
1FreeBSD Journal • November/December 2024

1 of 9

The previous column in this series focused on the FreeBSD infrastructure that supports
pacing for TCP stacks. This column continues exploring pacing in FreeBSD by discussing
a pacing methodology that is available in the RACK stack today in the developer version
of FreeBSD. This pacing methodology is called Dynamic Goodput Pacing (DGP) and rep-
resents a new form of pacing that can provide good performance and yet still be fair in the
network. To understand DGP, we first will need to discuss congestion control, since DGP
works by combining two forms of congestion control that traditionally have not been used
together. Consequently, this column will first discuss what congestion control is as well as
two kinds of congestion control that DGP combines into a seamless pacing regime.

Congestion Control
When TCP was first introduced to the budding Internet,

it did not contain anything called congestion control. It had
flow control, i.e., making sure that a sender did not overrun a
receiver, but there was no regard at all to what TCP was do-
ing to the network. This caused a series of outages that have
since been termed “congestion collapse” and brought about
changes to TCP to have a “network aware” component to
try to assure that actions by TCP would not cause problems
on the Internet. This “network aware” component is called
congestion control.

Loss Based
The very first congestion control introduced to the In-

ternet was loss-based congestion control. Today it is one of
the most widely deployed forms of congestion control though it does have its downsides.
There are two main algorithms (though others do exist) used in loss-based congestion —
one called New Reno[1] and the other called Cubic[2]. New Reno and Cubic both share one
fundamental design, Additive Increase and Multiplicative Decrease (AIMD). We will look a bit
more closely at New Reno, since it is simpler to understand.

TCP will start with a number of basic variables set to preset defaults:
• Congestion Window (cwnd) — How much data that can be sent into the network with-

out causing congestion. This is initialized to the value of the Initial Window.

BY RANDALL STEWART

Dynamic Goodput Pacing:
A New Approach to Packet Pacing

When TCP was first
introduced to the budding
Internet, it did not contain
anything called congestion
control.

2FreeBSD Journal • November/December 2024

• Slow Start Threshold (ssthresh) — When the cwnd reaches this point the increase
mechanism is slowed down from something called “Slow Start” to “Congestion Avoid-
ance”. The ssthresh value is ostensibly set to infinity initially but will get set to ½ the cur-
rent cwnd whenever a loss is detected.

• Flight Size (FS) — The number of data bytes in flight to the peer that has not been ac-
knowledged. This of course starts at zero and is incremented every time data is sent
and subtracted from when data is cumulatively acknowledged.

• Initial Window (IW) — This is the initial value to be set into the cwnd, in most imple-
mentations it is set to 10 segments (10 x 1460), but it may be more or less (initially TCP
had this value set to 1 segment).

• Algorithm – “Slow Start” (SS) — The slow start algorithm is one of the algorithms used
for the additive increase part. In slow start every time an
acknowledgment arrives the cwnd is increased by the
amount of data acknowledged.

• Algorithm – “Congestion Avoidance” (CA) — The
congestion avoidance algorithm will increase the cwnd
1 packet every time a full congestion windows worth of
data has been acknowledged.

So initially the cwnd is set to the IW, the increase algo-
rithm is set to SS, and the flight size is set to 0 bytes. The im-
plementation, assuming an infinite amount of data to send,
will send out the IW worth of data towards its peer moving
FS to the IW size as well. The peer will send back acknowl-
edgments for every other packet. (Some implementations
such as macOS may change to every eighth packet or every
single packet.) This means that with each arriving acknowl-
edgement the FS will go down by two packets and the cwnd
will be increased by two packets, which means we can send out four more packets (if the
flight size before the acknowledgment arrived was at its maximum value i.e. the cwnd). This
sequence will continue until a loss is detected.

There are two ways in which we can detect loss: via indications of loss in the returning
acknowledgment (where the cumulative acknowledgment point does not advance) or via a
timeout. In the former case we cut the cwnd in ½ and store this new value in the ssthresh
variable. If it’s via the latter, we set the cwnd to 1 packet and again set ssthresh to ½ the old
cwnd value before the loss.

In either case we start retransmitting the lost data and once all the lost data has been re-
covered, we start sending new data with a new lower cwnd value and an updated ssthresh.
Note that whenever the cwnd rises above the ssthresh point we will change the algorithm
used for increasing cwnd to congestion avoidance. This means that once a whole cwnd of
data has been acknowledged we increase cwnd by one packet.

