files for the services. Monit monitors
the rtl_433 status and restarts it if needed. Here are the lines from monitrc in which the
rtl_433 service is defined.

rtl_433
check process rtl_433 with pidfile /var/run/rtl_433.pid
start program = “/usr/local/etc/rc.d/rtl_433 start” with timeout 60 seconds
stop program = “/usr/local/etc/rc.d/rtl_433 stop”

And of course, we must configure rtl_433. The differences from the sample config are
the following.

output mqtt://<homeassistant>,usr=<mqtt user>,pass=<mqtt user pwd> ,retain=0,devic-
es=rtl_433[/model][/id]
output json:/var/log/rtl_433.log
output log

The output is sent to the MQTT broker accessible to Home Assistant or, in my case, run-
ning in the same VM. The retain flag is set to false, as I don’t want to clutter the MQTT top-
ics with transient devices and am willing to get the devices back slower in Home Assistant.

The JSON output is also sent to a JSON file in /var/log

Lessons learned
That last line in the rtl_433 config file was the catch. In my prototypes, the log was written

to /tmp, filling it in approximately 36 hours and causing the system to hang. So, never write
log files to /tmp if you are not purging them.

The hardware should be reliable. I had a lot of trouble with the Pine A64+ and its reboot
issues.

I learned a lot about the basic configuration of FreeBSD and once again appreciated the
elegance of its tools.

7 of 8

27FreeBSD Journal • July/August/September 2025

The status
The system has maintained an uptime of 57 days since the last storm and power failure,

during which it booted up automatically without user intervention. It is reliable, easily repli-
cated, and upgradable to a new FreeBSD release. By swapping the SD card, it is trivial to test
a new release or configuration and revert to the previous one.

In the future, I would like to explore the possibility of using nanobsd for development and
consider whether this project could serve as a good opportunity to delve into Crochet/Pou-
driere image creation.

VANJA CVELBAR is a Technical Collaborator at the Istituto Officina dei Materiali of the Ital-
ian National Research Council, where he is the head of the IT group and manages the IT in-
frastructure and services that support research and operations. His expertise spans systems
administration, networking, and open-source technologies. After two decades working pri-
marily with Linux, he returned to his roots in FreeBSD — his first system being version 3.2.
Today, he focuses on deploying and maintaining FreeBSD-based environments to deliver
core IT services across the Institute.

8 of 8

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

Contents

mailto:maurer.jim@gmail.com

28FreeBSD Journal • July/August/September 2025

A few years ago, our cherished former FreeBSD Journal editorial board member, Kristof
Provost, wrote a great piece on the ideal way to write a bug report. Sadly, Michael W
Lucas uses up our per-issue allotment of sarcasm early in the year, so to avoid going

into debt, it was decided that I reframe Kristof’s original post in a way that would avert ironic
bankruptcy.

Every system maintainer has their own preferences for how to receive reports of bugs
and requests for improvements. As Kristof is so core to pf development in FreeBSD, he was
the ideal person to write a piece for the journal.

In response to being asked to reframe his original piece, Kristof responded:

“I cannot build on perfection.”

So, it is up to me to rephrase Kirstof’s original words and provide you with some starting
advice to help you quickly sort out your favourite and most troublesome bugs. You can find
his blog post at https://www.sigsegv.be/blog/2014/M.

Bugs
Often, software projects feel like they are made out

of bugs; developers will tell you everything is made
from shoe polish and duct tape. The issues that cause
the most trouble are often the hardest to pin down.
“Late at night, when we have 12 concurrent requests
hitting our geodetic load balancer” isn’t an uncommon
start for a complex bug. Sometimes there is a dreaded
“after 1000 hours...” lead into an issue description.

Thankfully, not all bugs are like this. FreeBSD will
panic in many circumstances, and for a user, that can
be a bad day, but for a developer, a panic message can be a handy clue about where things
are going wrong. I’d take a panic over a silent data corruption issue any day.

Some bugs are purely cosmetic, fields aren’t displayed as well as they may be, or docu-
mentation is unclear (yes, we consider that a bug!).

Whatever form your bug takes, from logical impossibility to a typo, I am going to show
you a framework you can follow to get things fixed.

Whatever form your
bug takes, from logical
impossibility to a typo,
I am going to show you
a framework you can follow
to get things fixed.

BY TOM JONES

Writing
Effective
Bug Reports

1 of 6

https://www.sigsegv.be/blog/2014/M

29FreeBSD Journal • July/August/September 2025

2 of 6

The bug life cycle
Before we go into the best way to write up a bug, let’s discuss what happens afterward, as

I think this provides the context for why you need to add as much information as you can to
initial reports.

In FreeBSD, most bugs propagate either via mailing lists or the bug tracker (bugs.freebsd.
org). Developers regularly read the mailing lists, but the best way to get attention for a bug
is a ticket on the bug tracker.

A newly created bug is marked as “new” and is in what we call the new bug state. At this
point, it has been submitted by a user, but no relevant project areas have been alerted to its
existence.

The Bugmeister team goes through new submis-
sions and reassigns them from the new bug state,
making a best attempt at setting the category of the
bug correctly. Developers can choose to be notified
about bugs in specific categories. Relevant project
mailing lists will also receive notifications about new
bugs. Additionally, a summary email containing “bugs
of interest to this group” is sent periodically.

Bugs may be assigned to a particular developer by
Bugmeister or by other FreeBSD project members.

A developer may at some point decide that they
want to “take” a bug, becoming the owner of the is-
sue. This is typically the point at which the developer chooses to work on the bug or pur-
sue analysis.

There may be back and forth on the issue as the developer asks for more information,
but if everything goes well, eventually the developer will create a code review (on reviews.
freebsd.org). The code review may be referenced in the bug, but it might be that the devel-
oper is only seeking knowledgeable feedback from certain other developers familiar with
the subsystem.

If testing is required to determine if the bug is resolved, it will likely be highlighted.
Finally, once code review and testing are completed, the bug will be committed to

FreeBSD; typically, the commit message will contain a reference to the bug, and an auto-
mated update will be added. Sometimes it takes many fixes to address the issue underlying
a bug.

Once the fix(es) are committed, you (the user) can use the software again bug-free, as-
suming you are running a CURRENT snapshot. Many fixes are merged from CURRENT back
to stable branches; we call this a merge from current (MFC).

If the bug is MFC’d, then the fix will be available on a stable branch and will be available in
the next point release.

This process, from reported issue to fix, can involve a lot of steps; some problems can be
resolved in 20 minutes, but others might take months or years. I have seen bugs closed out
as fixed after more than a decade of debugging.

The time it takes to resolve an issue depends significantly on the recency of the problem.
If you catch the bug soon after the commit lands, there is a good chance it will be fixed to-
day. Other bugs take longer to show up, or only appear in environments running FreeBSD
releases.

Bugs may be assigned to
a particular developer by
Bugmeister or by other
FreeBSD project members.

https://bugs.freebsd.org
https://bugs.freebsd.org

30FreeBSD Journal • July/August/September 2025

3 of 6

The time it takes to fix those bugs largely depends on the quality of the bug report and
the ongoing discussions about the issue. So let’s look at what a good bug report contains.

Where to submit a bug report
The FreeBSD project encourages users to share their experiences with the software we

develop through multiple channels for reporting issues. In order of preference, notifications
about new or interesting bugs would come as one of the following:

•	an easy-to-apply change with clear tests provided as a new code review on reviews.
freebsd.org

•	a hacked-up solution to an issue on reviews.freebsd.org
•	a new bug on bugs.freebsd.org
•	an email (or other communication) directly to the developer
•	a complaint on the forums with speculation about the cause
•	IRC, matrix, Discord, or another chat venue
•	an angry post on social media that FreeBSD is the worst
The first two options assume quite a high level

of technical competence. If this is too much for you,
don’t worry; we are still happy to receive bug reports
through other methods.

We don’t expect everyone to do advanced software
development, just that every reporter provide as much
relevant detail as they can at each step.

For a typo, most users can immediately suggest a
remediation, but creating a documentation change re-
quires using developer tools, and we don’t ask that of
everyone. If you can use these tools, creating a review
is preferred over creating a new bug, as the final change will likely require a review either
way.

More complex bugs might be addressable immediately; some complex bugs have sim-
ple answers. However, other bugs are challenging to diagnose, and the best information we
have about them for a long time is sideways glances as something seemingly unrelated fails.

If you have a proposed fix of any quality, the most important thing to do is to share your
suggestion with the public. Work down the list until you find the correct place.

Writing a good bug report
There is a lot of information out there on what should go into a good bug report; the

breadth of software in FreeBSD makes any single template pretty tricky to use.
There are some good rules of thumb for what you should include:
•	Information about your setup.
•	What you expect to happen.
•	What actually happens.
•	What is the difference between what should happen and what happens?
•	This isn’t always obvious.
•	Events leading up to the bug being triggered.
•	Temporal factors help developers debug issues. If the bug occurs immediately after a

reboot or only after 5 days, different strategies are required.

The FreeBSD project
encourages users to share
their experiences with
the software we develop
through multiple channels
for reporting issues.

https://reviews.freebsd.org
https://reviews.freebsd.org
https://reviews.freebsd.org
http://bugs.freebsd.org/

31FreeBSD Journal • July/August/September 2025

Where to get information and what to provide
As the system runs, it generates a lot of information that can be helpful for debugging.

