
1FreeBSD Journal • November/December 2024

1 of 7

Due to changes in life priorities, I drifted away from FreeBSD for a few years around
2017. Later I returned and started building a new FreeBSD-based workstation for my-
self, a Lenovo ThinkPad X220. I noticed that although it was working, the wireless sup-

port was still far from optimal, the iwm driver was neither stable nor peformant enough for
daily use.

I realized that in the wireless networking area, FreeBSD is still struggling to match the
performance of Linux-based systems due to lack of up-to-date hardware support. This is
happening for a reason: FreeBSD is often not considered a first-class citizen, hence it is not
a target of such developments, and the respective por-
tions of its networking subsystem need to be elevated
to meet the latest requirements. This is not a trivial is-
sue to fix, and the FreeBSD Foundation has been spon-
soring a long-term project that aims to bring updates
to the stack and establish a framework to facilitate
re-using the wireless network card drivers from Linux.

This began to bug me and I could not just wait pa-
tiently for the problem to get resolved. I wanted to be
part of the development of FreeBSD again because I
not only enjoyed using it but also learning about it. However, I did not have the luxury of in-
vesting time into mastering both the networking and driver code development in my free
time, so I had to look for other opportunities.

Prototype
I was excited when another approach was brought to my attention (thank you to Gábor

Zahemszky for that!). It was the idea of leveraging the PCI pass-through capabilities of
bhyve to run a Linux guest, for which it becomes possible to talk to the real hardware, set up
the wireless connection, and share the network with the FreeBSD host. I discovered David
Schlachter’s excellent blog post where the whole process is described in detail, and was able
to build my own prototype with the help of that.

While experimenting with the whole process, I studied it from at least two perspectives.
First, whether this is something that would be sustainable in the long run with regard to
system upgrades, and second, whether this is something that users without a deep under-
standing of the solution could easily install and remove. As a former ports developer, I knew
that I would have to be able to maintain the components and keep them isolated from the
base system and somehow integrate with other third-parties. So why not exploit the existing
ports framework for that purpose? And then the concept of the net/wifibox port was con-
ceived in April 2021.

BY GÁBOR PÁLI

In the wireless networking
area, FreeBSD is still
struggling to match
the performance of Linux-
based systems.

Wifibox:
An Embedded Virtualized
Wireless Router

https://www.davidschlachter.com/misc/t480-bhyve-wifi-pci-passthrough
https://www.davidschlachter.com/misc/t480-bhyve-wifi-pci-passthrough

2FreeBSD Journal • November/December 2024

Initially, I used the sysutils/vm-bhyve port to build and manage a virtual machine that
was based on Alpine Linux. Alpine is a lightweight Linux distribution that adopts OpenRC as
the init system, uses the musl standard C library to make it possible to create small applica-
tions, and integrates BusyBox for the most commonly utilized command-line tools. Origi-
nally, it was created as an embedded-first distribution. I learned about it when I was working
with Docker container images and remembered it for the small footprint and ease of use. It
is actively maintained and provides a large number of packages which are managed through
its “aports” system. In retrospect, the whole system bears resemblance to FreeBSD in many
aspects, and I grew fond of it.

Although vm-bhyve is an excellent tool, I felt that it was too much for this specific use
case. Instead, I used it as a model for the basic user interface, such as providing a console for
the user to interact with the virtual machine hosted inside, and the elementary orchestra-
tion routines. Since these routines required interaction with the command-line bhyve tools,
I decided to stick with the shell-based approach. I would probably not have had a better ex-
perience if I tried to implement all the plumbing in some other, higher-level language such
as Python, as it would unnecessarily increase the build times and introduce a dependency
on other third-party packages.

In the end, the user interface of Wifibox was composed of the start, stop, restart,
status, and resume commands. The resume operation had to be handled specially be-
cause it was known that on suspending the notebook, the virtual machine loses its con-
nection to the virtualized PCI device which has to be
recovered somehow. After some experimentation, I
noticed that this could be mitigated by stopping the
virtual machine, reloading the vmm kernel module, and
starting the VM again. There was recently a solution
proposed by Joshua Rogers to fix the issue on the ker-
nel level, but this has not yet been added to the base
system.

