Tof 11

/A\‘J FreeBSD WiFi Development
\) Part1 — Experimenting with WiFi

BY TOM JONES

by the FreeBSD Foundation. The main result of this has been a port from OpenBSD of the
iwx driver for Intel 802T1ac/ax cards. Through this project, | have been exposed to most
of the WiFi stack, and it has made clear to me that we need many more people working on
WiFi and an easier route to starting to do development.

WiFi arrived 25 years ago and has become so core to our lives that people’s first question
when entering a new place is "Is there WiFi?”

FreeBSD lacks WiFi drivers. The last 5 years have seen the introduction of a linuxkpi lay-
er with support for Wifi and by 2025 these drivers are
starting to manage |EEE 80211ac speeds in the hun-
dreds of megabits. WiFi 7 devices on the market today
do 2Gbit.

FreeBSD is behind, there is no argument. We need
more people to work on WiFi. If you are interested in and has become so core
doing operating system development, | can think of
nothing better than getting involved with improving
the FreeBSD WiFi stack. It isn't going to be the easiest first question when
thing to do — but the thing about being behind is that
we have a lot of open tasks of all difficulties and we
need more contributors to catch up. "Is there Wiki1?"

This series explains a path to working on WiFi in
FreeBSD.. The raw nuts and bolts of building drivers
and watching LLVM warm up your room are covered
well elsewhere. In this first article of three, | will explain
terms and demonstrate how to configure WLAN interfaces on FreeBSD for testing. This
minimum setup is enough to start finding bugs. In following articles | will discuss what WiFi
drivers do and how they interact with the larger net80211 stack in FreeBSD.

I have been working on WiFi in FreeBSD for the last 6 months through a project sponsored

WikFiarrived 25 years ago

to our lives that people’s

entering a new place s

Terminology

Networking is about communication - communication is the effective transmission and
accurate reception of a message. I've worked in developing and writing internet standards
for a decade, and still, for communications experts we aren’t the best at completing the
communication story. From an IETF background, WiFi is that weird IEEE stuff concerned
with making electrons dance.

FreeBSD Journal - April/May/June 2025 |85

To communicate well, we need to agree on what terms mean, which reminds me of a
conversation in the University of Oslo Cafeteria many years ago with a German colleague.

Me: I'm pretty sure it is why-phi you know, wireless fidelity, like high fidelity.
Him: No, it is wee-fee like hee-fee

| am going to use a lot of acronyms and terms in these articles; it just can't be helped.
Searching the Internet is your friend when it comes to
figuring these out. Of the two | just used IETF (Internet
Engineering Task Force) and IEEE (Institute of Electrical
and Electronics Engineers) only IEEE will feature heavily
here. Sadly throughout documentation and code there | he Wik Alliance
are variations of IEEE, net80211, and IEEE80211 repeat-
edly, there are a variety of terms used in the FreeBSD (the. ?eople whosell
source code for WiFi infrastructure. certification) has made

The WiFi Alliance (the people who sell certification) 5 nese hetween the
has made a mess between the standards (from IEEE)
and the brand names. Using the standards is more cor- ~ Standards (from |EEE)
rect, IEEE80211n (or 11n, or n) is clearer for me than and the brand names.
using WiFi 4. Either term might help you figure out
what things are called, what a product does, or what
someone is asking you about. FreeBSD is going to tend
toward standard names, or even document revisions if
we are lucky, rather than the marketing names.

Getting up to speed with concepts in WiFi is also going to be as difficult as it is with
names. | suggest some reading, Matthew Ghast's first book on WiFi (80277 Wireless Net-
works) is a great introduction to all the main concepts at a suitable introductory level. Don't
mind the age, the foundations are still the same, the numbers are just bigger, and the mod-
ulations are more complex.

WiFi A collection of standards by the IEEE and marketing names by the
WiFi alliance. Used colloquially it is “that thing your laptop uses to go
on the internet” and that is good enough for us. Anyone correcting
your terminology too intensely isn't your friend.

IEEE80211 IEEE 80211 is the family of standards that defines WiFi.

net80211 Or the stack. The code in FreeBSD that implements the IEEESO211
state machine.

Band A frequency range that a client or access point may use. (these are
fractal 24GHz '‘band’, 2462 MHz band)

Channel An RF frequency and parameters. Sometimes used interchangeably
with ‘band’

Station Your device, other clients on a network (also a mode)

Access Point The device running the network you connect to (also a mode)

Monitor A mode which causes the network adapter to capture all packets on a
band.