You may be asked for logs. If you are, you should try to include things like:
•	dmesg: the output of the dmesg command
•	all of the text of a kernel panic message, including the stack trace
•	the output of pciconf -lv if it is a hardware issue
•	syslog output
•	tool output and error messages
Err on the side of providing more information than less; if a developer has to ask for more

information, that might add a week before they can look at the issue in detail.

Information about your setup
You need to strike a balance between describing the Anycast load balancing setup for

your Fortune 500 company and simply showing a single firewall rule. Typically, reports pro-
vide less information about their environment than they could; the combination of tools and
network configurations helps developers understand bugs.

So what constitutes your setup?
We need to know the version(s) of FreeBSD you are using and how many there are. The

fact that the bug occurs between 14 and 15 hosts is more relevant than knowing it is just 14.
We need to know about customizations and detours from the norm; you should include

them if you built FreeBSD yourself or if you are using packages. We support both, but if you
aren’t running the release engineering version, then that is something to consider.

If you aren’t running FreeBSD, but a downstream such as pfSense or HardenedBSD, you
need to include that. It doesn’t mean FreeBSD developers won’t help you, but omitting this
fact will likely annoy someone.

This is relevant because downstreams build FreeBSD with different flags, packages, and
ship their own tuning. All of this can contribute to a bug existing on one platform and not
another.

We really need your setup and not an idealised version or an example from a tutorial.

What you expect to happen
Another essential part of reporting an issue is describing what you expect to happen.

Some software can’t do what you want, either now (due to feature development) or ever
(due to NOT ACTUALLY BEING A BUG!).

ls won’t copy files or play videos, but pfctl should be able to clear rule state counters.
Please tell us what you expect the output and effects to be so we can double-check all of
your assertions.

What actually happens?
Provide output from the tool, describe the actual effects you can measure, and highlight

any issues.

What is the difference between what should have happened and what happened?
It will be evident to you that the tool is broken. You are submitting a bug, but as a devel-

oper triaging an issue, additional help in spotting what is going wrong is essential.
Many bugs aren’t easy to see in a textual report, and performance issues can be chal-

lenging to relate to (and to diagnose and fix).

4 of 6

32FreeBSD Journal • July/August/September 2025

Be very clear about what has happened and what isn’t correct.

Events leading up to the bug being triggered
For many bugs, the events leading up to the bug being triggered are important. Can’t do

X after Y is an excellent bug report — it implies a path to developer gold (see below).
“ls reports incorrect file sizes once disk is full” tells us a lot of information that “ls re-

ports incorrect file sizes” doesn’t.
It might help to review dmesg before and after an instance of a bug; kernel subsystems

will report errors and resource exhaustion there. In dmesg, we can see that the interface is
going up and down constantly.

How should you provide information?
The information you include should ideally be textual. If there are error messages, you

should include all of them; some software will always
print error messages or print odd diagnostics when it
performs operations. In a bug report, you should try to
include this information.

If you are experiencing panic, you might struggle to
copy and paste text from somewhere. In that case, tak-
ing a photo with your phone is a valid strategy; how-
ever, you should try to ensure a balance between file
sizes and image clarity. Ideally, you would take a photo
and transcribe the text as accurately as possible.

Your photo host is likely to go away in the future,
but text strings in the FreeBSD bug tracker live for
decades.

Writing an excellent bug report
An excellent bug report will carry most of the above information, but it will also include

developer gold: A reproduction case.
For a simple issue, this is something like a command invocation, but for some problems,

you might have to write shell scripts that work together. Reproducers for network bugs can
be very difficult to write, but thanks to vnet jails, it is actually possible to do this with just a
shell script (that is, in fact, how the firewall test suites work).

A reproducer aims to reduce the reproduction of the problem to its barest components.

Proactively help to resolve the issue
Once you have submitted the bug, that might be enough to get a developer’s interest to

fix it. If you highlight a regression or new bug within 20 minutes of a commit, you are like-
ly to get the developer’s attention right away. Most developers watch mailing lists and the
src-commits list after making changes to catch exactly these reports.

If your bug languishes or only gets assigned to a team after a while, don’t panic; that is a
pretty usual experience. You can proactively contact developers who work in similar areas or
on similar ports. Just be polite; you are using a volunteer’s time.

Once a developer has picked up your bug, they will likely ask you questions. If it has been
a long time, that question might be, “Does this still happen on a snapshot?”

Otherwise, they may ask for more information or for you to test patches. If the bug is
only on specific hardware, we can frequently have a fix sitting in the bug tracker, but without

5 of 6

For many bugs, the events
leading up to the bug being
triggered are important.

33FreeBSD Journal • July/August/September 2025

someone to confirm it solves the bug, or at least doesn’t cause a regression, the patch will
languish.

Some bugs are just difficult to figure out. If a developer is working with you, feel free to
suggest your theories for what might be the trigger. Some bugs sound like ghost stories un-
til we find an eventual fix.

Good luck!
Writing and submitting a bug report is a lot of work; it is easy to feel frustrated that your

effort seems ignored or not followed up on. FreeBSD is a volunteer project, and developers
work on things as they can based on their interests. We have a great set of developers who
will hunt down obscure and complex issues, but they need your help and cooperation to
gather enough information to reproduce and test changes.

If you follow the advice here, you should have a much better experience getting expo-
sure for your bugs and getting them fixed.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

6 of 6

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number
of applications, off ers powerful solutions, and cutting edge
features. The best part? It’s FREE of charge and comes with
full source code.
Did you know that working with a mature, open source
project is an excellent way to gain new skills, network
with other professionals, and diff erentiate yourself in a
competitive job market? Don’t miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

The FreeBSD Project is looking for

• Programmers • Testers

• Researchers • Tech writers

• Anyone who wants to get involved

Find out more by

Checking out our website
freebsd.org/projects/newbies.html

Downloading the Software
freebsd.org/where.html

We’re a welcoming community looking
for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don’t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Help Create the Future.
Join the FreeBSD Project!

Contents

https://freebsdfoundation.org

34FreeBSD Journal • July/August/September 2025

 Quantum-Safe Website

1 of 9

Some time ago, at my current workplace, it was brought to my attention that traditional
cryptography will no longer be considered secure.

According to various sources, it is estimated that in the next 10 years, the advance-
ments in quantum computing will reach a point where modern-day cryptographic algo-
rithms that we take for granted will be easily broken within seconds. Naturally, I started
researching this topic to find out how bad the situation is and what we can do today to pre-
pare our systems for this scenario. This so-called “Quantum Threat” is generally described
as the point in the future where quantum computers will possess enough processing power
to break traditional encryption in a matter of minutes or even seconds. Sounds bad, right?
Well, it gets even worse. There is a related phenomenon called “Store now - decrypt later”
or “Harvest now - decrypt later,” which basically means that currently secure data transmis-
sions sent over the internet are captured and stored until a sufficiently powerful quantum
computer is widely available for anyone to utilize it to
decrypt the previously captured data.

But what is “currently secure”? In terms of asym-
metric encryption, there are key exchanges, the
most used method of which is RSA using 2048,
3072, or 4096 bits of key length. These key exchang-
es (not limited to only RSA) can be a part of an SSH
session to a remote server, using a TLS-encrypted
website to enter your bank account details, or even
an IKEv2-based IPSec VPN tunnel between two re-
mote locations. All the data sent over these chan-
nels can be intercepted and stored now and decrypted later. But how does one go about
decrypting RSA keys? The answer to that question is Shor’s algorithm, which was invented
by Peter Shor in the 1990s. It was designed to find the factors of a prime number using a
quantum computer. But what does this have to do with key exchange algorithms? Let’s take
RSA, for example. In simple terms, it works by multiplying two big prime numbers to cre-
ate an even bigger number. The two primes are kept secret and are part of the private key
alongside some other numbers. The product of those two primes is part of the public key
with some extra numbers. What makes this vulnerable is the fact that if you manage to find
out the two starting prime numbers, you can use them to compute part of the private key,
which can be used to find the remainder of it. If you have the private key, you can decrypt
what one side sent. Do it again for the other, and you have yourself a fully decrypted cap-
tured information exchange. Of course, it takes a tremendous amount of computing power

It was brought to
my attention that traditional
cryptography will no longer
be considered secure.

BY GERGELY POÓR

	 Implementing
a Quantum-Safe Website
	on FreeBSD

35FreeBSD Journal • July/August/September 2025

2 of 9

because the bigger the public key is, the more number-crunching you must do. Shor’s al-
gorithm provides a method to speed up the process using a quantum computer, which can
calculate all the possible solutions at once.

But how can we defend our systems against this kind of attack? There are three answers:
You can keep using the standard algorithms, but with longer keys. Currently, it is believed

that RSA keys over 4096 bits of key length are considered long enough that they cannot be
cracked soon. If you want to play it safe, use key lengths of 8192 bits or longer.

