
November/December 2024

Virtualization Issue

Character Device Driver Tutorial (Part 2)

BHYVE for the Windows and Linux Users

Xen and FreeBSD

Wifibox:
An Embedded Virtualized Wireless Router

Embedded FreeBSD: Fabric — Baby Steps

Adventures in TCP/IP:
Dynamic Goodput Pacing:
A New Approach to Packet Pacing

Conference Report:
My EuroBSDCon Experience in Dublin

Nov/Dec 2019 57

2025 Editorial Calendar
•	 Jan/Feb/March Downstreams

•	 April/May/June Networking

•	 July/August/Sept Contributing/Workflow

•	 Oct/Nov/Dec Embedded

https://www.freebsdfoundation.org/journal

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
	 John Baldwin •	 FreeBSD Developer and Chair of
		 the FreeBSD Journal Editorial Board

	 Tom Jones •	FreeBSD Developer, Software Engineer,
 		 FreeBSD Foundation

	 Ed Maste •	 Senior Director of Technology,
		 FreeBSD Foundation and Member of
		 the FreeBSD Sec Team

	 Benedict Reuschling •	 FreeBSD Documentation Committer

	 Jason Tubnor •	 BSD Advocate, Senior Security Lead
		 at 	Latrobe Community Health Service
		 (NFP/NGO), Victoria, Australia

	 Mariusz Zaborski •	 FreeBSD Developer

Advisory Board
	 Anne Dickison •	 Deputy Director
		 FreeBSD Foundation

	 Justin Gibbs •	 Founder of the FreeBSD Foundation,
		 President of the FreeBSD Foundation
 		 Board, and a Software Engineer at
		 Facebook

	 Allan Jude •	 CTO at Klara Inc., the global FreeBSD
		 Professional Services and Support
		 company

	 Dru Lavigne •	 Author of BSD Hacks and
		 The Best of FreeBSD Basics

	 Michael W Lucas •	 Author of more than 40 books including
		 Absolute FreeBSD, the FreeBSD
		 Mastery series, and git commit murder

	 Kirk McKusick •	 Lead author of The Design and
		 Implementation book series

	 George Neville-Neil •	 Past President of the FreeBSD Foundation
		 Board and co-author of the Design and
		 Implementation of the FreeBSD Operating
		 System

	 Hiroki Sato •	 Chair of AsianBSDCon, Member of
		 the FreeBSD Core Team, and Assistant
		 Professor at Tokyo Institute of Technology

	Robert N. M. Watson •	 Director of the FreeBSD Foundation
		 Board, Founder of the TrustedBSD
		 Project, and University Senior Lecturer
		 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

	 Editor-at-Large •	James Maurer
		 maurer.jim@gmail.com

	Design & Production •	Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2024 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written

permission from the publisher.

3FreeBSD Journal • November/December 2024

Happy
New
Year!

mailto:maurer.jim@gmail.com
mailto:info@freebsdfoundation.org

4FreeBSD Journal • November/December 2024

November/December 2024

	 8	 Character Device Driver Tutorial (Part 2)
	 By John Baldwin

	 22	 �BHYVE for the Windows and Linux Users
	 By Jason Tubnor

	 27	� Xen and FreeBSD
	 By Roger Pau Monné

	 34	 �Wifibox: An Embedded Virtualized
Wireless Router

	 By Gábor Páli

	 3	 Foundation Letter
	 5	 We Get Letters

By Michael W. Lucas

	 42	 Embedded FreeBSD: Fabric—Baby Steps
By Christopher R. Bowman

	 46	 Adventures in TCP/IP:
		 Dynamic Goodput Pacing: A New Approach to Packet Pacing

By Randall Stewart

	 55	 Conference Report: My EuroBSDCon Experience in Dublin
By Stefano Marinelli

	 63	 Events Calendar
By Anne Dickison

Virtualization Issue

Dear Letters Person,

Every day someone figures out new types of
virtualization or ways to complicate it. Full virtualization,
light virtualization, containers, ABI compatibility, it just
goes on and on. Where does this end? How can I get
ahead of this?

	 —�Racing Ahead of Virtualization Every Day

PS: does the Journal have a new person for this column
yet, or am I going to get a completely unhelpful rant?

Dear RAVED,
Anyone who believes my rants are unhelpful is new to IT. Once your trauma helps you

develop triggers, you’ll understand. Give it another week.
Business schools teach the importance of “getting ahead” of a trend. That’s utterly in-

applicable to sysadmins. We not only are the trend, we spend our spare time dreaming up
ways to make the trend both steeper and even more trendy.

We continuously delude ourselves that
we can make things better, when we can
only make things differently bad.

The server has one hard drive? Better
mirror that, or RAID-5 it, or fibre channel
it off to the NAS where it becomes some-
one else’s problem. Bloatware runs slowly?
Trim the program or add memory or install a
fast caching disk. Cosmic ray filesystem cor-
ruption? A zraid3 array with copies=99 will
fix that! Every “improvement” adds failure
modes. Even senior sysadmins, who under-
stand in their marrow Rule of System Admin-
istration #16 (The impulse to improve is the leading cause of failure) fall prey to this fallacy.