2 of 1

FreeBSD Journal - April/May/June 2025 |86

Network Adapter The device with all the radios which enables you to do WiFi (also, a
network card — though a USB stick isn't a card, might be a network
interface, but best to avoid confusion between the hardware and the
software model).

Driver Code in FreeBSD that speaks to a network card either directly or via
firmware
Firmware Code that runs on the network card and does some of the work for

you. We normally only mention it when it needs to be loaded by the
OS or a driver.

MAC The part of the 80211 machine which handles sharing the medium

Full MAC Used in reference to drivers — full mac devices implement the MAC
ayer and much of the work that net80211 does can be skipped.

HT High Throughput (also called 80211n)

VHT Very High Throughput (also called 802T1ac)

EHT Extremely High Throughput (also called 80211ax)

There are also some core concepts you need to be familiar with for this article. | think, for
most people, this is how their day-to-day network access works, but it is good to recognize
that technologies some of us grew up with (me) or were introduced in our lifetimes (a bunch
of people I've just made feel old), have existed for a decade longer that some readers have
been alive.

The most common WiFi network found in people’s homes is an access point (AP), which
acts as the gateway to the larger Internet for stations (or clients). In many deployments, like-
ly your home, the access point is a router that handles forwarding traffic from clients to the
internet (maybe via a modem), assigning addresses, and a host of other network tasks.

To join a network, a station goes through a series of states while communicating with the
access point. In summary, it will:

*SCan

* probe

* receive beacons

* authenticate

* associate

 negotiate encryption keys

* acquire an IP address

All but the final steps here are WiFi-specific, in some ways they model you finding a ca-
ble, a port, and plugging your computer into the router. The final step happens at the IP lay-
er, and we use the same tools as in wired networks.

All these phases and states are handled in the net80211 stack and device drivers. Who
does what depends on hardware support, some features are handled by firmware on the
network adapter. When they can’t be done in hardware, the net80211 stack can imple-
ment most things itself, some features that use radio functionally can’t be emulated in
software.

As we do WiFi development on FreeBSD, we need to be aware of what the hardware and
net80211 layers are doing. Above is a short summary, but there are many other states and
authentication modes. IEEE80211 is approaching 30 and it has a lot of history.

3 of 1

FreeBSD Journal - April/May/June 2025 |87

Experimenting with WiFi on FreeBSD

Before we start reading code and making changes, we should discuss how to do man-
agement operations on WLAN adapters in FreeBSD.

The net80211 stack provides an abstraction on top of network adapters which gives us
virtual interfaces. Throughout the code, they are called VAPs (see the ieee80211_vap man
page for a full description of their functionality).

"his may seem clunky compared to the ease of management of an interface in
OpenBSD (ifconfig iwx0 up), but it enables virtual functionality to be implemented on
top of a single adapter. If the hardware supports it, you might be able to be an access point
and a station at the same time, or a station and in monitor mode simultaneously.

Usually, this management is handled for you by some configuration in rc.conf, the install-
er adds lines like these:

wlans iwlwifiO="wlanO"
ifconfig wlanO="WPA SYNCDHCP"

The first line tells the rc system to create an interface from the iwlwifiO adapter called
wlanO, the second line is a usual ifconfig line you would see for a wired interface.

Kernel development can be helped by controlling the creation of devices so let’s first
look at how we can manually create interfaces.

Manually Creating Interfaces
WLAN devices that are registered with net80211 as devices can be listed by reading the
net.wlan.devices sysctl.

$ sysctl net.wlan.devices

net.wlan.devices: iwx0 rtwnO

On my laptop, you can see | have an iwx-based card attached (iwx0 on PCle) and a rtwn
card (rtwnO on USB).
From these devices, | can create interfaces using ifconfig like so:

ifconfig wlan create wlandev iwxO

wlanO

ifconfig wlan create wlandev rtwnO wlanmode ap
wlanl

ifconfig wlan create wlandev rtwnO wlanmode monitor

wlan?2

In the first example, we create wlanO without any arguments. Station mode is the default
when creating a device without any wlanmode argument. WLAN devices in FreeBSD oper-
ate in one and only one mode set at creation time, the possible modes for any given device
are governed by hardware and driver support.