However, there are other alternative methods to tackle this problem. The second one is
PQC (Post-Quantum Cryptography). Researchers and mathematicians started working on
other algorithms that would be resistant to Shor’s. These were based on so-called mathe-
matical “trapdoor” functions: easy to get from an equation to a result, but (almost) impos-
sible to do in reverse. The United States’ National Institute of Standards and Technology
(NIST) began collecting these algorithms, and nu-
merous cryptography experts and mathematicians
started testing them to find out whether they are
resistant to Shor’s algorithm or not. This was known
as the Post-Quantum Cryptography project. Over
the years, there were several rounds where various
algorithms were eliminated. In 2024, NIST issued
the FIPS 203 standard naming ML-KEM (previously
known as CRYSTALS-Kyber or Kyber) as the primary
standard for general encryption, and in 2025 stated
that HQC will be a backup in case ML-KEM is ever
compromised.

The third option is called QKD, which stands for
Quantum Key Distribution and is based on the ma-
nipulation of photon particles using quantum physics to securely generate keys. This meth-
od is extremely costly as it requires specialized equipment and a pre-existing optical net-
work connection between the two participating sides and has a current limit of around
100km between the endpoints.

The project’s goal
I have a website that I made some time ago using only nginx without any kind of HTML,

CSS, PHP, or whatever. It’s a simple website that returns the IP address of the client (like
icanhazip.com or ifconfig.me). It started out as a hobby project while I was learning about
nginx, but I started to deploy it in larger networks to test if the client was behind NAT or not.
This was a good starting point for my PQC experiment. The requirements were simple: it
must work with a wide range of software (web browsers, command-line tools like fetch(1)
or curl(1)), and having experienced the UNIX philosophy during my years of working with
FreeBSD and Linux I wanted to keep it as simple as possible but stable as well since it could
also run on a cloud VPS at some point in the future. So naturally, I chose FreeBSD as the OS
and nginx as the platform. The only remaining part was the actual PQC implementation.

I did a little research and found a project called oqs-provider by the Open Quantum Safe
project, which is an open-source C library and provider for OpenSSL version 3, implement-
ing ML-KEM among other algorithms. It is available for FreeBSD and for various Linux distri-
butions as well.

But how can we defend
our systems against
this kind of attack?
There are three answers:

https://github.com/open-quantum-safe/oqs-provider

36FreeBSD Journal • July/August/September 2025

3 of 9

How it works
Simply put, it integrates various PQC algorithms for key exchange and signature with

OpenSSL. In terms of key exchanges (alongside others), it supports ML-KEM with several
elliptic curve-based Diffie-Hellman key exchanges like X25519, p384, p521, and SecP384r1.
These can be easily identified based on their names, like X25519MLKEM768, which uses
Curve 25519 with 768-bit long ML-KEM keys. PQC algorithms require TLSv1.3, but for com-
patibility reasons, we will define TLSv1.2 as the minimum version, so legacy systems will still
be able to reach the website. One thing to keep in mind is the “TL;DR fail” error, which can
happen if the client software is not properly set up to support PQC algorithms over TLSv1.3,
resulting in a TLS failure, but this will gradually be a smaller nuisance over time as software
gets updated and rolled out to clients. If you are not concerned with legacy clients or buggy
software and want a 100% quantum-safe website, feel free to disable TLSv1.2 altogether (as
you’ll see in the nginx configuration file later). With the theory part out of the way, let’s get
to the fun stuff: the actual implementation!

Implementation
The oqsprovider requires OpenSSL version 3.2 or

higher. According to their GitHub page, they have
added some extra functionality starting with version
3.4. My FreeBSD installation has OpenSSL version
3.0.16, which doesn’t support oqsprovider.

At the time of this writing, OpenSSL 3.5.0 was re-
leased with native PQC algorithm support, but a note
from pkg(8) indicated that it was in beta stage, not
suitable for production. So, for the rest of the imple-
mentation, I will stick with OpenSSL version 3.4.1.

To start things off, I updated my VM to FreeBSD
14.3-RELEASE. We will have to install a newer version
of OpenSSL as well as nginx, but with the ability to use the newer OpenSSL. To do this as
hassle-free as possible, we will install openssl34 and openssl-oqsprovider via pkg(8), and ng-
inx will be built using the ports system. For this reason, we will need to have the ports tree
present under /usr/ports. I don’t have security/openssl34 present on my system, so I will be
pulling the 2025Q2 branch of the ports tree. I will need that so nginx can be linked against
openssl34. First, I will install git(1), which is the recommended method to install/update the
ports tree as stated by the FreeBSD handbook.

pkg install -y git

Once git(1) is on the system, it can manage the ports tree. However, I installed the ports
tree with the base system some time ago, so I will be removing the current /usr/ports direc-
tory, so when I clone the repository, it will not complain about /usr/ports being already pres-
ent. There are other ways around this, but I like to start things off clean.

rm -rf /usr/ports
git clone --depth 1 https://git.FreeBSD.org/ports.git -b 2025Q2 /usr/ports

Afterwards, we need to install OpenSSL 3.4.1 and oqsprovider.

Simply put, it integrates
various PQC algorithms
for key exchange and
signature with OpenSSL.

https://tldr.fail/

37FreeBSD Journal • July/August/September 2025

pkg install -y openssl34 openssl-oqsprovider

Then, as the installation message suggests, we will need to merge the contents of /usr/
local/openssl/oqsprovider.cnf with /usr/local/openssl/openssl.cnf. Since we just installed the
new version of OpenSSL, after the merge, the contents of /usr/local/openssl/openssl.cnf will
look like this:

…
[provider_sect]
default = default_sect
oqsprovider = oqsprovider_sect
….
[default_sect]
activate = 1

[oqsprovider_sect]
activate = 1
module = /usr/local/lib/ossl-modules/oqsprovider.so
…

Now we will compile nginx.

cd /usr/ports/www/nginx

I will export some environmental variables to make nginx link against the newly installed
OpenSSL 3.4.1

export OPENSSL_BASE=/usr/local
export OPENSSL_LIBS=”-L/usr/local/lib”
export OPENSSL_CFLAGS=”-I/usr/local/include”

Then we will configure nginx to make sure that “HTTP_SSL” is supported (it should be en-
abled by default, but it’s always better to double-check). I will not adjust any other settings.

make config

Now we are ready to start compiling nginx. Set some environmental variables to indicate
the path of the newly installed OpenSSL and hit enter.

make OPENSSLBASE=/usr/local OPENSSLDIR=/usr/local/openssl install clean

While nginx is compiling, go and grab your favorite beverage, work on some tickets, or
show the compilation output to your friends so they can see how cool you are.

After the compilation is done, let’s verify that nginx now links against OpenSSL 3.4.1 that
we installed under /usr/local:

nginx -V 2>&1 | grep -i openssl
built with OpenSSL 3.4.1 11 Feb 2025
ldd /usr/local/sbin/nginx | grep ssl
 libssl.so.16 => /usr/local/lib/libssl.so.16 (0x16a83b849000)

Note: the hex identifier in parentheses may differ.

4 of 9

38FreeBSD Journal • July/August/September 2025

If your output is the same as mine, you have successfully added OpenSSL 3.4 support for
nginx. Next, we will create a configuration file for our website to include PQC. Let’s head to /
usr/local/etc/nginx, where we will first make a backup of the original nginx.conf file:

cd /usr/local/etc/nginx
mv nginx.conf nginx.conf.orig

And now let’s create a new configuration:

vi nginx.conf

Add the following lines to the file:

events{}
http{
 server{
 listen 443 ssl;
 ssl_certificate /usr/local/etc/nginx/server.crt;
 ssl_certificate_key /usr/local/etc/nginx/private.key;
 ssl_protocols TLSv1.2 TLSv1.3; #remove TLSv1.2 if you don’t need backwards
compatibility
 ssl_prefer_server_ciphers off;
 ssl_ciphers ECDHE-ECDSA-AES128-GCM-SHA256:ECDHE-RSA-AES128-GCM-SHA256:ECD-
HE-ECDSA-AES256-GCM-SHA384:ECDHE-RSA-AES256-GCM-SHA384:ECDHE-ECDSA-CHACHA20-POLY1305-
:ECDHE-RSA-CHACHA20-POLY1305:DHE-RSA-AES128-GCM-SHA256:DHE-RSA-AES256-GCM-SHA384:D-
HE-RSA-CHACHA20-POLY1305; #if using pure TLSv1.3 you can remove this line according to
Mozilla’s SSL Configuration Generator’s “modern” settings
 ssl_ecdh_curve X25519MLKEM768:X25519:prime256v1:secp384r1; #this is the PQC
part, the others are for non-pqc compatibility only.
 location /{
 return 200 “$remote_addr\n”;
 }
 }
 server{
 listen 80;
 location /{
 return 301 https://$host$request_uri;
 }
 }
}

This configuration will do the following:
•	listen on ports 80 and 443
•	redirect plaintext HTTP requests to HTTPS
•	utilize TLS1.3 and TLS1.2 for compatibility
•	use balanced ciphers for the widest compatibility while still providing decent security. I

got the cipher and curve list from the Mozilla SSL Configuration Generator.
Next, for this demo, I will create a self-signed certificate, but for production use (and for

compatibility reasons), you should acquire a valid certificate that is signed by a trusted CA.
You can use Let’s Encrypt certificates and automate the certificate renewal with certbot(1).