Virtualization is merely another expression of such.
This isn’t new. Remember chroots? When the Internet converted from a private educa-

tional network to a tangle of private enterprises, much of the core software was revealed to
have critical security problems. Nobody on the private Internet wanted to destroy the pri-
vate network, but once it went public a handful of people out in the world liked setting nice
things on fire. (Looking at the modern Internet, I can’t help wondering if some of those

1 of 3

Business schools teach
the importance of “getting
ahead” of a trend.
That’s utterly inapplicable
to sysadmins.

5FreeBSD Journal • November/December 2024

by Michael W Lucas

early attackers were time travelers come back to save us from ourselves.) If a program suf-
fered from shell escapes, you could run it from a directory that contained only the files the
program needed. You can’t have a shell escape if you don’t have a shell to escape to, after
all! This is both a clever hack and a prime example of solving the wrong problem.

FreeBSD’s jails were first conceived of as enhanced chroots. What if you took that locked-
in directory, gave it an IP address and its own process space? It’d look like a full system but
wholly contained within another system! We could even give that super-chroot the ability to
run its own child super-chroots! It’s beautiful, and elegant, and complex enough to encour-
age not only failures, but exciting new failure modes you’ve never previously experienced.

But there’s good news, jail fans! Chances are you’re using your jail for a specific task. It
only needs a small selection of the base sys-
tem, not a complete userland. OccamBSD
is quite usable, and lets you install only the
necessary system components. Where jails
were an improvement over chroots, chroots
are now an improvement over jails!

The impulse to improve.
Or the Linuxulator. You can take a

FreeBSD system and have it run Linux pro-
grams. Linux is just a kernel, after all. Install
your least loathed Linux userland in a direc-
tory, chroot your programs into that direc-
tory, and run as if they were a Linux system.
That’ll save you from installing an extra serv-
er just to run Linux because (real talk here)
who wants to run a Unix without ZFS or PF? Many developers use the Linuxulator as an
intermediate step to port Linux software to FreeBSD. An easy win, right?

Sure. Linux mode is almost entirely compatible with Linux. “Almost entirely compatible” is
like “almost leprosy-free;” good for you, but I ain’t touching it. I’m better off licking armadillos.

These aren’t enough, though. We want to further optimize our virtualization, so we add
in unionfs and base jails. Optimize! Never mind today’s endless infinite oceans of disk space.
Yes, yes, your big data application needs a storage array, but you can fit thousands of OS in-
stalls on an NVMe disk and upgrade them all with a simple script. Or you can have the op-
timally arranged base jails upgrade the One True Jail with a simple script and have another
simple script that runs through all your OS installs and applies the needed upgrades to each.
Nobody’s willing to address the real problem and design systems that don’t need upgrades,
because that would put the entire computer industry out of business and who would poison
the planet then?

Heavy virtualization? Bhyve, qemu, libvirt, all of those? Mere super-jails that add CPU, pro-
cess, and filesystem isolation. More secure? There’s a reason security professionals say, “an-
other day, another hypervisor escape.”

Virtualization allows endless opportunities for not mere failure, but debacle. The tangle
of complex interconnected systems creates an exponential climb of interactions, a rising
arc that peaks at a number too large for that lump of mildly electrified pudding in your
skull to process. You’re a sysadmin. You’ll sit down and contemplate how these systems
might fail. Some failure modes are obvious: fire, flood, famine. Some less so: what if

2 of 3

You can take a FreeBSD
system and have it run
Linux programs.
Linux is just a kernel, after all.

6FreeBSD Journal • November/December 2024

System V IPC communications leak between two particular jails, leaking company secrets
into the world? On second thought, hang onto that excuse; it’ll be useful when you decide
to blow the whistle on your unethical employer. What, you claim they’re ethical? Then how
are they making the money to pay you? Don’t worry about it, when it becomes impossible
to ignore, you’re prepared to leak.

The apparent “problem” is, of course, that modern hardware is ridiculously overpowered
for most tasks. I rent a small, dedicated server. It runs jails and bhyve VMs. The most re-
source-intensive application I run is my own email server. Email takes very few resources, but
rspamd takes everything you give it. The hardware is mostly idle, so I pile more functions on
it. Because it’s there. Why not try to make things a little better, and use my resources?

Having too much computing power is not a problem in any reasonable sense of the
word. But I did it anyway.

So: getting ahead of the trend? You mean get ahead of this nightmarish tangle of optimi-
zations?

Yes, there is a way to “get ahead of the trend.”
Fail faster.
Good luck. I have faith in you.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS’ latest books include Dear Abyss (a collection of these columns), Run
Your Own Mail Server, and Apocalypse Moi. See more at https://mwl.io.