The modes a driver supports are listed on the corresponding man page. If we compare
iwm, iwlwifi, and iwx (which support some of the same hardware) we will see that iwm and
iwlwifi at the time of writing can only operate in station mode, whereas iwx can operation in
station and monitor mode. The Intel hardware that iwx supports can work as a host AP, but
in a very limited way (only on the 2.4(GHz band) and so support isn't yet implemented.

FreeBSD Journal - April/May/June 2025

"his means that we first must create a WLAN interface from a device before we can use it.

4 of 11

88

5 of 11

The rtwn driver supports station, adhoc, host AP, and monitor mode operation. The full
list of modes supported by net80211 is documented in the ifconfig(8) man page:

wlanmode mode
Specify the operating mode for this cloned device. mode 1is one
of sta, ahdemo (or adhoc-demo), ibss (or adhoc), AP (or hostap),
wds, tdma, mesh, and monitor. The operating mode of a cloned
interface cannot be changed. The tdma mode is actually
implemented as an adhoc-demo interface with special properties.

Right after configuration ifconfig will show us an interface with lots of information un-
populated:

$ ifconfig wlanO

wlanO: flags=8302<BRUOADCAST,SIMPLEX,MULTICAST> metric O mtu 1500
options=0
ether e4:5e:37:af:13:5b
groups: wlan
ssid "" channel 1 (2412 MHz 11b)
regdomain FCC country US authmode OPEN privacy OFF txpower 30
bmiss 10 scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250
roam:rssi 7 roam:rate 1 wme bintval O
parent interface: iwxO
media: IEEE 802.11 Wireless Ethernet autoselect (autoselect)

status: no carrier
nd6 options=29<PERFORMNUD, IFDISABLED,AUTO_LINKLOCAL>

We have quite a few extra parameters in the ifconfig output compared to a wired de-
vice, let's look at some of these.

ssid "" channel 1 (2412 MHz 11b)

As we are a station, we have a nominated SSID (network name to connect to), or here
nothing. We are on channel 1 with the frequency and the channel mode listed.

regdomain FCC country US authmode OPEN privacy OFF txpower 30

The regulatory domain and country have been set to a default but should update when
we bring the interface up to match my reqgulator domain and country.

bmiss 10 scanvalid 60 bgscan bgscanintvl 300 bgscanidle 250

roam:rssi 7 roam:rate 1 wme bintval O

We have some driver parameters that control scanning, moving between networks, and
multimedia extensions (which are used for quality-of-service information not using your
adapter to play MP3s).

parent interface: iwxO0
media: IEEE 802.11 Wireless Ethernet autoselect (autoselect)

Finally, we have the parent interface (handy if you are doing a lot of WiFi) and the current
media mode. This should normally be autoselect, but you might be forcing this to debug or
get better throughput.

FreeBSD Journal - April/May/June 2025 |89

6 of 11

It we look at the VAPs created on the rtwn interfaces, they are similar but different, which
is due to their different mode.

$ ifconfig wlanl
wlanl: flags=8802<BROUADCAST,SIMPLEX,MULTICAST> metric O mtu 1500
options=0
ether 74:da:38:33:c0:62
groups: wlan
ssid "" channel 1 (2412 MHz 11b)
regdomain FCC country US authmode OPEN privacy OFF txpower 30
scanvalid 60 wme dtimperiod 1 -dfs bintval O
parent interface: rtwnO
media: IEEE 802.11 Wireless Ethernet autoselect <hostap> (autoselect <hostap>)
status: no carrier
nd6 options=29<PERFORMNUD, IFDISABLED,AUTO_LINKLOCAL>
$ ifconfig wlan2
wlan2: flags=8802<BROADCAST,SIMPLEX,MULTICAST> metric O mtu 1500
options=0
ether 74:da:38:33:c0:62
groups: wlan
ssid "" channel 1 (2412 MHz 11b)
regdomain FCC country US authmode OPEN privacy OFF txpower 30
scanvalid 60 wme bintval O
parent interface: rtwnO
media: IEEE 802.11 Wireless Ethernet autoselect <monitor> (autoselect <monitor>)

status: no carrier
nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>

When we are done, or it we accidentally created a device in the wrong mode, we could
remove it using ifconfig:

ifconfig wlanO destroy

Using Interfaces
| lied earlier, well sort of. The FreeBSD WiFi stack has two main components, but a lot of

WiFi state is driven by two userspace programs, wpa_supplicant and hostapd.

wpa_supplicant was originally a program for managing WPA (wireless protected access)
encryption state for a device in station mode. It has grown to be a full userspace WiFi man-
agement interface. It is one of a few implementations and it is common to see wpa_sup-
plicant used on Linux for wireless configuration.

hostapd is the host AP userspace daemon from the same project — it corresponds to
wpa_supplicant, but rather than doing client tasks it does host tasks.