5 of 9

39FreeBSD Journal • July/August/September 2025

For that, you can simply run:

pkg install -y py311-certbot

After that, follow the walkthrough found at Certbot’s instructions.
To create the self-signed certificates, you can use this one-liner (remember to change the

DNS and IP fields to match your setup):

openssl req -x509 -nodes -days 365 -newkey rsa:2048 \
 -keyout private.key -out server.crt \
 -subj “/CN=quantum” \
 -addext “subjectAltName=DNS:quantum,IP:192.168.2.40”

It will use a 2048-bit long RSA key, but you might want to bump this all the way to 8192
(remember keys over 4K are considered quantum-safe for now), but keep in mind that could
break compatibility with some older systems, and will be valid for 1 year, which is more than
enough for this testing purpose. (Here, the phrase ”Nothing is more permanent than a tem-
porary workaround” comes to my mind). It also includes the IP address and the hostname of
my FreeBSD VM. If this were not the case, some software (like PowerShell) would complain
that it cannot trust the certificate and would not be able to initiate/complete the TLS ses-
sion with the website.

Once the certificate and its private key are both ready, you can start nginx, but first, we
need to tell /etc/rc.conf that we would like to start it at boot time.

sysrc nginx_enable=YES
service nginx start

It will verify the syntax of the nginx.conf and test our configuration briefly before starting
it. If everything is fine, you should see this:

Performing sanity check on nginx configuration:
nginx: the configuration file /usr/local/etc/nginx/nginx.conf syntax is ok
nginx: configuration file /usr/local/etc/nginx/nginx.conf test is successful
Starting nginx.

Testing
Now that we have a website up and running, let’s check if it works. For the tests, I will use

several methods: a web browser and various command-line clients, like curl(1). I have curl in-
stalled already, but if that is not the case for you, install it with pkg:

pkg install -y curl

You can check the website with curl (keep in mind the self-signed certificate — hence
we’ll use the --insecure flag).

curl --insecure https://127.0.0.1

It will return 127.0.0.1 and a newline character. To get a bit more info, you can throw in a -v
flag to make the output verbose.

curl --insecure -v https://127.0.0.1

6 of 9

40FreeBSD Journal • July/August/September 2025

In my case, since curl links against the default OpenSSL version, it doesn’t support PQC
algorithms, so it falls back to X25519:

…
* SSL connection using TLSv1.3 / TLS_AES_256_GCM_SHA384 / X25519 / RSASSA-PSS
…

You can also verify the redirect with this command:

curl --insecure -vL http://127.0.0.1

If you see this, it worked:

…
* Request completely sent off
< HTTP/1.1 301 Moved Permanently
….
* Clear auth, redirects to port from 80 to 443
…

For Microsoft Windows-based hosts, if you are using a self-signed certificate, you’ll need
to import that (in our case, it’s server.crt) to the “Trusted Root Certification Authorities”
store and run the following PowerShell command:

(Invoke-WebRequest https://192.168.2.40).Content

Or if you want a bit more verbosity:

	Invoke-WebRequest https://192.168.2.40

Using curl also works, but it’s just a frontend to the Invoke-WebRequest and doesn’t have
the same flags as the FreeBSD or Linux versions.

To test compatibility with other hardware, I have logged on to my MikroTik router and
called the URL from the command line:

/tool fetch url=”https://192.168.2.40” output=user check-certificate=no
 status: finished
 downloaded: 0KiB
 total: 0KiB
 duration: 1s
 data: 192.168.2.1n

Note the “n” at the end. If you want to get rid of it, change the following line in /usr/local/
etc/nginx/nginx.conf:

	return 200 “$remote_addr\n”;

to this:

	return 200 “$remote_addr”;

This will not return a newline character if called from a tool like curl. Decide which version
you want. If you plan to use this IP address in scripts, get rid of the “\n”. For me, it is currently
just for debugging, so I’ll leave it as-is.

In the case of web browsers, you might need to enable some features in certain versions

7 of 9

41FreeBSD Journal • July/August/September 2025

if you wish to have PQC support. I am testing on Firefox version 139.0.4, which has PQC sup-
port enabled since version 132. In the case of Chrome, it has PQC support since version 124,
but in some cases, you’ll need to enable it by hand:

chrome://flags/#enable-tls13-kyber

You can check if Firefox supports it by going to about:config and looking for this:

security.tls.enable_kyber

Next, open the developer tools by pressing F12 and navigate to ”network” if using Firefox
or ”Privacy and security” in case of Chrome. Then input the IP address of your FreeBSD in-
stallation and press enter. You should see only an IP address on screen (that’s where the re-
quest originated from). In the developer tools, click on the entry that has your FreeBSD’s IP
address, and if using Firefox, also click on the ”Security” tab on the right side.

If your browser supports PQC, you should see that the key exchange uses either
mlkem768x25519 on Firefox or X25519MLKEM768 on Chrome.

If that’s the case, then congratulations! You have successfully deployed a PQC-secured
website with legacy support on FreeBSD. Welcome to the future!

Conclusion
While it is not so difficult to add PQC support for a TLS key exchange, the overall pro-

cess does include several extra — but needed — steps. One key concern is that you must
compile nginx from source to use the newer OpenSSL version. This means that every time a
security patch comes out, you will have to recompile it, which takes more time than simply
applying the hotfix with either freebsd-update(8) or pkg(8). However, OpenSSL 3.5.0, which
adds native support for various PQC algorithms, was recently released, and being a long-
term stable (LTS) release, it will be supported until 2030 according to their website. With
the ever-present quantum threat and the sudden rush to implement PQC as soon as pos-
sible, I would welcome it if this version were integrated into the FreeBSD base. That would
eliminate most of the steps to get PQC working with nginx (and possibly other software).
I also know, however, that stability is a major concern for FreeBSD, and until OpenSSL 3.5
has been thoroughly tested and vetted for bugs, we will probably find an older version of
OpenSSL in the base install. This website was only a small example of quantum-safe encryp-
tion, but it is not hard to imagine additional software benefiting from PQC. Let’s say bank-
ing, healthcare, or governmental sites started rolling out ML-KEM. It would be almost im-
possible to decrypt communications between the servers and the clients, so bank account

8 of 9

details, patient information, and personally identifiable information would be safe in transit
against future quantum computers. It is not going to happen anytime soon, but as more
people encounter the term “quantum-threat”, the more awareness is raised and the closer
we all get to a world where post-quantum cryptography is part of our everyday lives.

GERGELY POÓR is a Linux/BSD System and Network Engineer, an Electrician, and a
FreeBSD enthusiast who has been working in IT since he graduated from high school
in 2018. Having experience ranging from SMB desktop support to enterprise-level hy-
brid-cloud and industrial/IoT systems, he is always keen on learning something new. He lives
in Budapest, Hungary, with his beloved wife Kriszti and likes to program in sh/bash and de-
velop his own smart home system in his free time.

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

Contents
42FreeBSD Journal • July/August/September 2025

9 of 9

mailto:maurer.jim@gmail.com

43FreeBSD Journal • July/August/September 2025

T his is the second article in a series on hacking on WiFi in FreeBSD. In the first article,
we introduced some terminology around WiFi/80211 networks, gave a crash course in
a typical network architecture, and presented examples of using ifconfig and some

wireless adapters to create station, host ap, and monitor mode WLAN interfaces. We also
introduced the two distinct kernel layers that implement the WiFi subsystem — drivers and
net80211.

Drivers Things like iwx, rtwn, and ath, which speak to wireless adapters over a physical bus
such as USB or PCIe, usually via a firmware interface.

net80211 The abstract state machines required to join networks, send packets, and per-
form other complex operations are common across many drivers.

To enable flexibility in what hardware is required to
provide, the net80211 layer can implement most parts
of the IEEE 802.11 state machine itself. This architec-
ture allows us to have a standard interface to integrate
with the rest of the networking stack, abstracting away
the specifics of what a card can support. It also enables
purely software-based WLAN adapters, which can be
very useful for creating test environments.

Network Adaptors can provide various levels of sup-
port from a FullMAC interface, where almost all of the
processing is handled on the card directly to devices
where all most all support is handled by the net80211
stack and the card just manages the radios. In a Full-
MAC card, the firmware exposes a configuration in-
terface for the OS driver to use. All packet transmis-
sion, reception, and management operations, such as
moving channel or scanning, are handled by the card’s
firmware. The bwfm Broadcom driver in OpenBSD and NetBSD is an example of a Full-
MAC driver.

Other cards need the net80211 stack to provide a variety of services to support the driv-
er’s operations. Some devices, like iwx, provide an interface to management operations
such as scanning and joining networks, but most other operations are handled by net80211.

Older drivers have to implement more of the net80211 state machine themselves rather
than reproducing a lot of very similar code.

BY TOM JONES

1 of 9

Network Adaptors can
provide various levels
of support from a FullMAC
interface.

FreeBSD WiFi Development
Part 2: Working on a Driver

https://freebsdfoundation.org/our-work/journal/browser-based-edition/networking-3/freebsd-wifi-development/

44FreeBSD Journal • July/August/September 2025

All WiFi drivers exist at some point on this scale, ranging from firmware handling almost
all the work to the OS managing most of the radio and transmission. The best way to see
how this works practically is to look at a driver.