Now in briefly summarizing how loss-based congestion control works I have skipped over
some finer points (more details on how to recognize loss for example) and some other nu-
ances. But I wanted to give you an idea as to how it is working so we could then shift our at-
tention to routers on the Internet to focus on what happens because of these loss-based
mechanisms.

Routers typically have buffers associated with their links. This way, if a burst of packets

2 of 9

The implementation
will send out the IW worth
of data towards its peer
moving FS to the IW size
as well.

3FreeBSD Journal • November/December 2024

arrives (which happens often), they do not have to discard any packets but can forward the
packets to the next hop through whatever link that leads there. Especially when the link
speeds vary between incoming versus outgoing. Let’s look at Figure 1 below.

Figure 1: A bottleneck router with a buffer

Here we see P3 arriving at 100Mbps and it will get placed into the third slot in the router’s
buffer. P1 is currently being transmitted onto the 10Mbps link and P2 is waiting for its turn to
be transmitted. Assuming a 1500-byte packet P3 will take approximately 120 microseconds
to transmit across the 100Mbps network. When it is its turn to go out onto the 10Mbps des-
tination network it will take 10 times that or 1200 microsec-
onds to be sent. This means that every packet in the router’s
buffer will cause a 1200 microseconds of additional delay to
be added to the packet just arriving.

Now let’s step back and consider what our congestion
control algorithm is going to optimize for. It will send pack-
ets as fast as it can until it loses a packet. If we are the only
ones sending on the network this means that we will have
to completely fill the routers buffer before a loss occurs.
This means we are optimizing the router to always have a
full buffer. And since memory is cheap, routers have grown
quite large buffers. This means that we end up with long de-
lays when a large transfer is happening via a loss-based con-
gestion control algorithm. In Figure 1 we see only 6 slots for
packets but in real routers there can be 100’s or 1000’s of
packets in a routers buffer waiting to be sent. This means
that the round-trip time seen by a TCP connection might vary from just a few milliseconds
(when no packets are in queue) and then spike up to seconds due to buffering by the rout-
ers and TCP’s AIMD congestion control algorithms always wanting to keep the buffer com-
pletely full.

You may have heard the term “buffer bloat” which impacts any real time applications
(video calls, audio calls or games), this is directly caused by loss-based congestion control
and is what we have just described.

Delay Based
For quite a long time, researchers and developers have known about the tendencies of

loss-based congestion control to fill buffers. Long before all the talk of buffer bloat alterna-
tive congestion controls had been proposed to solve this issue. One of the first such pro-
posals was TCP Vegas[3]. The basic idea in TCP Vegas is that the stack keeps track of the

3 of 9

If we are the only ones
sending on the network
this means that we will
have to completely fill
the routers buffer before
a loss occurs.

4FreeBSD Journal • November/December 2024

lowest RTT it has seen, called the “Base RTT”. It uses this information during Congestion
Avoidance to determine an expected bandwidth i.e.:

 Expected = cwnd / BaseRTT
The actual bandwidth is also calculated as well i.e.:

 Actual = cwnd / CurrentRTT
Then a simple subtraction is done to determine the difference i.e.:

 Diff = Expected – Actual
The difference Diff is then used to determine if the cwnd should be advanced or re-

duced based on two thresholds α < ꞵ. These thresholds help to define how much data
should be in the buffer of the bottleneck. If the difference is smaller than α then the cwnd
is increased and when the difference is larger than ꞵ then the cwnd is decreased. Whenever
the difference is between the two then no change is made to the cwnd. This clever formula
with low values (usually 1 and 3) keeps the buffer at the bottleneck to a very small value opti-
mizing the connection to keep the buffer just full enough to
achieve optimal throughput for the connection.

During Slow Start, TCP Vegas modifies the way the in-
crease works by alternating every other RTT. The first RTT
Slow Start increases as New Reno or other loss-based con-
gestion control mechanisms would. However, on the next
RTT, TCP Vegas does not increase the cwnd but measures
the difference using the cwnd to again calculate if the router
buffer has been saturated. When the actual rate falls below
the expected rate by one router buffer, slow start is exited.