We can use ifconfig to manage a WLAN interface, the following command will bring up
our station interface and configure it to join the "Test” SSID.

ifconfig wlanO ssid "Test" up

FreeBSD Journal - April/May/June 2025

90

7 of 11

This allows a FreeBSD station to start trying to associate with an AP called "Test". The
FreeBSD net80211 stack doesn't directly support the WPA state machine, so for most net-
works you will need to use wpa_supplicant. The second line from our example rc.conf
above handles starting wpa_supplicant on an interface (and enabling DHCP).

To manually run wpa_supplicant we need a configuration file with our networks, the
wpa_supplicant.conf man page has some great examples, but a bare minimum configu-
ration file looks like this:

ctrl_interface=/var/run/wpa_supplicant

ctrl_interface_group=wheel

network={
ssid="0Open Network"
key_mgmt=NONE

We can then start wpa_supplicant manually like so:
wpa_supplicant -i wlanO -c /etc/wpa_supplicant.conf -D bsd

The default invocation will run wpa_supplicant in the foreground and adding -B will run
it in the background. The logged messages from wpa_supplicant are available via the con-
trol interface.

The wpa_passphrase can be used to add a WPA-protected network to the wpa_sup-
plicant configuration file:

$ wpa_passphrase "Closed Network" superpassword
network={
ssid="Closed Network"

#psk="superpassword"
psk=852c26a07d84c48edbfeecr71289214a39bcd9d881bct66aedf6a2d11372£59752

't only generates the required configuration to add to wpa_supplicant.conf, to not
have to learn a lot of configuration syntax.

FreeBSD ships with wpa_cli to interface with wpa_supplicant. From wpa_cli we can
list networks, connect (select), reconfigure, and disconnect. Here is an example session join-
ing a WPA-protected network.

$ wpa_cli

wpa_cli v2.11

Copyright (c) 2004-2024, Jouni Malinen <j@wl.fi> and contributors
This software may be distributed under the terms of the BSD license.
See README for more details.

Selected interface ‘wlanO’

Interactive mode

FreeBSD Journal - April/May/June 2025

91

> list _networks
network id / ssid / bssid / flags

0 Open Network [DISABLED]
1 Closed Network [DISABLED]
> select network 1

0K

<3>CTRL-EVENT-SCAN-RESULTS

<3>WPS-AP-AVAILABLE

<3>Trying to associate with 20:05:b6:fa:13:f1 (SSID=’Closed Network’ freq=5180 MHz)
<3>Associated with 20:05:b6:fa:13:1f1

<3>WPA: Key negotiation completed with 20:05:b6:fa:13:f1 [PTK=CCMP GTK=CCMP]
<3>CTRL-EVENT-CONNECTED - Connection to 20:05:b6:fa:13:f1 completed [id=0 id_str=]
disable network disconnect

> disconnect

OK

<3>CTRL-EVENT-DISCONNECTED bssid=20:05:b6:fa:13:f1 reason=3 locally_generated=1
<3>CTRL-EVENT-DSCP-POLICY clear_all

hostapd is less used, and the ability to bring up your own AP in which you can do full ker-
nel debugging and packet capture can be a very helpful debugging tool.
An example configuration for our example “Closed Network” might look like the following:

hostapd.conf:

ctrl_interface=/var/run/hostapd

ctrl_interface_group=wheel
interface=wlanl

hw_mode=g
channel=8
1ieee80211d=0

1eee80211n=0
wmm_enabled=0

the name of the AP
ssid="Closed Network"

l=wpa, 2=wep, 3=both
auth_algs=1

wpa=2

wpa_key_mgmt=WPA-PSK
rsn_pairwise=CCMP
wpa_passphrase="superpassword"

We can run hostapd in the foreground like so:

hostapd hostapd.conf

FreeBSD Journal - April/May/June 2025

8 of 11

92

With hostapd running we have most of an access point — the WiFi bit is easy! We also
need to give wlanl an address and usually a process runs to provide dynamic addressing.

We can give the interface an IP address like normal:
ifconfig wlanl inet 192.168.2.1/24 up

For dynamic addressing, we need to install the dhcpd port and create a configuration file.
A minimal configuration file can be found in the dhcpd.conf(5) man page and might look
like this:

/usr/local/etc/dhcpd.conf:

subnet 192.168.2.0 netmask 255.255.255.0 {
range 192.168.2.100 192.163.2.200

We can then enable and start dhcpad:

service enable dhcpd
service start dhcpd

The final mode VAP we created in our example was a monitor mode VAP. While we can
capture on VAPs in other modes, the interface is not run in promiscuous mode, the packets
we receive are those that arrive with an address for our interface. Monitor mode allows us to
receive all the packets on a channel (hardware support depending on different rates).

A simple proof of concept is to use tcpdump with the -y link level headers flag.

tcpdump -L -i wlan2

Data link types for wlanO (use option -y to set):
EN10MB (Ethernet)
IEEES802_11 RADIO (802.11 plus radiotap header)

| struggle to remember the order of the underscores in this variable, but tcpdump will
show you the supported link-level headers for an interface type with the -L flag and the in-
terface.

sudo tcpdump -i wlan2 -y IEEE802_11_RADIO

tcpdump: data link type IEEE802_11_RADIO

tcpdump: verbose output suppressed, use -v[v]... for full protocol decode

listening on wlan2, link-type IEEE802_11 RADIO (802.11 plus radiotap header), snapshot
length 262144 bytes

14:33:48.656430 3757399us tsft 1.0 Mb/s 2412 MHz 11g -76dBm signal -95dBm noise Data
IV:cled Pad 20 KeyID 1
14:33:50.657087 5759270us tsft 1.0 Mb/s 2412 MHz 11g -72dBm signal -95dBm noise
14:33:50.796280 5895802us tsft 1.0 Mb/s 2412 MHz 11g -76dBm signal -95dBm noise Beacon
(HomeWifi) [1.0% 2.0% 5.5% 11.0% 6.0 9.0 12.0 18.0 Mbit] ESS CH: 2, PRIVACY
14:33:53.151514 8251009us tsft 1.0 Mb/s 2412 MHz 11g -74dBm signal -95dBm noise Beacon
(HomeWifi) [1.0% 2.0% 5.5% 11.0% 6.0 9.0 12.0 18.0 Mbit] ESS CH: 2, PRIVACY
14:33:53.970729 9070213us tsft 1.0 Mb/s 2412 MHz 11g -74dBm signal -95dBm noise Beacon
6

(HomeWifi) [1.0% 2.0% 5.5% 11.0%x 6.0 9.0 12.0 18.0 Mbit] ESS CH: 2, PRIVACY

9 of 11

FreeBSD Journal - April/May/June 2025 |93

10 of 11

14:34:10.183336 25285260us tsft 6.0 Mb/s 2437 MHz 11g -62dBm signal -95dBm noise Beacon
(a2-enc) [6.0%x 9.0 12.0% 18.0 24.0* 36.0 48.0 54.0 Mbit] ESS CH: 6, PRIVACY

14
[1

14

[1

14

[1
14

: 34 .
. O*
34:
. O*
34:
. O*
: 34 .

10.204045
2.0%x 5.bx*
10.253433
2.0% 5.bx*
10.253441
2.0%x b5.bx*
10.253445

25306099us tsft 11.0 Mb/s 2437 MHz 11g -68dBm signal -95dBm noise Beacon ()
11.0% 6.0 9.0 12.0 18.0 Mbit] ESS CH: 6

25356305us tsft 11.0 Mb/s 2437 MHz 11g -58dBm signal -95dBm noise Beacon ()
11.0% 6.0% 9.0 12.0% 18.0 Mbit] IBSS CH: 6, PRIVACY

25356305us tsft 11.0 Mb/s 2437 MHz 11g -58dBm signal -95dBm noise Beacon ()
11.0% 6.0 9.0 12.0 18.0 Mbit] ESS CH: 6