Let’s start by looking at how a driver attaches and appears in the net.wlan.devices list,
and then we will look into how a packet leaves the net80211 stack and heads toward the
WiFi radio.

In this article, we will primarily focus on the if_iwx
driver for a couple of reasons: I am very familiar with
it, having brought the driver into the tree from the Fu-
ture Crew source release, and as a new driver, there is
still a lot to do in terms of low-hanging fruit.

Connecting a driver to hardware
The life cycle of a driver is usually:
•	 probe
•	 attach <do some work>
•	 detach
Many drivers only ever detach when the machine is

turned off. The probe and attach phases are where we
need to start to add support for new hardware to an
existing driver or when adding a new driver.

When a device is discovered by a bus, the bus will
ask each registered driver if it can work with that hardware. Once all drivers have been que-
ried, the bus will, in probe response order, ask the driver if it can attach to the device. The
first device to attach wins.

At some point in the future, the driver will have to stop playing and go home. This can
happen due to a bus error, if a device is removed, such as a USB, or if the system shuts down
or restarts.

For each of these phases, a callback is registered with the bus. As an example here is the
pci_methods struct from if_iwx.c

static device_method_t iwx_pci_methods[] = {
 /* Device interface */
 DEVMETHOD(device_probe, iwx_probe),
 DEVMETHOD(device_attach, iwx_attach),
 DEVMETHOD(device_detach, iwx_detach),
 DEVMETHOD(device_suspend, iwx_suspend),
 DEVMETHOD(device_resume, iwx_resume),

 DEVMETHOD_END
};

if_iwx registers probe, attach, and detach methods, and suspend and resume methods.
All of which are called when needed.

Probe
WiFi devices are typically made from a chipset and some supporting hardware. The

chipset is made by a company such as Realtek or Intel, but the actual device is manufac-

2 of 9

All WiFi drivers exist at
some point on this scale,
ranging from firmware
handling almost all the
work to the OS managing
most of the radio and
transmission.

45FreeBSD Journal • July/August/September 2025

tured around the chipset by another company. This arrangement means we get rtwn-based
devices made by a company such as TP-Link. The company building a device around the
chipset provides drivers and configuration data, resulting in a larger number of device IDs
being supported by a smaller number of drivers.

This means that a very common first patch for a new FreeBSD contributor is to add a de-
vice ID for something not yet covered (my first patch was a flash chip ID in a MIPS router!).

Your first change in FreeBSD WiFi could be straightforward, buy a device you think
should work and test it (follow the instructions from the first article in this series).

If no driver probes for the hardware, you can list out the USB or PCIe device IDs and use
those to determine from other platforms which driver should support them.

Two recent changes I committed to FreeBSD for an external contributor were just this,
adding device IDs for hardware supported by if_run and if_rum. The driver part for the
run change was:

diff --git a/sys/dev/usb/wlan/if_run.c b/sys/dev/usb/wlan/if_run.c
index 00e005fd7d4d..97c790dd5b81 100644
--- a/sys/dev/usb/wlan/if_run.c
+++ b/sys/dev/usb/wlan/if_run.c
@@ -324,6 +324,7 @@ static const STRUCT_USB_HOST_ID run_devs[] = {
 RUN_DEV(SITECOMEU, RT2870_3),
 RUN_DEV(SITECOMEU, RT2870_4),
 RUN_DEV(SITECOMEU, RT3070),
+ RUN_DEV(SITECOMEU, RT3070_1),
 RUN_DEV(SITECOMEU, RT3070_2),
 RUN_DEV(SITECOMEU, RT3070_3),
 RUN_DEV(SITECOMEU, RT3070_4),

Your first FreeBSD change could be as simple as adding a single line to the device IDs for
a device. Once you have that, you need to add an entry to the relevant driver, test it, email
me thj@freebsd.org a diff, and I will commit it.

Attaching to net80211
The state required for a WiFi driver is stored in an ieee80211com variable (usually called

the ic) on the driver’s softc.
A driver uses the IC to set flags for capabilities and override function pointers to hook or

replace default functionality provided by the net80211 stack.
In the previous article in this series, I showed you how to create virtual WLAN interfaces

(VAPs) on top of a driver using the ifconfig command. VAPs allow us to have multiple in-
terfaces on top of a single card operating in different modes, sta, host ap, monitor, etc. The
driver manages the availability of each of these modes using the ic_caps bit field.

The values in this field are set as part of the driver attach process. Here is an example
from the iwx_attach function from the if_iwx driver:

...
ic->ic_softc = sc;
ic->ic_name = device_get_nameunit(sc->sc_dev);
ic->ic_phytype = IEEE80211_T_OFDM;	 /* not only, but not used */
ic->ic_opmode = IEEE80211_M_STA;	 /* default to BSS mode */

3 of 9

mailto:thj@freebsd.org

46FreeBSD Journal • July/August/September 2025

/* Set device capabilities. */
ic->ic_caps =
 IEEE80211_C_STA |
 IEEE80211_C_MONITOR |
 IEEE80211_C_WPA |		 /* WPA/RSN */
 IEEE80211_C_WME |
 IEEE80211_C_PMGT |
 IEEE80211_C_SHSLOT |	 /* short slot time supported */
 IEEE80211_C_SHPREAMBLE |	 /* short preamble supported */
 IEEE80211_C_BGSCAN		 /* capable of bg scanning */
...

attach from if_iwx
This snippet of code resides near the end of the attach method in if_iwx. The preceding

attach code performs driver housekeeping state with independent tasks, discovering which
PCIe device this is, and determining the exact Intel Wireless model of the card.

if_iwx supports the station mode (IEEE80211_C_STA) and monitor modes
(IEEE80211_C_MONITOR); if the driver supported hosts AP mode (as rtwn does), it would
have the additional IEEE80211_C_HOSTAP flag in its capability bit mask.

Beyond modes iwx supports: WPA encryption (IEEE80211_C_WPA), multimedia exten-
sions for differential service (IEEE80211_C_WME), power management (IEEE80211_C_PMGT),
short time slots (IEEE80211_C_SHSLOT), preambles (IEEE80211_C_SHPREAMBLE), and back-
ground scanning (IEEE80211_C_BGSCAN).

The complete list of capabilities lives in the ieee80211.h header files. The capabilities a
driver can advertise depend on both hardware features and support in the driver. While a
driver is in development, it might not yet implement features such as WPA offload, so just
because a flag is missing in a driver, it doesn’t mean the hardware feature is unavailable.

The second task performed by the driver attachment phase is to take over or implement
net80211 functions, which is done through the iwx_attach_hook configuration callback.
Here, the driver overrides function pointers for a lot of the features advertised by the `ic_
caps̀ bit field.

First, if_iwx creates the channel map. For this card, the driver must ask the card’s firm-
ware to provide a set of supported channels.

iwx_init_channel_map(ic, IEEE80211_CHAN_MAX, &ic->ic_nchans,
 ic->ic_channels);

ieee80211_ifattach(ic);
ic->ic_vap_create = iwx_vap_create;
ic->ic_vap_delete = iwx_vap_delete;
ic->ic_raw_xmit = iwx_raw_xmit;
ic->ic_node_alloc = iwx_node_alloc;
ic->ic_scan_start = iwx_scan_start;
ic->ic_scan_end = iwx_scan_end;
ic->ic_update_mcast = iwx_update_mcast;

4 of 9

https://cgit.freebsd.org/src/tree/sys/dev/iwx/if_iwx.c#n10127

47FreeBSD Journal • July/August/September 2025

ic->ic_getradiocaps = iwx_init_channel_map;

ic->ic_set_channel = iwx_set_channel;
ic->ic_scan_curchan = iwx_scan_curchan;
ic->ic_scan_mindwell = iwx_scan_mindwell;
ic->ic_wme.wme_update = iwx_wme_update;
ic->ic_parent = iwx_parent;
ic->ic_transmit = iwx_transmit;

sc->sc_ampdu_rx_start = ic->ic_ampdu_rx_start;
ic->ic_ampdu_rx_start = iwx_ampdu_rx_start;
sc->sc_ampdu_rx_stop = ic->ic_ampdu_rx_stop;
ic->ic_ampdu_rx_stop = iwx_ampdu_rx_stop;

sc->sc_addba_request = ic->ic_addba_request;
ic->ic_addba_request = iwx_addba_request;
sc->sc_addba_response = ic->ic_addba_response;
ic->ic_addba_response = iwx_addba_response;

iwx_radiotap_attach(sc);
ieee80211_announce(ic);

Then the driver either replaces or intercepts calls that net80211 will make using the de-
vice’s IC. Implementations are provided for ic_vap_create and ic_raw_xmit, but other
calls, such as sc_ampdu_rx_start and stop, are intercepted.

Finally, the driver attaches to the radiotap subsystems, which allows raw packets to be fed
to BPF and then announces the existence of the driver to the net80211 system.

The two ieee80211_ calls in the attach methods are examples of our interface to the
net80211 system. The first call attaches our driver to the net80211 subsystem (it is here that
we get added to the list behind the net.wlan.devices sysctl). This makes the driver avail-
able for ifconfig to use.

The second call (ieee80211_announce) handles declaring that the device has been creat-
ed; this is where we print the channel and feature support for the card.