The VM’s interaction with the PCI device has of-
ten proven to be a weak point, which often limits the
usability of Wifibox itself. As an enhancement to this
workaround, the repertoire of recovery methods have
been expanded. Certain hardware configurations react differently to how the device is shut
down and restarted. For example, thanks to Joshua’s work, it was discovered that it matters
if the guest itself shuts down the device properly during its own shutdown sequence. It was
also learned that the ath11k_pci Linux kernel module does not well tolerate run in a virtual-
ized environment, because it assumes that the location of the Message Signaled Interrupts
(MSI) table matches with that of the host. This could only be handled if the FreeBSD host
somehow supported injecting the host physical MSI information for the guest or disabling
the MSI virtualization.

VirtFS/9P Support
One of the primary design principles of Wifibox was that users should not know about

the underlying virtual machine, but be able to run it directly on the host as a local applica-
tion. To create the illusion of that, the recently completed work around the VirtFS/9P file
system pass-through support of bhyve was explored. By mounting the appropriate directo-

2 of 7

Alpine is a lightweight
Linux distribution
that adopts OpenRC
as the init system.

https://alpinelinux.org/
https://joshua.hu/brcmfmac-bcm43602-suspension-shutdown-hanging-freeze-linux-freebsd-wifi-bug-pci-passthru

3FreeBSD Journal • November/December 2024

ries on the host for the bhyve guest, the required configuration files could be imported and
the log files could be exported. This way, the user would not have to move or keep files in
sync manually between the virtual machine and the FreeBSD host.

The VirtFS/9P support was made available beginning with FreeBSD 13, but I wanted to
extend it to the older versions at that time, 12 and 11, to broaden its userbase. Fortunately,
this feature is contained in a single module, and I was able to create another port, called
sysutils/bhyve+, to automatically patch the bhyve sources in the base system to have this
module included. With the help of that, there was no need to wait for the original authors
to backport the feature, but this extra dependency could be pulled in for the net/wifi-
box port when needed. Besides the addition of virtfs-9p, the bhyve+ port included many
other fixes that made it possible for Wifibox to run. Basically the goal was to put together a
version of bhyve that could be the same for every major FreeBSD version and minimize the
differences. This would have been based on the version in the 13.x line, but the related archi-
tectural changes made it non-trivial and the idea was later dropped. Over the years, its rele-
vance has slowly faded away and it eventually became obsolete.

The creation of the disk image for the guest had to face many challenges. The primary
 concern was that in the beginning, the image itself was a pre-installed Alpine system. It
was maintained locally on my workstation, it was hard to track what it contained, and it kept
changing due to writes to the various temporary and work files. From the user’s perspec-
tive, it raised the valid question of trusting “somebody else’s VM.” The initial versions were
around 640 MBs, which looked gigantic compared to the ones that are typical for embed-
ded systems. This size partially resulted from the image containing all possibly useful tools
and files, so it was a logical next step make it smaller
and more modular.

Version 1.0
For version 1.0 in May 2022, a lot of effort went into

reworking how the image was created. The prime di-
rective was to make the whole process reproducible
and lean. Technically, the complexity of installing the
system components from scratch was translated to
the port’s Makefile. The image has gained its own
sub-port, net/wifibox-alpine, while the orchestrator
script was split into net/wifibox-core, and net/wifi-
box has become a metaport. Through constant experimentation with the Alpine installa-
tion files, the root file system package, and its package manager, the apk tool, they were
adapted to run atop FreeBSD with the help of the Linuxulator. In addition to the creation of
a Makefile to drive the automated installation of the system to a designated directory on
the host optionally extended with extra files, Alpine packages are downloaded and installed
there. The packages themselves offered a way to modularize the construction of the image
and make it possible for the user to select between them through the various port options.
For example, the firmware files for each of the major wireless card brands could be sepa-
rately installed and FreeBSD package flavors could be created for them.

The package-based approach lent itself to the creation of additional packages and the
modification of the existing ones. Unfortunately, many of the upstream Alpine packag-
es turned out to carry some extra weight, such as documentation or additional binaries, so

3 of 7

The creation of
the disk image for
the guest had to face
many challenges.

4FreeBSD Journal • November/December 2024

they had to be removed. But it also allowed porting applications such as mDNSResponder
to this platform and allowed them to run as part of the solution. The package for the Li-
nux kernel itself had to be heavily edited to lose all the unused components, reduce its re-
source consumption, and shrink its attack surface. Wifibox does not need the standard
initrd-based boot process, therefore the initial temporary root file system is complete-
ly removed and the boot happens directly with its root file system. Configuration files and
patches for architectures other than AMD64 were removed, as Wifibox only supports that
specific one.

The virtual machine image is compressed by SquashFS and keeps the overall size down
to the ballpark of 15 MB. This approach also comes with a read-only root file system that
prevents even the root user from tampering. It is expanded with a memory-backed tem-
porary file system that is mounted under /tmp to manage the run-time file writes besides
the VirtFS/9P mounts for the reading the application configuration files from the host. The
boot process is run through GRUB, hence the Linux kernel (without its modules) is not part
of this image, but pre-loaded with sysutils/grub2-bhyve.

Package Framework
To roll out the required set of Wifibox packages in addition to the ones imported from

upstream, the package framework of Alpine Linux has been adopted. For transparency and
reproducibility, every customized package has its own APKBUILD file and extra files ver-
sion-controlled in git. The packages are built on a
clean, dedicated Alpine Linux bhyve virtual machine,
often dubbed wifibox-dev, which is re-created for ev-
ery minor Alpine release. The resulting packages are
uploaded to GitHub for the user’s convenience. In the
past, there were experiments to build the packages in a
Linux chroot environment, but FreeBSD’s native Linux
emulation support did not prove sufficient enough for
this purpose. The results were similar in case of cross
compilation, which is why I ended up with using bhyve
for this as well. Per Bernhard Fröhlich’s suggestion, I am
currently looking into utilizing GitHub Actions to build
the Wifibox packages automatically and independently
in a native Linux environment.

Linux-based Wireless Stack
A regular Linux-based wireless stack is operated inside the VM. First of all, the Linux ker-

nel is used to detect the PCI wireless device and make it run through one of its drivers and
the corresponding firmware, when necessary. The wlan0 wireless networking interface is
brought up by the standard OpenRC services. Then either WPA Supplicant or hostapd is
hooked up on that to finalize the configuration. Next to the wireless interface, a virtual eth0
Ethernet interface is exposed by bhyve. On the host, there is a bridge interface, wifibox0
defined, which is joined with eth0 in the guest through a tap software tunnel. Using ip-
tables, there is Network Address Translation (NAT) and packet forwarding applied to make
the traffic flow bidirectionally between wlan0 and eth0. The IP addresses are obtained with
the help of Busybox’s built-in udhcpd for the host (over eth0) and either dhcpcd or udhcpd

4 of 7

The resulting packages
are uploaded to GitHub
for the user’s convenience..

5FreeBSD Journal • November/December 2024

in the guest (over wlan0). The IP address range for the host can be controlled in the Wifibox
configuration and adjusted according to the user’s needs.

Due to the introduction of NAT, note that Wifibox uses a different range of IP address for
eth0 and wlan0. As a consequence, certain applications may not work properly out of the
box, and the deployment of additional tools and extra configuration, e.g., port forwarding is
required. This can be considered a benefit from the perspective of security, since there we
have a firewall installed automatically. But this is equally a drawback, because it breaks the
end-to-end connectivity, a core principle of the Internet. To overcome this, there were ex-
periments to push down the packet forwarding to the level of Ethernet. For example, there
is WLAN Kabel that implements moving packets between Ethernet and wireless interfaces.
It was used with moderate success, since the traffic was flowing, but DHCP communica-
tion could not be made to pass through the barrier, and the observed performance was low.
Nevertheless, that is a curious approach which is worth exploring further in the future.

An advantage of using Wifibox is the so-called “Unix domain socket pass-through”, which
helps tools like wpa_cli or wpa_gui communicate directly with the WPA Supplicant run-
ning inside the guest so that the user does not have to run them there and interact with the
VM. That is extra functionality because Unix domain sockets on the guest file system are
not exported by VirtFS/9P so the host will not see them. This is overcome by running a
dedicated uds_passthru process in the guest, which runs a stripped-down version of
socat in the background to convert the sockets to TCP ports. It has a pair on the side of
the host, that communicates on those ports and translates the data back to a socket locally.
With that in place, Wifibox can emulate the presence of that socket to implement smooth
communication. In collaboration with the guest, the orchestrator script automatically man-
ages the socket pass-through through a specific configuration file.

Wifibox as a Product
Although the Wifibox guest OS is mostly based on Alpine Linux, it often includes addi-

tional patches. For example, it imports a number of patches and packages from Arch Linux,
because Arch has a better support for wireless devices. But it was also discovered that the
driver for older Broadcom cards simply did not have support for MSI, which is a must for

5 of 7

https://github.com/escitalopram/wlan_kabel

6FreeBSD Journal • November/December 2024

drivers that want to run in a virtualized environment. Slow initialization lead time of certain
drivers can make the WPA Supplicant unable to find the wlan0 interface on boot, so an ex-
ponential back off mechanism was implemented to enhance its resilience. As experience
shows, a small operating system distribution dedicated to solving these issues is definitely
warranted.

The orchestrator script makes it possible to combine bhyve with other tools to shape its
behavior further. Thanks to Anton Saietskii’s observations, nice was connected to assist with
controlling the priority of the process that is responsible for running the virtual machine and
avoid overloading the host. Similarly, a layer with daemon was added to monitor the status
and revive the machine if it crashed or it was deliberately restarted.

As of the time of writing, Wifibox is actively maintained and it has been receiving
semi-annual updates in March and September. With the help of Ashish Shukla, these re-
leases are published to the FreeBSD Ports Collection, therefore they are available for in-
stalling with the pkg tool. Note that Wifibox is not featured on the installation media for the
FreeBSD releases, which can make it harder to take ad-
vantage of it when one tries to install FreeBSD over a
wireless network. However, it is possible to add all the
required binary packages to the installation media and
use them to initialize the network connection before
starting the installation procedure.

At the project’s home page, both the source code
and pointers to the respective GitHub repositories can
be found, tickets can be opened, and discussions can
be started. There is a separate repository for the ports
themselves where the published development ver-
sions present an opportunity to take a peek into what
is brewing next and test out fixes for issues.

Documentation
Wifibox is bundled with a lot of documentation, so I encourage the reader to explore it

further. And I would like to emphasize an implicit but important organizing principle with re-
gards to documentation. Wifibox follows a phased, “read as you go” model. This means that
it has no extensive online documentation, the README file in the main GitHub repository
covers an introduction, the basic installation instructions, and the list of hardware configura-
tions that are known to be compatible. The user then has to install Wifibox to get access to
the manual page, which has further details on how to use the tool and where the configura-
tion files are. And then in the configuration files, additional instructions are provided on how
to work ourselves through the related steps, together having a validation in place with help-
ful error messages to guide the user. The virtual machine image has its own dedicated man-
ual page. Thanks to John Grafton, Warner Losh, and many other users for giving me feed-
back on how to improve on these.

Summary
This all is an interesting mix of product of curiosity, the desire to provide a quick remedy

for the challenges in FreeBSD’s wireless journey, and inventing another use of the technical
advantages that are provided by PCI pass-through in virtualization and the design of bhyve.

6 of 7

Wifibox is actively
maintained and it has been
receiving semi-annual
updates.

https://github.com/pgj/freebsd-wifibox
https://github.com/pgj/freebsd-wifibox-port
https://github.com/pgj/freebsd-wifibox-port

7FreeBSD Journal • November/December 2024

Wifibox still has its own drawbacks, and it is nowhere near a drop-in replacement for the na-
tive solution. Hence, it is a called an embedded virtualized wireless router which removes
the need to buy dedicated hardware and creatively presents the CPU’s existing virtualization
capabilities as an imitation of that. However, I believe this approach still has ideas to chase,
such as using bhyve to run the Linux kernel and its drivers only in the virtual machine and
expose that directly as a wireless networking device. This would bring the approach one step
closer to the native solution, but it is not yet known if it is feasible and, yes, how much work
it would require. In the meantime, I hope that Wifibox can alleviate the pressure around
making the native solution production-ready and reassure users that FreeBSD is still a great
choice nowadays and they do not have to necessarily give up on getting good speeds and
reliable connections over wireless connections.

GÁBOR PÁLI has been a happy and committed FreeBSD user for many decades and he
also has had the joy of being a documentation and ports developer. He lives on the edge
of the beautiful Hungarian town of Esztergom with his wife. He endorses the adoption of
functional programming in the industry and nowadays he contributes to Apache CouchDB
where he can write Erlang and Scala code.

7 of 7