Perils of Mixing the Two
Testing with TCP Vegas shows improvements to both

RTT and throughput. So why did we not fully deploy TCP Vegas gaining all its benefits?
The answer to that is contained within what happens when a loss-based congestion-con-

trolled traffic competes against a delay based one. Imagine your TCP Vegas connection
faithfully tuning the connection to keep only 1 or 2 packets in the bottleneck routers buf-
fer. The RTT is low, and your throughput is at your maximum share. Then a loss-based flow
begins, it will of course fill the router buffer until it experiences a loss, which is the only way
it learns to slow down. To the TCP Vegas flow a signal that it is going too fast is received re-
peatedly, getting it to continue to cut its cwnd until it is getting almost no throughput. In
the meantime, the loss-based flow gets all the bandwidth. Basically, the two types of con-
gestion control, when mixed, always end up turning out poorly for the delay-based mech-
anism. Since loss-based congestion control was and is widely deployed on the Internet this
then provided a huge dis-incentive for deploying a delay-based congestion control.

Mixing Loss and Delay Based Approaches with DGP
DGP attempts to integrate both loss-based and delay-based approaches in choosing its

pacing rate. For the delay-based component Timely[4] was chosen (with some adaptation
for the Internet) though arguably any delay-based approach (including TCP Vegas) could
have been adapted for this purpose. Timely uses a delay gradient to calculate a multiplier
which is combined with the current loss-based congestion controls calculations (either New
Reno or Cubic) to derive an overall pacing rate using the following formula:

4 of 9

Testing with TCP Vegas
shows improvements to
both RTT and throughput.

5FreeBSD Journal • November/December 2024

Bw = max(GPest, LTbw) * TimelyMultiplier
FillCwBw = cwnd / CurrentRTT
PaceRate = max (Bw, ((FCC == 0) ? FillCwBw : min(FillCwBw, FCC)))

We will discuss each part of the above formula in the following subsections to give you
an idea of how DGP works. For the deep details on Timely we recommend you read the
paper[4].

Goodput (GPest)
One of the foundational measurements that DGP keeps track of is the goodput. This is

like BBR’s[5] delivery rate but different in a subtle way. The delivery rate calculates the arriv-
ing rate of all data at a TCP receiver. When there is no loss the delivery rate and the DGP
goodput are identical. But in cases of loss, the DGP rate lessens. This is because the good-
put is measured strictly on advances to the cumulative acknowledgment (cum-ack), when
a loss happens the cum-ack stops advancing. All the time it takes to recover a lost packet is
thus folded into the goodput estimate lowering the GPest value.

To measure the goodput initially the IW is allowed to be sent in a burst, this starts the
very first measurement window. The goodput is usually measured over 1 - 2 round trips
worth of data and is calculated based on the advancement of the cum-ack over that peri-
od. During the measurement period a separate RTT is also calculated over that period i.e.
the curGpRTT (which will be used later as input to Timely).
Once the IW is acknowledged we have a seed of the first
measurement. For the next three measurements the esti-
mate is averaged. Once a fourth measurement is made fu-
ture estimates use an apportioned weighted moving aver-
age to update the current GPest. Every time a new GPest
is started the curGpRTT is saved into the prevGpRTT and a
new weighted moving average of RTT is also begun which
will become our new curGpRTT (note this RTT is a separate
measurement from the smoothed round trip that TCP con-
tinues to make as well). The GPest measurement is continu-
ally made by the sender when data is in transit to the receiv-
er. Any time that the sender becomes application limited the
current measurement is ended. Note that an implementa-
tion becoming congestion window limited does not stop the
current measurement. This description has been rather brief
and may warrant a future article on how the RACK stack measures the goodput.

Long Term Bandwidth (LTbw)
DGP also tracks another bandwidth measurement termed the LTbw. The LTbw is the to-

tal sum of all bytes cumulatively acknowledged divided by the total time that the data was
outstanding. This value is almost always lesser than the current goodput value but in cas-
es of sharp decline in the bandwidth measurement it can provide a stability to the current
bandwidth estimate.

Delay Gradient with Timely (TimelyMultiplier)
Timely provides a multiplier that generally ranges somewhere between 50% - 130% of

the estimated bandwidth. Timely uses the following formula (from the paper):

5 of 9

To measure the goodput
initially the IW is allowed
to be sent in a burst,
this starts the very first
measurement window.

6FreeBSD Journal • November/December 2024

Timely was designed for the data center environment where the RTT’s and bandwidths
at various points are known entities. For use in DGP this is not the case, so we substitute
the new_rtt and prev_rtt in the above formulas with the curGpRTT and the prevGpRTT re-
spectively. We only do a Timely calculation at the end of making a goodput estimate. The
multiplier calculated then stays with the connection as is until the next goodput estimate is
complete and the multiplier is again updated along with any update to the goodput. Note
also that timely uses a minRTT i.e. the minimum expected RTT. Again, this is not some-
thing known on the Internet as compared to the data center where the RTT at any point is a
known quantity, and so it is derived as the lowest RTT seen in the last 10 seconds, the same
as BBR. Also, just like BBR, to reestablish the minimum RTT periodically DGP will go into a
“probeRTT” mode where the cwnd is reduced to 4 segments for a short period of time so
that a “new” low RTT can be found. Note that the addition of a BBR style probe-RTT phase
also helps DGP to become more compatible with BBR flows it is competing with.

With these tweaks, the Timely algorithm is adapted into DGP. For the deeper details on
either probeRTT or Timely I suggest reading the papers.

Loss Based Pacing or Filling the Congestion Window (FillCwBw)
To pace out packets for loss-based congestion control a simple method exists. Take the

currentRTT (kept in any stack doing Recent Acknowledgement[6]) and divide that into the
congestion window. This tells the pacing mechanism what rate to pace at that will spread
the current congestion window over the current RTT. Any loss-based congestion control,
New Reno or Cubic, can be used with this method to simply deduce a pacing rate that
would be dictated by the congestion control algorithm. We call this rate the Fill Congestion
Window rate (FillCWBw) since it is designed to fill the congestion window over an RTT.

It should be noted that by pacing packets out over the entire congestion window it is
highly likely that the sender will have less loss. This is due to less pressure on the bottleneck

6 of 9

7FreeBSD Journal • November/December 2024

by allowing some time between each microburst of packets sent. This time allows the bot-
tleneck to drain some before the next microburst of packets arrives. Having less loss will
naturally mean that the congestion window will gain a higher value since loss is the only
thing that causes the cwnd to be reduced.

The Fulcrum Point: Fill Congestion Window Cap (FCC)
So far, DGP has calculated a bandwidth based on the goodput estimate in combina-

tion with Timely to increase or decrease that rate based on the RTT gradient (a delay-based
component). We have also calculated a bandwidth for pacing based on the value of the con-
gestion window (via whatever congestion control is in play) and the current RTT (the loss-
based component). This gives us two distinct bandwidths we could pace at.

So, this is where the Fill Congestion window Cap (FCC) comes into play. If one is set (you
can set it to zero to always get the fastest bandwidth), it becomes the limit of how much we
will allow the loss-based rate to apply. The current default in FreeBSD is set to 30Mbps. So,
for example if the FillCwBw calculated out to 50Mbps and the Bw, factoring in the Time-
ly value on top of the estimate bandwidth came out to 20Mbps, then we would pace at the
limit of the FCC i.e. 30Mbps in a default setting. If the Timely calculated Bw was 80Mbps
then we would pace at 80Mbps.

What happens here is that the FCC serves as a Fulcrum point and limit to how much the
nominal loss-based congestion control algorithm will influence the pacing rate. The FCC
declares that your connection will push against other loss-based flows to maintain a rate of
at least FCC, if possible, based on the congestion control value. If neither value meets the
FCC limit, then the larger of the two will be dominant.

General Performance While Testing on the Internet
In a past large-scale experimentation at my previous company, DGP running with an FCC

limit of 30Mbps (now the default) reduced RTT by up to over 100ms with no real degrada-
tion in Quality of Experience (QoE) metrics. If the FCC point was raised to 50Mbps QoE
metrics improved i.e. things like Play Delay and Rebuffers improved with a sacrifice of little
to no reduction of the RTT. The 30Mbps setting was adopted as a default in response to this
testing, valuing the reduction in RTT (indicating much better router buffer behavior) than
the corresponding gain in QoE metrics.

Enabling DGP in FreeBSD
There are at least two ways of enabling DGP on a FreeBSD system that has the RACK

stack loaded and set as the default stack. If the source code of the application is available,
you can add to the source code the setting of the socket option TCP_RACK_PROFILE to a
value of ‘1’ as follows:

socklen_t slen;
int profileno, err, sd;

….
profileno = 1;
slen = sizeof(profileno);
err = setsockopt(sd, IPPROTO_TCP, TCP_RACK_PROFILE, &profileno, slen);

The above code snippet will enable DGP on the socket associated with sd.