Once the driver has attached to the net80211 subsystem, it will idle until external events
cause it to move into an operating state. The next part of operating is handled by net80211,
and it calls out to the hooked methods we overrode in the attach_hook callback.

Implementing station mode
In the first article, we created a station mode VAP for our first example. The command

we ran was:

ifconfig wlan create wlandev iwx0

The wlan argument lets the system allocate a device number for us, and the iwx0 tells
the net80211 subsystem to use the device called iwx0 to create this VAP.

This command is translated by ifconfig via a library to a net80211_ioctl call. The final
result is net802211 calling the ic->ic_vap_create callback on our drivers ic. From above,
you know that this is mapped to iwx_vap_create.

5 of 9

48FreeBSD Journal • July/August/September 2025

struct ieee80211vap *
iwx_vap_create(struct ieee80211com *ic, const char name[IFNAMSIZ], int unit,
 enum ieee80211_opmode opmode, int flags,
 const uint8_t bssid[IEEE80211_ADDR_LEN],
 const uint8_t mac[IEEE80211_ADDR_LEN])
{
 struct iwx_vap *ivp;
 struct ieee80211vap *vap;
 if (!TAILQ_EMPTY(&ic->ic_vaps)) /* only one at a time */
 return NULL;
 ivp = malloc(sizeof(struct iwx_vap), M_80211_VAP, M_WAITOK | M_ZERO);
 vap = &ivp->iv_vap;
 ieee80211_vap_setup(ic, vap, name, unit, opmode, flags, bssid);
 vap->iv_bmissthreshold = 10; /* override default */
 /* Override with driver methods. */
 ivp->iv_newstate = vap->iv_newstate;
 vap->iv_newstate = iwx_newstate;

 ivp->id = IWX_DEFAULT_MACID;
 ivp->color = IWX_DEFAULT_COLOR;

 ivp->have_wme = TRUE;
 ivp->ps_disabled = FALSE;

 vap->iv_ampdu_rxmax = IEEE80211_HTCAP_MAXRXAMPDU_64K;
 vap->iv_ampdu_density = IEEE80211_HTCAP_MPDUDENSITY_4;

 /* h/w crypto support */
 vap->iv_key_alloc = iwx_key_alloc;
 vap->iv_key_delete = iwx_key_delete;
 vap->iv_key_set = iwx_key_set;
 vap->iv_key_update_begin = iwx_key_update_begin;
 vap->iv_key_update_end = iwx_key_update_end;

 ieee80211_ratectl_init(vap);
 /* Complete setup. */
 ieee80211_vap_attach(vap, ieee80211_media_change,
 ieee80211_media_status, mac);
 ic->ic_opmode = opmode;

 return vap;
}

The iwx_vap_create performs some housekeeping to manage memory and establish-
es callbacks to be used by the net80211 system. For iwx, it establishes per-driver state (the
IWX_DEFAULT_MACID and IWX_DEFAULT_COLOR values), which is used to coordinate with
firmware about which station we use as a default.

6 of 9

49FreeBSD Journal • July/August/September 2025

For some functions that iwx_vap_create hooks into, we retain the default method and
intercept calls to it. For instance, we override the iv_newstate callback and filter it through
iwx_newstate.

The firmware for iwx manages a lot of state itself; one example is probing, where the
hardware can be asked to send probes for networks across supported channels, and we ar-
en’t able to send these packets directly ourselves.

The iwx driver must hook the newstate methods to make requests to the firmware, up-
dating its state machine. In this way, the net80211 and firmware state machines are kept in
sync with host-level changes.

Sending packets
We have now covered enough of the driver that we can bring it up with ifconfig and

ask the operating system to start sending packets.
When we are testing an interface, we might go through the following flow using ifconfig:

ifconfig wlan0 ssid open-network up

These commands instruct ifconfig to bring up the interface and request that the
net80211 stack join the open WiFi network open-network. It sets an address for the inter-
face, but this doesn’t lead to any packets on the wire (well, air).

Let’s see what driver methods this series of commands translates into.
In our attach hook, we established two callbacks for the net80211 layer to use when it

needs to send a packet: ic_transmit and ic_raw_transmit, and one to control the state
of the interface (ic_parent).

ic->ic_raw_xmit = iwx_raw_xmit;
...
ic->ic_parent = iwx_parent;
ic->ic_transmit = iwx_transmit;

The up part of the ifconfig command eventually calls the ic_parent callback. For iwx,
this is iwx_parent:

static void
iwx_parent(struct ieee80211com *ic)
{
 struct iwx_softc *sc = ic->ic_softc;
 IWX_LOCK(sc);

 if (sc->sc_flags & IWX_FLAG_HW_INITED) {
 iwx_stop(sc);
 sc->sc_flags &= ~IWX_FLAG_HW_INITED;
 } else {
 iwx_init(sc);
 ieee80211_start_all(ic);
 }
 IWX_UNLOCK(sc);
}

7 of 9

50FreeBSD Journal • July/August/September 2025

iwx_parent directly controls the hardware, calling a function to tear down all hardware
state if we are running iwx_stop, or if we aren’t running yet, asking the hardware to be ini-
tially configured with iwx_init. Once the hardware is ready, we then notify the net80211
stack that we are prepared to start with ieee80211_start_all.

The seemingly simple ifconfig action up results in a lot of hardware state being mod-
ified with the iwx driver. This contributes partially to “bringing the interface up and down”
being a suggested magic fix to resolve network inconsistencies.

The second part of the ifconfig command results in the net80211 stack taking quite a
few steps. By passing ssid open-network to ifconfig, we are asking the net80211 subsys-
tem to discover and join a network called open-network.

The IEEE 802.11 process to join a network is made up of several steps:
•	probe for a network
•	authenticate to the network
•	associate with the network
Each of these steps requires a device to send man-

agement frames. First, we need to discover the net-
work we want to join; networks regularly beacon their
presence (this is what fills the network list in your menu
bar). This gives the operating system a list of networks
to try. When a device wants to join a network, it sends
out a probe request for the target network and waits
for a probe response. This process facilitates the trans-
fer of configuration parameters between the network
and the host, indicating to the host that the network is
truly available.

The next step involves authentication to the net-
work, followed by association. At this point, we move
into the RUN state and can start using the wireless in-
terface like any other network device.

As the stack moves between each state, it triggers a
call to the iv_newstate function, which for iwx is first
intercepted by iwx_newstate. This allows the driver to control the sending of packets for
state transitions. We need this in iwx because some of these transitions are handled by the
device firmware rather than through direct packet transmission.

Rather than sending out probe requests directly, there is a firmware interface to trigger
a scan of available networks. Once we have discovered the network and want to join it, we
send a message to the firmware to add a station rather than sending out packets from the
net80211 stack.

Not all management frames are sent by the firmware via an abstraction, and in those
cases, the iwx_raw_xmit callback is used by the system. If you are debugging a driver and
wondering why the transmit path isn’t always hit, it could be management frames exiting
the raw path.

Conclusion
In this article, we have looked at how a driver probes, attaches, and sends some first

packets. By using an existing driver, we can cover a lot of ground in the driver quite quickly.

8 of 9

By passing ssid
open-network to ifconfig,
we are asking the net80211
subsystem to discover
and join a network called
open-network.

51FreeBSD Journal • July/August/September 2025

However, if you read through, you will see that if_iwx.c is a whopping 10,000 lines of code.
That is more than we can address here.

This article, which has started to dig into hacking, has also glossed over many details. To
join a network, we need to be able to both send and receive packets from the network in-
terface.

If we don’t get any packets, can we debug? What is offered by the system?
In Part 3 of the series, we will cover the built-in debugging features of the net80211 stack

and how they hook into a driver for developer, testing, and troubleshooting.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

9 of 9

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number
of applications, off ers powerful solutions, and cutting edge
features. The best part? It’s FREE of charge and comes with
full source code.
Did you know that working with a mature, open source
project is an excellent way to gain new skills, network
with other professionals, and diff erentiate yourself in a
competitive job market? Don’t miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

The FreeBSD Project is looking for

• Programmers • Testers

• Researchers • Tech writers

• Anyone who wants to get involved

Find out more by

Checking out our website
freebsd.org/projects/newbies.html

Downloading the Software
freebsd.org/where.html

We’re a welcoming community looking
for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don’t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Help Create the Future.
Join the FreeBSD Project!

Contents

https://freebsdfoundation.org

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

https://freebsdfoundation.org/donate

53FreeBSD Journal • July/August/September 2025

We’ve covered quite a lot of ground over the last year. While I hazard to guess that
most people run FreeBSD on conventional AMD64-based PCs, we examined one of
the embedded boards that FreeBSD works on: the Digilent Arty Z7-20. While not in-

expensive, the Arty Z7 provides an FPGA fabric connected to the CPUs, which differentiates it
from less expensive boards like the Raspberry PI or
Beagle Boards.

We began by discussing how to obtain a pre-
built image for the board and how to communi-
cate with it over a serial port. In the following ar-
ticle, we discuss rolling our own images and how
to use the FreeBSD cross build infrastructure for
the ARMv7 system on the Arty board. This vast-
ly speeds development time. We also discussed
how to customize the FreeBSD build and then
load it onto an SD card, allowing us to create our
own custom images.

