
8FreeBSD Journal • November/December 2024

1 of 14

In the previous article in this three-part series, we built a simple character device driver that
permitted I/O operations backed by a fixed buffer. In this article, we will extend this driver
to support a FIFO data buffer along with support for non-blocking I/O and event report-

ing. The full source of each version of the device driver can be found at https://github.com/
bsdjhb/cdev_tutorial.

Before moving forward though, we must address an unintended bit of unfinished busi-
ness from the previous article. Alert reader Virus-V noted that the final version of the echo
driver from the article did not destroy the /dev/echo
device during unload and that accessing the device
after unload triggered a kernel panic. One of the first
clues to the bug lay in a warning message about leaked
memory from the kernel emitted during module un-
load prior to the panic. As noted in the prior article, this
warning is one of the reasons kernel modules should
use a dedicated malloc type when possible. The bug
lay in the echodev_create() function added in the last
set of changes. We had failed to return a pointer to
the newly allocated softc structure to the caller by stor-
ing the value in *scp. As a result, the echo_softc vari-
able was always NULL and the softc was not destroyed
during module unload. The fix was a one line addition
to echodev_create() to store the pointer to the new softc in *scp on success.

Using a FIFO Data Buffer
The echo driver from the first article used a flat data buffer for I/O operations. Reads

and writes could access any region of the data buffer, and the entire range of the data buf-
fer was always valid. These semantics are similar to accessing a file that does not grow when
written beyond the end. A character device driver is free to implement a range of semantics,
however. For this article, we will alter the echo driver to treat user I/O data like a FIFO stream
device similar to a pipe or fifo. I/O write requests will append data to the tail of a logical
data buffer and read requests will read data from the head of this data buffer. File offsets
such as those used with pread(2) will be ignored. The driver will continue to use an in-ker-
nel buffer to hold a temporary copy of user data. Writes will store data in this buffer and
reads will consume data from this buffer. This means that the driver will now need to keep

BY JOHN BALDWIN

The echo driver from the
first article used a flat data
buffer for I/O operations.

Character Device
Driver Tutorial (Part 2)

https://freebsdfoundation.org/our-work/journal/browser-based-edition/kernel-development/character-device-driver-tutorial/
https://github.com/bsdjhb/cdev_tutorial
https://github.com/bsdjhb/cdev_tutorial
https://github.com/bsdjhb/cdev_tutorial/issues/1
https://man.freebsd.org/pipe/2
https://man.freebsd.org/mkfifo/2
https://man.freebsd.org/pread/2

9FreeBSD Journal • November/December 2024

track of the amount of valid data in the buffer as well as the buffer’s length. To simplify the
implementation, the start of the data buffer will always be treated as the buffer’s head. Read
requests that read a subset of the available data will copy the remaining data to the front of
the buffer.

This does raise several additional questions, however. First, how should reads that want
to read more data from the buffer than is available be handled? Second, how should writes
that want to store more data than the buffer can hold be handled? For simplicity, we will
start by returning a short read of whatever bytes are available for read requests, and trun-
cating write requests to only store the amount of data for which there is room in the buf-
fer. Third, what should an ECHODEV_SBUFSIZE request do that shrinks a buffer smaller than
the amount of valid data in the buffer? We have chosen to fail such a request with an error.
One could choose to discard some of the data instead, but one would have to decide which
data to discard. Listing 1 provides the updated read and write methods. Note that a new
valid member has been added to the softc to track the amount of valid data in the buffer.
Example 1 demonstrates a few scenarios of this updated driver. Initially, the device is empty,
but data can be read once input is provided. The last few commands read a series of bytes
across two requests.