7 of 9

8FreeBSD Journal • November/December 2024

Another mechanism if you do not have access to the source code is to use sysctl to set
the default profile for all TCP connections using the RACK stack to the value of ‘1’. You do
this as follows:

sysctl net.inet.tcp.rack.misc.defprofile = 1

Note that once this value is set, all TCP connections using the RACK stack will use DGP
with a default FCC value of 30Mbps. You can change that default (the FCC) as well to bet-
ter match your network conditions with sysctl as well. The sysctl-variable net.inet.tcp.
rack.pacing.fillcw_cap holds the FCC in bytes per second. For example, if I want to set
the value to 50Mbps the following command can be used:

sysctl net.inet.tcp.rack.pacing.fillcw_cap = 6250000

The default value is 3750000 i.e. 30Mbps, you take the value you would like set in bits per
second and divide by 8. So, 50,000,000 / 8 = 6,250,000.

You can also use the TCP_FILLCW_RATE_CAP socket option if you have access to the
source code as follows:

socklen_t slen;
int err, sd;
uint64_t fcc;
….
fcc = (50000000 / 8);
slen = sizeof(fcc);
err = setsockopt(sd, IPPROTO_TCP, TCP_RACK_PROFILE, &fcc, slen);

Note that this will change the FCC value for just the specified connection and not the
entire system.

You can also turn the FCC feature off and pace at always the maximum allowed by either
Timely or the congestion control by setting the FCC value to 0. This will likely give you the
best performance but will not reduce router buffer usage and thus buffer bloat.

How to Set Parameters?
So what settings are right for your network? In most cases the bottleneck is in your home

gateway so knowing the bandwidth of your Internet connection can give you a good idea
on what the FCC value should be set to for your connection. For example, I have two sites
I administer, one is a symmetric 1Gbps connection, my FCC value for that machine I leave
at the default of 30Mbps. This of course only affects outbound TCP connections using the
RACK stack where the server is sending data. Leaving the default implies that for the most
part delay-based performance will be coming out of my server and each connection will
only push to maintain 3% of the network uplink capacity with loss-based mechanisms.

In my second system it has an asymmetric cable modem and only has 40Mbps up. In
such a situation I have my FCC point set to 5Mbps. If I get more than 7 connections, they
will start to push against each other using the loss-based mechanisms all attempting to get
at least 5Mbps.

Future Work
Currently the FCC point is set in a static fashion on the entire system. This means that

often the value is suboptimal, and a better value could possibly be selected (possibly gain-

8 of 9

9FreeBSD Journal • November/December 2024

ing both performance and reductions in RTT). The author is currently working on a more
dynamic mechanism for setting the FCC point. The basic idea is that the connection would
measure, over some time, the actual path capacity. Then once a value is available for the
“Path Capacity Measurement” (PCM) a set percentage of that would be dedicated as the
FCC point. This would then in theory make DGP more dynamic in tuning to the network
path being used while reserving and pushing for some portion of the available bandwidth
specific to each network type. Hopefully the work will be completed in 2025. Once complet-
ed, the RACK stack will change its default to enable DGP.

References
1. S. Floyd, T. Henderson: “The NewReno Modification to TCP’s Fast Recovery Algorithm”,

RFC 6582, April 1999.
2. S. Ha, I. Rhee, L. Xu: “Cubic: A New TCP-Friendly High-Speed TCP Variant”, in: ACM SI-

GOPS Operating Systems Review, Volume 42, Issue 5, July 2008.
3. L. Brakmo, L. Peterson: “TCP Vegas: End to End Congestion Avoidance on a Global Inter-

net”, in: IEEE Journal on Selected Areas in Communications, Volume 13, No. 8, October
1995.

4. R. Mittal, V. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Gohabdi, A. Vahdat, Y. Wang, D.
Wetherall, D. Zats: “TIMELY: RTT-based Congestion Control for the Datacenter”, in: ACM
SIGCOMM Computer Communication Review, Volume 45, Issue 4, August 2015.

5. N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson: “BBR: Congestion-Based Con-
gestion Control”, in: Queue, Volume 14, Issue 5, December 2016.

6. Y. Cheng, N. Cardwell, N. Dukkipati, P. Jah: “The RACK-TLP Loss Detection Algorithm for
TCP”, RFC 8985, February 2021.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer since 2006. He specializes in Transports including TCP
and SCTP but has also been known to poke into other areas of the operating system. He is
currently an independent consultant.

9 of 9

mailto:rrs@freebsd.org