Having learned to build and customize our
own images, we learned how to set up a bhyve instance to run the AMD/Xilinx FPGA soft-
ware so that we could experiment with FPGA fabric circuits.

Once we had a Linux instance running, we looked at the basic process for building circuits
and getting them into the FPGA fabric. There were a lot of details to look at here. We had to
create our circuits in a completely new language for hardware design called Verilog. We had
to learn how to use the AMD/Xilinx tools to connect our circuits to pins on our chip, which
were then connected to LEDs on our board. There was a repo that pulled all this togeth-
er so that we could use our Linux bhyve instance to build our circuit. Finally, we learned two
ways to load the circuit into our chip: one before the system boots and the other from within
FreeBSD. We then saw glorious blinking LEDs, reminiscent of lights on a Christmas tree.

Having gotten our first circuit to work, we started exploring more complicated hardware
where the CPU and our fabric circuit could communicate. To do this, we used the FreeBSD
GPIO system, which required us first to figure out why the GPIO system wasn’t working in
our initial image builds. We briefly examined the probing of the GPIO driver and discovered
that it was absent from our system because the hardware wasn’t described in our Device
Tree Binary (DTB). This led us to a brief discussion of Flattened Device Tree (FDT) files and
how they describe the hardware of many embedded boards. We learned how to modify our

BY CHRISTOPHER R. BOWMAN

1 of 4

Embedded FreeBSD:
Looking Back and Forward

We examined one of
the embedded boards
that FreeBSD works on:
the Digilent Arty Z7-20.

https://digilent.com/shop/arty-z7-zynq-7000-soc-development-board/
https://digilent.com/shop/arty-z7-zynq-7000-soc-development-board/

54FreeBSD Journal • July/August/September 2025

FDT file and build a DTB from it using the Device Tree Compiler (DTC). We learned how to
get the FreeBSD loader to load our customized DTB before booting the kernel. Finally, once
we had gone through all that, we were able to call the GPIO system from userspace to tog-
gle external pins and, again, light up our LEDs.

In the most recent article, things got interesting. We looked at one of the many avail-
able PMOD modules, a dual seven-segment display. We built hardware in the FPGA fab-
ric that could display values on the two displays and presented a register interface over
the AXI bus to the CPU. We wrote entries for our FDT, describing the register interface
to our hardware, and developed a driver to control the values on the seven-segment dis-
plays. In the end, we used the Unix sysctl framework as an API for the user space to set
the seven-segment displays.

We’ve now reached a point where we can de-
sign circuits in Verilog and put them in the FPGA
fabric of our Zynq chips. We’ve learned to build
register interfaces that communicate over the
AXI bus so that our CPU can easily interface with
our custom hardware. We’ve learned to describe
that hardware to the kernel and to build driv-
ers that allow the FreeBSD system to interact
with our hardware. We also learned how to inter-
face with that hardware from the user space. So,
what’s next?

Once we had the basic capability to build cir-
cuits and put them in the FPGA fabric, we start-
ed learning ways to communicate between our
hardware and the CPU subsystem of our Zynq
chip. This opens a vast space for exploration and implementation, but there are some limita-
tions. One of those limitations is bandwidth and concurrency. While extremely powerful and
flexible, a register interface to hardware is bandwidth-limited. The CPU can only write to the
registers so fast, especially when it needs to perform other tasks. Currently, our hardware is
bandwidth-limited. It was great for the seven-segment displays, but if we wanted something
more bandwidth-intensive, it wouldn’t suffice.

Think about a video display. Our Arty board contains an HDMI output port. While a regis-
ter interface might be viable for a character display, it wouldn’t cut it for bit-mapped graph-
ics. A 24-bit color depth 1280x720x60Hz display requires about 166 MB of data per second.
We don’t want to try to provide that via a register interface. For bit-mapped graphics, the
conventional approach is to dedicate a chunk of memory into which the CPU can write and
from which the display hardware can read. We need to explore how to build hardware to
fetch (or store) data in main memory without using the CPU to move the data. We can uti-
lize our register interface knowledge to enable a processor to configure parameters, such as
the base address. However, we prefer our hardware handle the specifics of fetching the dis-
play buffer from main memory 60 times a second without CPU intervention.

Adding the capability for the CPU to describe objects in memory to which the hardware
should read and write opens a whole new set of possibilities for our Zynq system designs.
It also makes me wonder what the impact of that kind of bandwidth competition will be
on our dual-processor Arm Cortex A9 system. Digilent makes another Zynq-based board
that is like our Arty Z7-20. The Digilent Zybo Z7 is more expensive than the Arty Z7, priced

2 of 4

We’ve now reached
a point where we can
design circuits in Verilog
and put them in
the FPGA fabric of
our Zynq chips.

https://digilent.com/shop/zybo-z7-zynq-7000-arm-fpga-soc-development-board/

55FreeBSD Journal • July/August/September 2025

at $399 for the dual processor version compared to $249 for the Arty. However, the Zybo’s
memory bus is twice as wide as the Arty’s, operating at nearly the same frequency. Further,
the Zybo offers 6 PMOD interfaces in comparison to the Arty’s two. However, you’ll lose
the Arduino shell pinout. I think I’m more interested in the PMOD ports. Otherwise, both
boards are based on the same chip. There shouldn’t be any new drivers that need to be
written. The FDT should remain essentially unchanged; it would be interesting to investigate
the necessary changes to run this board.

Other things that might be interesting to investigate would be new PMOD modules. You
can find a whole slew for sale on the Digilent site. We used the PMOD SSD: Seven-Seg-
ment Display in an earlier article. Digilent has retired the PMOD GPS, but I bought one be-
fore they did. It uses a UART interface, which, conveniently, is an onboard peripheral in our
Zynq chip that can be connected to external pins via the fabric. It should be straightforward
to connect this to the system, and I suspect there’s open-source software that can com-
municate with this device via the UART link, enabling various GPS functions such as position
and time. What I find interesting about this device is that it also provides a Pulse Per Second
(PPS) output. I know that Poul-Henning Kamp has done some work with FPGAs and time-
keeping in the past, and I would like to see how that is applicable here.

We haven’t done any work with interrupts so
far. Still, it should be relatively easy for a fabric cir-
cuit to generate an interrupt to the processor and
then keep a register with the number of clock
cycles between the PPS and the current time.
When interrupt servicing software is scheduled, it
could read this register and account for the laten-
cy between the interrupt and when the driver or
time software runs. This might be useful to NTP
software, I really have no idea, but it’s something
I’m curious about. It might be nice to have a local
GPS syncronized stratum 1 time server.

I’ve got a variety of PMOD modules, includ-
ing accelerometers, OLED displays, and LCDs. It
might be interesting to interface with some of them. For example, if you ran an NTP serv-
er on your board (perhaps using hardware described above to improve accuracy), you could
use an LCD to display atomic time and location continuously.

It almost slipped my mind, but the Zynq boards have Analog to Digital Converters
(ADCs) built in. This would undoubtedly be an interesting area for exploration. Still, it may
require some external analog circuitry for signal conditioning or buffering before passing
on to the FPGA, and this might be outside the scope of an article in the FreeBSD Journal. It
might be interesting to look at what is required to interface to these on-chip peripherals.

Of course, you can build your own hardware and easily interface it to the pins of the
FPGA. I’m curious to hear what you would build if you could.

One obvious place I was going to explore that I hadn’t mentioned is running Vivado
under FreeBSD. If you’ve looked at some of my repos, you may have noticed that there
is some experimental support for running Vivado under FreeBSD. However, it seems like
someone has beaten me to the punch. Michał Kruszewski has written a detailed blog post
on the topic. For most of what I do, this is perfect; I can build and simulate my circuits.

3 of 4

Other things that
might be interesting to
investigate would be
new PMOD modules.

https://digilent.com/shop/products/fpga-boards/expansion-modules/pmods/?CommunicationProtocol=GPIO
https://digilent.com/reference/pmod/pmodgps/start?srsltid=AfmBOorJwOUISt4P6L25EAjCmwiWvRD4LpNuHDajzb_vP1fvAtEdZxD0
https://m-kru.github.io/posts/freebsd-vivado-chroot/freebsd-vivado-chroot.html

56FreeBSD Journal • July/August/September 2025

4 of 4

Things that aren’t quite there yet are loading bitstreams from my FreeBSD host system and
using the Vivado Logic Analyzer. The latter two don’t work in my behyve Linux instance ei-
ther, but perhaps I’ll experiment with pass-through when FreeBSD 15.0 is released.

I hope you’ve found these columns useful. I’d appreciate your comments or feedback.
You can contact me at articles@ChrisBowman.com.

CHRISTOPHER R. BOWMAN first used BSD back in 1989 on a VAX 11/785 while working
2 floors below ground level at the Johns Hopkins University Applied Physics Laborato-
ry. He later used FreeBSD in the mid 90’s to design his first 2 Micron CMOS chip at the
University of Maryland. He’s been a FreeBSD user ever since and is interested in hard-
ware design and the software that drives it. He has worked in the semiconductor design
automation industry for the last 20 years.