Listing 1: Read and Write Using a FIFO Data Buffer

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 struct echodev_softc *sc = dev->si_drv1;
 size_t todo;
 int error;

 sx_xlock(&sc->lock);
 todo = MIN(uio->uio_resid, sc->valid);
 error = uiomove(sc->buf, todo, uio);
 if (error == 0) {
 sc->valid -= todo;
 memmove(sc->buf, sc->buf + todo, sc->valid);
 }
 sx_xunlock(&sc->lock);
 return (error);
}

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
 struct echodev_softc *sc = dev->si_drv1;
 size_t todo;
 int error;

 sx_xlock(&sc->lock);
 todo = MIN(uio->uio_resid, sc->len - sc->valid);

2 of 14

10FreeBSD Journal • November/December 2024

 error = uiomove(sc->buf + sc->valid, todo, uio);
 if (error == 0)
 sc->valid += todo;
 sx_xunlock(&sc->lock);
 return (error);
}

Example 1: Simple FIFO I/O

hd < /dev/echo

echo “foo” > /dev/echo
cat /dev/echo
foo
echo “12345678” > /dev/echo
dd if=/dev/echo bs=1 count=4 status=none | hd
00000000 31 32 33 34 |1234|
00000004
cat /dev/echo
5678

Blocking I/O
While this version of the echo driver does implement a simple data stream, it has some

limitations. If a process wants to use this device to share a block of data larger than the data
buffer, it has to wait to write an additional buffer’s worth of data until a reader has con-
sumed the previous buffer’s worth of data. This requires the writing process to either coor-
dinate with the reader process(es) or to use a timer and retry write operations periodically.
Neither of these solutions are very practical. Instead, the driver can permit larger writes by
sleeping in the write request while the buffer is full until the request is completed. Read-
ers would awaken the waiting writer when space is available permitting the writer to make
additional progress. Similarly, readers could block waiting for data to return. To more close-
ly match the semantics of pipes and sockets, we have chosen to make read requests only
block at the start of a request and return a short read as soon as data is available. However,
for writes, we attempt to drain the entire buffer. To handle blocking, we use the sx_sleep(9)
function which atomically releases our device’s lock while putting the current thread to
sleep. Passing PCATCH to this function permits signals to interrupt this sleep in which case
sx_sleep() will return a non-zero error value. Listing 2 shows the updated read method.
The write method is similarly updated but with an extra loop to retry until the write has ful-
ly completed. Note that in the write method, we do not have to “hide” errors if the write
partially completes. The generic write system call handling in the dofilewrite() function
maps errors from sx_sleep() to success if at least some data was written. Some of the ioctl
handlers also require updates to awaken sleeping writers when the buffer grows in size or
has its contents cleared.

When testing this version of the driver, Example 2 shows some possibly surprising behav-
ior. While the data previously written is returned, cat(1) continues to wait for additional data
until killed with a signal.

3 of 14

https://man.freebsd.org/sx_sleep/9
https://man.freebsd.org/cat/1

11FreeBSD Journal • November/December 2024

Listing 2: Blocking Read Method

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 struct echodev_softc *sc = dev->si_drv1;
 size_t todo;
 int error;

 if (uio->uio_resid == 0)
 return (0);

 sx_xlock(&sc->lock);

 /* Wait for bytes to read. */
 while (sc->valid == 0) {
 error = sx_sleep(sc, &sc->lock, PCATCH, “echord”, 0);
 if (error != 0) {
 sx_xunlock(&sc->lock);
 return (error);
 }
 }

 todo = MIN(uio->uio_resid, sc->valid);
 error = uiomove(sc->buf, todo, uio);
 if (error == 0) {
 /* Wakeup any waiting writers. */
 if (sc->valid == sc->len)
 wakeup(sc);

 sc->valid -= todo;
 memmove(sc->buf, sc->buf + todo, sc->valid);
 }
 sx_xunlock(&sc->lock);
 return (error);
}

Example 2: Blocking I/O Hangs Forever

echo “12345678” > /dev/echo
cat /dev/echo
12345678
^C

Unloading Sanely
We will get to the surprising behavior from Example 2 shortly. The current driver has an-

other surprise. Unloading the driver while a process is blocked in the read or write methods

4 of 14

12FreeBSD Journal • November/December 2024

will hang the process unloading the module until the first process is killed with a signal. This
is not the behavior an administrator expects when unloading a module. Instead, the echo
driver should awaken any sleeping threads during device destruction and ensure they will re-
turn from the driver methods without sleeping again. To support this, the next change adds
a dying flag to the softc and the read and write methods fail with an ENXIO error rather
than blocking if this flag is set. During device destruction, the dying flag is set and sleeping
threads are awakened before calling destroy_dev(). Listing 3 shows the changed lines in
the read method and the updated echodev_destroy() function.

Listing 3: Waking Threads on Unload

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 ...
 /* Wait for bytes to read. */
 while (sc->valid == 0) {
 if (sc->dying)
 error = ENXIO;
 else
 error = sx_sleep(sc, &sc->lock, PCATCH, “echord”, 0);
 if (error != 0) {
 sx_xunlock(&sc->lock);
 return (error);
 }
 }
 ...
}

...

static void
echodev_destroy(struct echodev_softc *sc)
{
 if (sc->dev != NULL) {
 /* Force any sleeping threads to exit the driver. */
 sx_xlock(&sc->lock);
 sc->dying = true;
 wakeup(sc);
 sx_xunlock(&sc->lock);

 destroy_dev(sc->dev);
 }
 free(sc->buf, M_ECHODEV);
 sx_destroy(&sc->lock);
 free(sc, M_ECHODEV);
}

5 of 14

13FreeBSD Journal • November/December 2024

Conditional Blocking on Read
In Example 2, it was surprising that cat(1) continued to block after reading the available

data from the device given our prior examples. However, this behavior does follow naturally
from our driver since cat(1) just calls read(2) in a loop until it receives EOF and the second
call to read(2) blocks waiting for more data. The semantic used by other stream devices like
pipes and fifos is that reads will return EOF instead of blocking if no process has the device
open for writing. If there are devices open for writing, reads will block waiting for more data.

We can implement these semantics in the echo driver easily. We add a count of writers
to the softc and only block in the read method if this count is non-zero. To detect writers,
we add an open method that increments the counter for each open which requests write
permission. This can be determined by checking for the FWRITE flag in the file flags passed
to the open method. A new close method decrements count when a writer closes. By de-
fault, the close character device switch method is only called for the last close of a device
when no remaining file descriptors remain. Instead, we set the D_TRACKCLOSE character de-
vice switch flag so that the close method is called each time a file descriptor is closed. The
close method awakens any waiting readers if the last writer is closed. Listing 4 shows the
new open and close methods as well as the changed line in the read method. Retrying the
steps from Example 2 no longer results in the surprising behavior as cat(1) now exits after
reading the available data.

Listing 4: Tracking Open Writers

static int
echo_open(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
 struct echodev_softc *sc = dev->si_drv1;

 if ((fflag & FWRITE) != 0) {
 /* Increase the number of writers. */
 sx_xlock(&sc->lock);
 if (sc->writers == UINT_MAX) {
 sx_xunlock(&sc->lock);
 return (EBUSY);
 }
 sc->writers++;
 sx_xunlock(&sc->lock);
 }
 return (0);
}

static int
echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
 struct echodev_softc *sc = dev->si_drv1;

 if ((fflag & FWRITE) != 0) {
 sx_xlock(&sc->lock);
 sc->writers--;

6 of 14

https://man.freebsd.org/read/2

14FreeBSD Journal • November/December 2024

 if (sc->writers == 0) {
 /* Wakeup any waiting readers. */
 wakeup(sc);
 }
 sx_xunlock(&sc->lock);
 }
 return (0);
}

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 ...
 /* Wait for bytes to read. */
 while (sc->valid == 0 && sc->writers != 0) {
 ...
}

Non-blocking I/O
Now our echo device supports blocking I/O. However, some consumers may wish

to use non-blocking I/O. A process can request non-blocking I/O either by passing the
O_NONBLOCK flag to open(2), or toggling the O_NONBLOCK flag on an open file descriptor via
fcntl(2). A character device driver can check if non-blocking I/O is enabled by checking for
the O_NONBLOCK flag in the file flags passed to the read
and write methods. If non-blocking I/O is requested,
the error EWOULDBLOCK should be returned instead of
blocking any time the driver would block. For the echo
device, this means adding extra checks before blocking
in the read and write methods. That alone is sufficient
to handle non-blocking I/O requested at open time.
However, to support toggling flags via fcntl(2), an
additional step is required.

Every attempt to set file flags via the fcntl(2)
F_SETFL operation invokes two I/O control commands
on a character device: FIONBIO and FIOASYNC. Even re-
quests that do not change the state of the associated
O_NONBLOCK and O_ASYNC flags invoke these I/O con-
trol commands. If either I/O control command fails, the entire F_SETFL operation fails, and
the file flags remain unchanged. As a result, a character device driver that wants to support
F_SETFL must implement support for both I/O control commands.

FIONBIO and FIOASYNC pass an int as the command argument. This int value is zero if the
associated file flag is clear in the new file flags or non-zero if the associated flag is set in the
new file flags. The I/O control handler should return zero if the requested flag setting is sup-
ported, or an error if the requested setting is not supported. The echo device supports ei-
ther setting for the O_NONBLOCK flag but does not support setting the O_ASYNC flag, so the
FIOASYNC handler for the echo device fails if the int argument is non-zero.

7 of 14

The I/O control handler
should return zero if the
requested flag setting is
supported.

https://man.freebsd.org/open/2
https://man.freebsd.org/fcntl/2

15FreeBSD Journal • November/December 2024

Listing 5 shows the relevant changes to the read and I/O control methods to support
non-blocking I/O.

Listing 5: Support for Non-Blocking I/O

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 ...
 /* Wait for bytes to read. */
 while (sc->valid == 0 && sc->writers != 0) {
 if (sc->dying)
 error = ENXIO;
 else if (ioflag & O_NONBLOCK)
 error = EWOULDBLOCK;
 else
 error = sx_sleep(sc, &sc->lock, PCATCH, “echord”, 0);
 ...
}

...

static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
 struct thread *td)
{
 ...
 switch (cmd) {
 ...
 case FIONBIO:
 /* O_NONBLOCK is supported. */
 error = 0;
 break;
 case FIOASYNC:
 /* O_ASYNC is not supported. */
 if (*(int *)data != 0)
 error = EINVAL;
 else
 error = 0;
 break;
 ...
}

Polling I/O Status
Applications that use non-blocking I/O often use an event loop to service requests for

multiple file descriptors. For each iteration of the loop, the application blocks waiting for

8 of 14

16FreeBSD Journal • November/December 2024

one or more file descriptors to be ready (for example, having data available to read, or room
for more data to be written). The application then services each of the ready file descrip-
tors before waiting again. FreeBSD supports two system calls for this type of event loop: se-
lect(2) and poll(2). In the kernel, select(2) and poll(2) are implemented using a com-
mon framework. Each requested file descriptor is polled individually to determine if it is
ready. If no file descriptors are ready, the thread invoking the system call can sleep waiting
for at least one of the file descriptors to become ready. If the file descriptor becomes ready
while a thread is waiting, the file descriptor must awaken the sleeping thread.

The selrecord(9) family of functions manages the sleeping and awakening of threads.
A file descriptor that supports polling must create a struct selinfo object for type of
event it supports. The object should be initialized by clearing the entire object with zeroes
(for example, using memset()). If the file descriptor’s poll function finds that a file descriptor
is not ready, it must call selrecord() on the associated
struct selinfo object for each requested event. Any
time an event occurs that could make a file descriptor
ready, selwakeup() must be called on the struct
selinfo object for that event. Finally, seldrain()
should be used to awaken any remaining threads be-
fore destroying a struct selinfo object.

For character devices, the file descriptor polling
function invokes the character device poll method.
This method accepts a bitmask of poll(2) events as
a function argument and must return a mask of those
events that are currently true. In addition, this function is responsible for calling selre-
cord() if none of the requested events are true. Note that character devices do not support
different types of priority data via the read and write methods, only normal data.

For the echo device we support both read and write events. We add two struct selinfo
 objects to the softc, one for each event. Since the entire softc is zeroed on creation, no fur-
ther changes are required when initializing the softc. Each of the read and write methods
calls selwakeup() for the other event to awaken any threads that might be waiting. A few
other places can also make the echo device ready as well and need calls to selwakeup(). If
an I/O control command grows the buffer or clears its contents, that may make the device
ready to write. If the last writer closes the device, that can also make the device ready to read.
A new poll method determines the current status of the device and calls selrecord() as
needed. Finally, seldrain() is called for each event when destroying the device. Listing 6
shows the added call to selwakeup() in the read method as well as the new poll method.
Note that for the read method, selwakeup() is used for the write event.

Listing 7: Device Polling

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 ...
 error = uiomove(sc->buf, todo, uio);
 if (error == 0) {
 /* Wakeup any waiting writers. */

For the echo device we
support both read and
write events.

9 of 14

https://man.freebsd.org/select/2
https://man.freebsd.org/select/2
https://man.freebsd.org/poll/2
https://man.freebsd.org/selrecord/9

17FreeBSD Journal • November/December 2024

 if (sc->valid == sc->len)
 wakeup(sc);

 sc->valid -= todo;
 memmove(sc->buf, sc->buf + todo, sc->valid);
 selwakeup(&sc->wsel);
 }
 ...
}

...

static int
echo_poll(struct cdev *dev, int events, struct thread *td)
{
 struct echodev_softc *sc = dev->si_drv1;
 int revents;

 revents = 0;
 sx_slock(&sc->lock);
 if (sc->valid != 0 || sc->writers == 0)
 revents |= events & (POLLIN | POLLRDNORM);
 if (sc->valid < sc->len)
 revents |= events & (POLLOUT | POLLWRNORM);
 if (revents == 0) {
 if ((events & (POLLIN | POLLRDNORM)) != 0)
 selrecord(td, &sc->rsel);
 if ((events & (POLLOUT | POLLWRNORM)) != 0)
 selrecord(td, &sc->wsel);
 }
 sx_sunlock(&sc->lock);
 return (revents);
}

A pair of generic I/O control commands are also useful for inspecting the status of a file
descriptor. FIONREAD and FIONWRITE return the number of bytes that can be read or writ-
ten without blocking, respectively. The byte count is returned in a control command argu-
ment of type int. Listing 8 shows the support for these I/O control commands in the echo
device. Note that the returned value is clamped to INT_MAX to avoid overflow.

Listing 8: FIONREAD and FIONWRITE

static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
 struct thread *td)
{
 ...
 switch (cmd) {

10 of 14

18FreeBSD Journal • November/December 2024

 ...
 case FIONREAD:
 sx_slock(&sc->lock);
 *(int *)data = MIN(INT_MAX, sc->valid);
 sx_sunlock(&sc->lock);
 error = 0;
 break;
 case FIONWRITE:
 sx_slock(&sc->lock);
 *(int *)data = MIN(INT_MAX, sc->len - sc->valid);
 sx_sunlock(&sc->lock);
 error = 0;
 break;
 ...
}

To make this functionality easier to demonstrate, we have added a new poll command
to the echoctl utility. This command uses poll(2) to query the echo device’s current status.
If the device is readable, it uses the FIONREAD I/O control command to output the number
of bytes available to read. If the device is writable, it uses FIONWRITE to output the num-
ber of bytes that can be written. Example 3 shows a few invocations of this command along
with other operations on the echo device. Note that since there is not another writer in this
example, the device is readable even while it is empty.

Example 3: Polling I/O Status

echoctl poll
Returned events: POLLIN|POLLOUT
0 bytes available to read
room to write 64 bytes
echo “foo” > /dev/echo
echoctl poll
Returned events: POLLIN|POLLOUT
4 bytes available to read
room to write 60 bytes
cat /dev/echo
foo
echoctl poll -r
Returned events: POLLIN
0 bytes available to read

I/O Status Reporting via kqueue(2)kqueue(2)
FreeBSD provides the kqueue(2) kernel event notification facility as a separate API from

select(2) and poll(2). With kqueue(2), applications register a persistent note in the kernel
for each desired event. The kernel generates a stream of events that the application can con-
sume and act upon. Unlike select(2) and poll(2), an application does not need to register
all the events it cares about each time it wants to wait for a new event. This reduces overhead
in applications while also permitting more efficient tracking of desired events in the kernel.

11 of 14

https://man.freebsd.org/kqueue/2

19FreeBSD Journal • November/December 2024

A kernel event consists of a filter (event type) and identifier. The behavior of some events
can be further customized via various flags. For I/O on file descriptors, the two primary fil-
ters are EVFILT_READ and EVFILT_WRITE to determine if a descriptor is readable or writ-
able, respectively. The identifier field for these event filters is the integer file descriptor. In
addition, for read and write events the kernel event structure returns the amount of data
that can be read or written as a separate field. This avoids the need for separate invocations
of the FIONREAD and FIONWRITE I/O control commands.

Inside the kernel, kernel events are described by a struct knote object. This structure
contains copies of the event fields that are used to generate the events returned to the ap-
plication. A list of active events is stored in a struct knlist object. Since I/O events han-
dled by select(2) and poll(2) are usually associated with a kernel event, struct selin-
fo embeds a struct knlist as its si_note member. Each knote is also associated with a
struct filterops object pointed to by the kn_fop member. This structure and the APIs
for manipulating knotes and knote lists are described in kqueue(9).

For character devices, the kqfilter method is responsible for attaching a struct filterops
 object to a knote. This includes setting the kn_fop member and adding the knote onto the
correct knote list. As a result, struct filterops objects for character devices do not use
the f_attach member. The kn_hook member of struct knote is an opaque pointer that
can be set by the kqfilter method to pass state to struct filteropts methods similar to
the si_drv1 field of struct cdev.

For the echo driver, we define two struct filteropts objects: one for read events and
one for write events. Each event includes f_detach and f_event methods. We reuse the
embedded knote list in the existing read and write struct selinfo objects from the softc.
Since the echo driver uses an sx(9) lock, we define custom locking callbacks for use with kn-
list_init() when creating the echo device. The f_detach methods use knlist_remove()
to remove a knote from the associated knote list. The f_event methods set the kn_data
field to the appropriate byte count and mark the event ready if the byte count is non-ze-
ro. The f_event method for the read event also sets EV_EOF if there are no writers. A new
kqfilter character device method attaches a knote to the new struct filterops objects
for the EVFILT_READ and EVFILT_WRITE filters. It also sets the kn_hook member of the
knote to the softc pointer. Finally, all the places in the driver that call selrecord() to awaken
sleeping threads from poll(2) or select(2) now also call KNOTE_LOCKED() to report
an event for knotes associated with the read or write event. Listing 9 shows the struct
filterops object and its associated methods for the read filter. Listing 10 shows the new
kqfilter character device method.

Listing 9: EVFILT_READ Filter

static struct filterops echo_read_filterops = {
 .f_isfd = 1,
 .f_detach = echo_kqread_detach,
 .f_event = echo_kqread_event
};

...

static void
echo_kqread_detach(struct knote *kn)

12 of 14

https://man.freebsd.org/kqueue/9

20FreeBSD Journal • November/December 2024

{
 struct echodev_softc *sc = kn->kn_hook;

 knlist_remove(&sc->rsel.si_note, kn, 0);
}

static int
echo_kqread_event(struct knote *kn, long hint)
{
 struct echodev_softc *sc = kn->kn_hook;

 kn->kn_data = sc->valid;
 if (sc->writers == 0) {
 kn->kn_flags |= EV_EOF;
 return (1);
 }
 kn->kn_flags &= ~EV_EOF;
 return (kn->kn_data > 0);
}

Listing 10: kqfilter Device Method

static int
echo_kqfilter(struct cdev *dev, struct knote *kn)
{
 struct echodev_softc *sc = dev->si_drv1;

 switch (kn->kn_filter) {
 case EVFILT_READ:
 kn->kn_fop = &echo_read_filterops;
 kn->kn_hook = sc;
 knlist_add(&sc->rsel.si_note, kn, 0);
 return (0);
 case EVFILT_WRITE:
 kn->kn_fop = &echo_write_filterops;
 kn->kn_hook = sc;
 knlist_add(&sc->wsel.si_note, kn, 0);
 return (0);
 default:
 return (EINVAL);
 }
}

As with the poll(2) support, we have extended the echoctl utility with another com-
mand to demonstrate the kevent(2) support. The new events command registers read
and write events for the echo device and outputs a line for each event that is received. Since
read and write events are level-triggered by default, echoctl sets the EV_CLEAR flag when
registering events for the echo device. This instead only reports events when the device

13 of 14

21FreeBSD Journal • November/December 2024

state changes triggering a call to KNOTE_LOCKED() inside the driver. Example 4 shows the
output of the events command across a series of actions. The first two events are reported
as the initial state when the echo device is idle without any open readers or writers. In anoth-
er shell we execute the command “jot -c -s “” 80 48 > /dev/echo” to write 81 bytes
of data to the echo device. Since the default buffer size is 64 bytes, this command blocks
in the write(2) system call after writing 64 bytes. The write of 64 bytes triggers the next
EVFILT_READ event reporting 64 bytes available to read. Finally, in a third shell we execute
the command “cat /dev/echo” to read all the data from the echo device. The first read(2)
system call from cat(1) reads the 64 bytes of output and triggers an EVFILT_WRITE event.
However, before the echoctl process can query the echo device’s state, the jot(1) process
has awakened and written the remaining 17 bytes of data to the buffer leaving room for 47
bytes. This accounts for the first EVFILT_WRITE event reported in the third block of events.
The write of the remaining 17 bytes also triggered an EVFILT_READ event. However, by the
time this event is reported, the jot(1) process has exited and cat(1) has read the remain-
ing 17 bytes, so the EVFILT_READ event reports EV_EOF with zero bytes to read. The read of
17 bytes by cat(1) also triggered an EVFILT_WRITE event that is reported as the next to last
event. Finally, cat(1) calls read(2) a third time which returns 0 to signal EOF. This read also
triggers an EVFILT_WRITE event which is reported as the last event. This last sequence of
events is not deterministic and may appear in a different order or with slightly different val-
ues across different runs (for example, the first EVFILT_WRITE may report 64 bytes available
to write if jot(1) hasn’t yet written the remaining 17 bytes).

Example 4: I/O Status via Kernel Events

echoctl events -W
EVFILT_READ: EV_EOF 0 bytes
EVFILT_WRITE: 64 bytes
...
EVFILT_READ: 64 bytes
...
EVFILT_WRITE: 47 bytes
EVFILT_READ: EV_EOF 0 bytes
EVFILT_WRITE: 64 bytes
EVFILT_WRITE: 64 bytes

Conclusion
In this article we extended the echo device to support a FIFO data buffer with both

blocking and non-blocking I/O. We also added support for querying device state via
poll(2) and kevent(2). The final article in this series will describe how character devices
can provide a backing store for memory mappings created via mmap(2).

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Ashland, Virginia with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

14 of 14

https://man.freebsd.org/mmap/2