25356305us tsft 11.0 Mb/s 2437 MHz 11g -58dBm signal -95dBm noise Beacon

(HM-CM-$tte, HM-CM-$tte, kette) [1.0% 2.0% 5.5% 11.0*x 6.0 9.0 12.0 18.0 Mbit] ESS CH: 6,
PRIVACY
14:34:10.285355 25387273us tsft 6.0 Mb/s 2437 MHz 11g -63dBm signal -95dBm noise Beacon
(a2-enc) [6.0% 9.0 12.0% 18.0 24.0* 36.0 48.0 54.0 Mbit] ESS CH: 6, PRIVACY
14:34:10.297973 25399988us tsft 11.0 Mb/s 2437 MHz 11g -68dBm signal -95dBm noise Beacon
(HM-CM-$tte, HM-CM-$tte, adkette) [1.0%x 2.0% 5.5%x 11.0%x 6.0 9.0 12.0 18.0 Mbit] ESS CH: 6,
PRIVACY
14:34:10.355834 25458704us tsft 11.0 Mb/s 2437 MHz 11g -58dBm signal -95dBm noise Beacon ()
[1.0% 2.0% 5.5% 11.0% 6.0% 9.0 12.0* 18.0 Mbit] IBSS CH: 6, PRIVACY

14:34:10.355836 25458704us tsft 11.0 Mb/s 2437 MHz 11g -58dBm signal -95dBm noise Beacon ()
[1.0% 2.0% 5.5% 11.0%x 6.0 9.0 12.0 18.0 Mbit] ESS CH: 6

dclient wlanO

This tcpdump output is focused on the IEEE80211 radio frames. In-depth analysis will re-

quire a different tool such as Wireshark.

Testing Traffic

Now that we have all the pieces to build a purely FreeBSD AP station and debug the traf-
fic from the air, we should talk about how to test things.

We can use our AP station and monitor mode to verify and investigate the packets that
are sent during an association and sending traffic.

The first stage of testing is getting the station onto the network to the point where we
can send pings to the AP. Using wpa_supplicant from the station we can select the net-
work and request that wpa_supplicant associate for us. wpa_supplicant will print mes-
sages as it does this, and it will document the hand packets.

Once on the network, the station needs to request an IP address. If this doesn’t happen
automatically then running

will normally kick it to working. If you get a dhcpd lease (an address) then the next step is to
try and ping the AP:

ping 192.168.2.1

(I can't

Any Tailures here are places to start debugging. You will likely have configuration issues

oromise the examples are perfect, but they are tested). Debugging why you can't

connect isn't the most enjoyable WiFi development experience, but it is one we have all en-
countered.
Once we have an address, simple throughput tests are usually a good first metric. It you
are testing patches from a branch, it might be enough to build a kernel with the patches

and run a network throughput test. | like iper£3 for this sort of testing, it allows you to test

FreeBSD Journal - April/May/June 2025

94

throughput to a host on your network or the Internet. Traffic from iperf on a station to
iperf on the app will give you a good idea of what throughput is possible with that combi-
nation of hardware.

It your system is stable enough and can run a web browser, | find testing against fast.com
to be helpful too.

These options test very different limitations, the iperf test will give you an understand-
ing of the throughput available to a station on your WiFi network and the fast.com test will
tell you what is possible from your network to the internet. You may get a significantly lower
number with fast.com. If it is higher than the iperf test, then something is funky.

You will see differences in throughputs between TCP and UDP tests. UDP can better sat-
urate WiFi radio. Testing both is good, but for a quick measurement, TCP throughput is fine.

Ready for Work

This article has covered the background and terminology you need to start hacking on
WiFi in FreeBSD, but we haven't managed to look at any code. Setting up a test network
with the examples here is a core part of doing WiFi development and if you are eager and
don't want to wait for Part 2, | am sure that if you try this network with enough hardware,
you will start to find bugs.

In the next installment, we will look at the life cycle of a WiFi driver, the core functions it
needs to have to do its work, and the interfaces to net80211 that can do a lot of the work
from the driver.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

Help Create the Future.

@® FreeBSD

The FreeBSD Project is looking for

* Programmers - Testers
+ Researchers + Tech writers
+ Anyone who wants to get involved

Find out more by
Checking out our website
freebsd.org/projects/newbies.htm|

Downloading the Software
freebsd.org/where.html

We're a welcoming community looking
for people like you to help continue

developing this robust operating system.

Join us!

Already involved?

Don't forget to check out the latest
grant opportunities at
freebsdfoundation.org

Join the FreeBSD Project!

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.

Not only is FreeBSD easy to install, but it runs a huge number
of applications, offers powerful solutions, and cutting edge
features. The best part? It's FREE of charge and comes with
full source code.

Did you know that working with a mature, open source
project is an excellent way to gain new skills, network

with other professionals, and differentiate yourself in a
competitive job market? Don't miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

C
Fre)eBSD

FOUNDATION

1 of 11

FreeBSD Journal - April/May/June 2025 |95