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

Contents

mailto:articles@ChrisBowman.com
mailto:maurer.jim@gmail.com

57FreeBSD Journal • July/August/September 2025

This year, I gave a talk at BSDCan 2025 titled “Vox FreeBSD: How sound(4) works”.
I arrived in Montréal on June 9, two days before the conference, but did not do

much that day except rest.
The next day, June 10, I took the bus from Montréal to Ottawa, where the conference is

held. As soon as I got off the bus, I randomly stumbled upon Olivier Certner (olce@), who
was walking by, and we went for lunch at a restaurant near the University of Ottawa — the
venue and speaker residence — before checking in. In the evening, I met with Mateusz Pi-
otrowski (0mp@), Bojan Novković (bnovkov@), and Kyle Evans (kevans@) for beers and din-
ner at Father & Sons Restaurant. In this common meeting place, we also met with other
people from the conference.

The first two days of the conference (June
11 and 12), for me, were spent at the FreeBSD
DevSummit.

A highlight of the first day was the pub-
lic discussion initiated by the Core Team,
regarding AI usage on FreeBSD, which also
continued during the breaks. The Core
Team seemed to focus on the licensing con-
cerns of mostly AI-generated code. My po-
sition, however, was that we should be hardline against any use of AI, primarily because of
ethical and quality concerns. I find the licensing aspect of the AI question to be secondary
in nature and relatively unimportant when compared with questions such as: Do we want to
actively participate in possibly making the world a worse place? What kind of people will we
attract to the project if we adopt a relaxed AI policy? How will this affect the quality of the
project long-term? Do we really need AI and the complexity that comes with it? If licensing
weren’t a problem, would there be no problem in using AI? And many more questions... The
good thing was that many people (some hesitantly) seemed to support my opinion.

I also had discussions, both technical and non-technical, with Mark Johnston (markj@), Jo-
seph Mingrone (jrm@), Bojan, and Charlie Li (vishwin@), the latter of whom I did not know
was also interested in FreeBSD audio/music production, and actually does DJ sets using it.

After the first day of the DevSummit, we headed for pizza at the university residence, but
I retired to my room relatively early to do some work and get my slides done.

BY CHRISTOS MARGIOLIS
BSDCan 2025

Conference Report
1 of 3

https://www.bsdcan.org/2025/
https://www.bsdcan.org/2025/timetable/timetable-Vox-FreeBSD-How.html
https://wiki.freebsd.org/DevSummit/202506
https://wiki.freebsd.org/DevSummit/202506

58FreeBSD Journal • July/August/September 2025

The second day of the DevSummit, June 12, started with a talk from AlphaOmega on se-
curity auditing, followed by a discussion about FreeBSD 15.0 technical planning, including
PkgBase. After lunch break, Brooks Davis (brooks@) gave a fascinating talk — probably my
favorite technical one throughout the DevSummit — on upstreaming the CheriBSD branch.
Even though the talk was about upstreaming, he also took the time to give an excellent
overview of what CHERI, CheriBSD, and capabilities are, and how the built-in memory safe-
ty feature manages to catch various bugs in the
FreeBSD code. Then, the FreeBSD Foundation
gave an update on recent work and funding, in-
cluding the Laptop Support and Usability Proj-
ect, which I am a part of. Speaking of laptops, to-
wards the end of the DevSummit, I spent some
time with Alexander Ziaee (ziaee@), who has
been working hard on improving documenta-
tion, and attempted to debug a sound issue on
his laptop. In the evening, I met with Benedict
Reuschling (bcr@) and a few other people and
went for dinner at a nice seafood restaurant.

BSDCan took place on June 13 and 14. It start-
ed with a keynote speech from Margot Seltzer, a
famous computer scientist, about Hardware Support for Memory-Hungry Applications.

I attended many talks during those two days, but a few that stood out for me include:
•	ShengYi Hung: ABI stability in FreeBSD. He showcased his new experimental tool, which

detects ABI changes based on differences between CTF data. Then followed an in-
teresting discussion, including me, Mark Johnston, John Baldwin (jhb@), Warner Losh
(imp@), and the speaker, about the limitations and oversights of this tool, and how to
use it in real-world scenarios.

•	Marshall Kirk McKusick: A History of the BSD Daemon, as well as an update on the up-
coming third edition of The Design and Implementation of the FreeBSD Operating Sys-
tem. I always enjoy Kirk’s presentation style.

•	Bojan Novković: Hardware-accelerated program tracing on FreeBSD. He presented his
recent work on the hwt(8) framework.

•	Zhuo Ying Jiang Li: Improvements to FreeBSD KASAN. She gave an overview of KASAN,
FreeBSD’s kernel address sanitizer. She presented her work on it as part of her involve-
ment with CheriBSD.

A few talks I would like to have attended, but didn’t manage to:
•	John Baldwin: ELF Nightmares: GOTs, PLTs, and Relocations Oh My.
•	Andrew Hewus Fresh: The state of 3D-printing from OpenBSD.
•	Hans-Jörg Höxer: Confidential Computing with OpenBSD — The Next Step.
•	Andreas Kirchner, Benedict Reuschling: Enhancing Unix Education through Chaos Engi-

neering and Gamification using FreeBSD.
I gave my talk on June 14, the last day of BSDCan. It sparked lots of questions and con-

versations, which continued even after the talk. Apparently, there are more people than I
thought who would really like to be able to use FreeBSD for music and audio production

2 of 3

Conference Report

A highlight of

the first day was the public

discussion initiated by

the Core Team, regarding

AI usage on FreeBSD.

https://hackmd.io/@jhb/ByWrxQmr2
https://www.cheribsd.org/
https://freebsdfoundation.org/
https://github.com/FreeBSDFoundation/proj-laptop
https://github.com/FreeBSDFoundation/proj-laptop
https://www.bsdcan.org/2025/timetable/timetable-Keynote-Hardware-Support.html
https://www.bsdcan.org/2025/timetable/timetable-ABI-stability-in.html
https://www.bsdcan.org/2025/timetable/timetable-A-History-of.html
https://www.bsdcan.org/2025/timetable/timetable-Hardware-accelerated-program-tracing.html
https://www.bsdcan.org/2025/timetable/timetable-Improvements-to-FreeBSD.html
https://www.bsdcan.org/2025/timetable/timetable-ELF-Nightmares-GOTs,.html
https://www.bsdcan.org/2025/timetable/timetable-The-state-of.html
https://www.bsdcan.org/2025/timetable/timetable-Confidential-Computing-with.html
https://www.bsdcan.org/2025/timetable/timetable-Enhancing-Unix-Education.html
https://www.bsdcan.org/2025/timetable/timetable-Enhancing-Unix-Education.html

59FreeBSD Journal • July/August/September 2025

or in large audio installations, so the talk
seemed to have inspired some of them,
which is excellent.

After the conference’s Closing Session, we
headed to a nearby market square for the so-
cial event. I spent most of my time with Mark
Johnston, Andreas Kirchner, and Mateusz Pi-
otrowski, and had many interesting conversa-
tions.

The next day, I went back to Montréal to
enjoy some days off before my return home.

As always, conferences are great opportunities to make up for the solitary nature of pro-
gramming and meet with the people behind the screens with whom we exchange emails
every day. Apart from the fact that we got work done and exchanged interesting technical
ideas, what I enjoyed even more was the unexpected, deep discussions I had with people,
including people I had never met before.

CHRISTOS MARGIOLIS is an independent contractor and FreeBSD src committer from
Greece.

Conference Report
3 of 3

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number
of applications, off ers powerful solutions, and cutting edge
features. The best part? It’s FREE of charge and comes with
full source code.
Did you know that working with a mature, open source
project is an excellent way to gain new skills, network
with other professionals, and diff erentiate yourself in a
competitive job market? Don’t miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

The FreeBSD Project is looking for

• Programmers • Testers

• Researchers • Tech writers

• Anyone who wants to get involved

Find out more by

Checking out our website
freebsd.org/projects/newbies.html

Downloading the Software
freebsd.org/where.html

We’re a welcoming community looking
for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don’t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Help Create the Future.
Join the FreeBSD Project!

Contents

https://freebsdfoundation.org/

BSD Events taking place through November 2025
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

60FreeBSD Journal • July/August/Septmeber 2025

OpenZFS User and Developer Summit 2025
October 25-28, 2025
Portland, OR
https://openzfs.org/wiki/OpenZFS_Developer_Summit_2025

This year, the User Summit will explore a wide range of topics designed to support and con-
nect the OpenZFS community.

November 2025 FreeBSD Vendor Summit
November 6-7, 2025
San Jose, CA
https://freebsdfoundation.org/news-and-events/event-calendar/
fall-2025-freebsd-summit/

The Summit provides commercial FreeBSD users with the unique opportunity to meet
face-to-face with developers and contributors to get features requested, problems solved,
and needs met. It also opens up discussion on improving and enhancing the operating
system.

1 of 1

Contents

mailto:freebsd-doc@FreeBSD.org
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://openzfs.org/wiki/OpenZFS_Developer_Summit_2025
https://freebsdfoundation.org/news-and-events/event-calendar/fall-2025-freebsd-summit/
https://freebsdfoundation.org/news-and-events/event-calendar/fall-2025-freebsd-summit/

	contents_button 2:
	contents_button 3:
	contents_button 4:

