
1FreeBSD Journal • November/December 2024

1 of 5

The FreeBSD bhyve hypervisor was announced to the world in May 2011 by Neel
Natu and Peter Grehan and then gifted to FreeBSD from NetApp. This finally gave
FreeBSD something to compete against the Linux KVM hypervisor. However, there

were further benefits, it is small and robust as well as being performant, leaning heavily on
CPU instruction sets rather than dealing with interpretation.

The initial implementation was only suitable for FreeBSD guests, and it was some time
before we saw bhvye able to run other operating systems.

First up, there was Linux, and then there was a way to repackage Windows 8 or Windows
Server 2012 to get them to install. This was too much for a regular user to manage and it
wasn’t until the arrival of the bhyve UEFI boot feature that things really took off.

UEFI boot was the killer feature that bhyve had been waiting for. This allowed for a wide
range of operating systems to be installed and run on FreeBSD bhyve. When FreeBSD 11
was released, we finally had a virtualization component
on par with other operating systems.

While UEFI booting was the killer feature for bhyve,
the killer app for bhyve was Windows Server 2016. This
was the turning point when enterprises could take
bhyve and Windows in a vanilla format and have a reli-
able enterprise hypervisor to run business workloads in
a stable fashion.

Suddenly, businesses were able to deploy equip-
ment far and wide with a solution that was 2-clause
BSD licensed and be able to tune — either via hardware
or software — the hypervisor to solve their problems.

There was still a problem, however, because Windows required numerous drivers to be
installed either in-image or after installation to avoid performance issues. In July 2018, this
was partially solved by the implementation of the PCI-NVMe storage emulation, eventually
giving bhyve the edge over KVM in storage performance for general workloads.

Today, Windows running on bhyve still requires at least the VirtIO-net drivers from Red-
Hat to allow for network transfers to be reliable and exceed 1Gb/s. There are other drivers
within the applicable Windows MSI package that is available from RedHat, and these are
recommended to be loaded prior to production implementations. For Linux, most distribu-
tions have all applicable drivers, including AlmaLinux, which we are using in this article. It is
possible and recommended to use NVMe emulated backed storage for Linux installations,
however, it is quite difficult to configure KVM to use an emulated NVMe storage type and
if you plan to move Linux workloads between bhyve and KVM, it is recommended that you
set your guest to simply use VirtIO-blk storage.

BY JASON TUBNOR

Suddenly, businesses
were able to deploy
equipment far and wide.

bhyve	 for the Linux
	 and Windows Users

2FreeBSD Journal • November/December 2024

The following will work for a standard FreeBSD workstation in a typical type-2 hypervisor
configuration or for a dedicated FreeBSD server that is only hosting guest workloads with
the applicable storage and network associated with the guests for a type-1 hypervisor.

Preparation
Typically, all modern processors from the last ten years will be suitable to use with bhyve

virtualization.
Ensure that your hardware is configured with the virtualization technology enabled along

with VT-d support enabled. The use of PCI pass-through is out of scope for this article, but
it is recommended to enable VT-d so that it can be used when needed. After this is config-
ured in your machine’s BIOS/firmware, you can check that it visible to FreeBSD by looking
for POPCNT in the Features2 of the CPU:

dmesg | grep Features2
 Features2=0x7ffafbff<SSE3,PCLMULQDQ,DTES64,MON,DS_CPL,VMX,SMX,EST,TM2,SSSE3,SDBG,FMA,
 CX16,xTPR,PDCM,PCID,SSE4.1,SSE4.2,x2APIC,MOVBE,POPCNT,TSCDLT,AESNI,XSAVE,OSXSAVE,AVX,
 F16C,RDRAND>

Now we have confirmed that our CPU is ready, we need to install a few packages to
make it easy to create and manage guest operating systems:

pkg install openntpd vm-bhyve bhyve-firmware

Briefly, OpenNTPD is a simple time daemon from the OpenBSD project. This keeps the
host time from skewing. When a hypervisor is under extreme pressure from guest workloads,
this can cause the regular system time to quickly get out of sync. OpenNTPD keeps time
in check while ensuring your upstream time source is reporting the correct time using con-
straints over the HTTPS protocol. bhyve-firmware is the meta package that will load the most
recently supported EDK2 Firmware for bhyve from packages. Finally, vm-bhyve is a manage-
ment system for bhyve written in shell, avoiding the need for complex dependencies.

Boot strapping a machine ready for use with vm-bhyve is quite simple but attention is re-
quired for some of the ZFS options to ensure that guests remain performant on underlying
storage for general workloads:

zfs create -o mountpoint=/vm -o recordsize=64k zroot/vm
cat <<EOF >> /etc/rc.conf
vm_enable=”YES”
vm_dir=”zfs:zroot/vm”
vm_list=””
vm_delay=”30”
EOF
vm init

Before we get too far into this, we should download the ISOs that we will be using later so
they are ready for use by the vm-bhyve installer. To download an ISO to the vm-bhyve ISO
store, use the vm iso command:

vm iso https://files.bsd.engineer/Windows11-bhyve.iso

(sha256 - 46c6e0128d1123d5c682dfc698670e43081f6b48fcb230681512edda216d3325)

2 of 5

3FreeBSD Journal • November/December 2024

vm iso https://repo.almalinux.org/almalinux/9.5/isos/x86_64/AlmaLinux-9.5-x86_64-dvd.iso

(sha256 - 3947accd140a2a1833b1ef2c811f8c0d48cd27624cad343992f86cfabd2474c9)
These will be downloaded into the /vm/.iso directory. Note: The AlmaLinux ISO is di-

rectly downloaded from the project and checksums can be verified upstream. The Win-
dows11-bhyve ISO was downloaded from Microsoft and has been modified to ensure that
it will install on hardware that Microsoft deems unsupported and has been provided to as-
sist with this article. As such, this ISO should only be used in a lab environment. It has had
the CPU and TPM requirements removed along with not needing to create a Microsoft ac-
count.

Networking
By default, vm-bhyve uses bridges to connect the systems physical interface with the

tap interfaces that are assigned to each guest. When adding a physical interface to a bridge,
certain features such as TCP Segment Offload (TSO) and Large Receive Offload (LRO) do
not get disabled but need to be disabled for networking functions of guests to work cor-
rectly. If the host has an em(4) interface, this can be disabled by:

ifconfig em0 -tso -lro

To avoid having to disable these after each reboot, add them to the system’s /etc/rc.conf
file:

ifconfig_em0_ipv6=”inet6 2403:5812:73e6:3::9:0 prefixlen 64 -tso -lro”

The above may not be required in every situation depending on the network card being
used but if you experience guest network performance issues, this is what the problem will be.

To configure a vSwitch (bridge) the switch vm sub-command is used:

vm switch create public
vm switch add public em0

This creates a vSwitch called public and then attaches the em0 physical interface to the
vSwitch.

Templates
Templates are required to assist with setting up guest configuration with the correct vir-

tual hardware and other settings needed for them to function correctly. Using root, add the
following to the templates repository:

cat <<EOF > /vm/.templates/linux-uefi.conf
loader=”uefi”
graphics=”yes”
cpu=2
memory=1G
disk0_type=”virtio-blk”
disk0_name=”disk0.img”
disk0_dev=”file”
graphics_listen=”[::]”
graphics_res=”1024x768”

3 of 5

4FreeBSD Journal • November/December 2024

xhci_mouse=”yes”
utctime=”yes”
virt_random=”yes”
EOF

cat <<EOF > /vm/.templates/windows-uefi.conf
loader=”uefi”
graphics=”yes”
cpu=2
memory=4G
disk0_type=”nvme”
disk0_name=”disk0.img”
disk0_dev=”file”
graphics_listen=”[::]”
graphics_res=”1024x768”
xhci_mouse=”yes”
utctime=”no”
virt_random=”yes”
EOF

Creating Guests
With storage, network, installers and templates prepared, guests can now be created.

vm create -t windows-uefi -s 100G windows-guest
vm add -d network -s public windows-guest

vm create -t linux-uefi -s 100G linux-guest
vm add -d network -s public linux-guest

The above creates both windows and linux guests with 100GB of storage allocated (using
file backed storage) using their applicable templates and adds a network interface to each
that is connected to the public vSwitch.

The windows guest needs a slight adjustment in its configuration to enable it to have
network access during installation until the VirtIO drivers are installed. Edit the guests con-
figuration and change the network interface from virtio-net to e1000:

vm configure windows-guest

network0_type=”e1000”
Revert to “virtio-net” once the RedHat VirtIO drivers have been installed.

Installing and Using Guests
To install each guest:

vm install windows-guest Windows11-bhyve.iso
vm install linux-guest AlmaLinux-9.5-x86_64-dvd.iso

Once the installation has been initiated, bhyve will be in a wait state. It will not commence
the ISO boot process until a connection has been made to the VNC console port. To deter-

4 of 5

5FreeBSD Journal • November/December 2024

mine which guest console is running on a corresponding VNC port, use the list sub-com-
mand:

vm list
NAME DATASTORE LOADER CPU MEMORY VNC AUTO STATE
linux-guest default uefi 2 1G [::]:5901 No Locked (host)
windows-guest default uefi 2 8G [::]:5900 No Locked (host)

Using a VNC viewer like TigerVNC or TightVNC, connect the the IPv6 address and port
for each of the guests to commence installation:

[2001:db8:1::a]:5900 # if the host is remote
[::1]:5900 # if it is on your local machine using localhost

After the Windows guest has been installed, the VirtIO drivers can be loaded. The drivers
can be found at:
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/virtio-win-
0.1.266-1/virtio-win-gt-x64.msi
(sha256 – 37b9ee622cff30ad6e58dea42fd15b3acfc05fbb4158cf58d3c792b98dd61272)

Navigate to the above URL with the Edge Browser once Windows has finished installing
to download and install these drivers. Once installed, shut down the host, switch the net-
work interface in the guest configuration file back to virtio-net and the system can be start-
ed as normal.

We now have installed guests ready for use but there needs to be control over these so
they can be started and stopped when required. The following commands will perform ba-
sic operations on your guests, such as starting, stopping or immediately powering off re-
spectively:

vm start linux-guest
vm stop windows-guest
vm poweroff windows-guest

The difference between stop and power off is that stop issues an ACPI shutdown re-
quest to the guest where poweroff immediately kills the bhyve process and won’t shut
down the guest cleanly.

Summary
This article is a brief insight into controlling bhyve and installing common operating sys-

tems with tools that are available directly from the FreeBSD package repository. vm-bhyve
can do so much more than what was described here and is comprehensively detailed in the
vm(8) man page.

JASON TUBNOR has over 28 years of IT industry experience in a vast range of disciplines
and is currently the ICT Senior Security Lead at Latrobe Community Health Service (Victo-
ria, Australia). Discovering Linux and Open Source in the mid 1990s, then being introduced
to OpenBSD in 2000, Jason has used these tools to solve various problems in organizations
that cover different industries. Jason is also a co-host on the BSDNow Podcast.

5 of 5