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

7FreeBSD Journal • November/December 2024

mailto:letters@freebsdjournal.org
https://mwl.io
https://mwl.io
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

8FreeBSD Journal • November/December 2024

1 of 14

In the previous article in this three-part series, we built a simple character device driver that
permitted I/O operations backed by a fixed buffer. In this article, we will extend this driver
to support a FIFO data buffer along with support for non-blocking I/O and event report-

ing. The full source of each version of the device driver can be found at https://github.com/
bsdjhb/cdev_tutorial.

Before moving forward though, we must address an unintended bit of unfinished busi-
ness from the previous article. Alert reader Virus-V noted that the final version of the echo
driver from the article did not destroy the /dev/echo
device during unload and that accessing the device
after unload triggered a kernel panic. One of the first
clues to the bug lay in a warning message about leaked
memory from the kernel emitted during module un-
load prior to the panic. As noted in the prior article, this
warning is one of the reasons kernel modules should
use a dedicated malloc type when possible. The bug
lay in the echodev_create() function added in the last
set of changes. We had failed to return a pointer to
the newly allocated softc structure to the caller by stor-
ing the value in *scp. As a result, the echo_softc vari-
able was always NULL and the softc was not destroyed
during module unload. The fix was a one line addition
to echodev_create() to store the pointer to the new softc in *scp on success.

Using a FIFO Data Buffer
The echo driver from the first article used a flat data buffer for I/O operations. Reads

and writes could access any region of the data buffer, and the entire range of the data buf-
fer was always valid. These semantics are similar to accessing a file that does not grow when
written beyond the end. A character device driver is free to implement a range of semantics,
however. For this article, we will alter the echo driver to treat user I/O data like a FIFO stream
device similar to a pipe or fifo. I/O write requests will append data to the tail of a logical
data buffer and read requests will read data from the head of this data buffer. File offsets
such as those used with pread(2) will be ignored. The driver will continue to use an in-ker-
nel buffer to hold a temporary copy of user data. Writes will store data in this buffer and
reads will consume data from this buffer. This means that the driver will now need to keep

BY JOHN BALDWIN

The echo driver from the
first article used a flat data
buffer for I/O operations.

Character Device
Driver Tutorial (Part 2)

https://freebsdfoundation.org/our-work/journal/browser-based-edition/kernel-development/character-device-driver-tutorial/
https://github.com/bsdjhb/cdev_tutorial
https://github.com/bsdjhb/cdev_tutorial
https://github.com/bsdjhb/cdev_tutorial/issues/1
https://man.freebsd.org/pipe/2
https://man.freebsd.org/mkfifo/2
https://man.freebsd.org/pread/2

9FreeBSD Journal • November/December 2024

track of the amount of valid data in the buffer as well as the buffer’s length. To simplify the
implementation, the start of the data buffer will always be treated as the buffer’s head. Read
requests that read a subset of the available data will copy the remaining data to the front of
the buffer.

This does raise several additional questions, however. First, how should reads that want
to read more data from the buffer than is available be handled? Second, how should writes
that want to store more data than the buffer can hold be handled? For simplicity, we will
start by returning a short read of whatever bytes are available for read requests, and trun-
cating write requests to only store the amount of data for which there is room in the buf-
fer. Third, what should an ECHODEV_SBUFSIZE request do that shrinks a buffer smaller than
the amount of valid data in the buffer? We have chosen to fail such a request with an error.
One could choose to discard some of the data instead, but one would have to decide which
data to discard. Listing 1 provides the updated read and write methods. Note that a new
valid member has been added to the softc to track the amount of valid data in the buffer.
Example 1 demonstrates a few scenarios of this updated driver. Initially, the device is empty,
but data can be read once input is provided. The last few commands read a series of bytes
across two requests.

Listing 1: Read and Write Using a FIFO Data Buffer

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
	 struct echodev_softc *sc = dev->si_drv1;
	 size_t todo;
	 int error;

	 sx_xlock(&sc->lock);
	 todo = MIN(uio->uio_resid, sc->valid);
	 error = uiomove(sc->buf, todo, uio);
	 if (error == 0) {
		 sc->valid -= todo;
		 memmove(sc->buf, sc->buf + todo, sc->valid);
	 }
	 sx_xunlock(&sc->lock);
	 return (error);
}

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
	 struct echodev_softc *sc = dev->si_drv1;
	 size_t todo;
	 int error;

	 sx_xlock(&sc->lock);
	 todo = MIN(uio->uio_resid, sc->len - sc->valid);

2 of 14

10FreeBSD Journal • November/December 2024

	 error = uiomove(sc->buf + sc->valid, todo, uio);
	 if (error == 0)
		 sc->valid += todo;
	 sx_xunlock(&sc->lock);
	 return (error);
}

Example 1: Simple FIFO I/O

hd < /dev/echo

echo “foo” > /dev/echo
cat /dev/echo
foo
echo “12345678” > /dev/echo
dd if=/dev/echo bs=1 count=4 status=none | hd
00000000 31 32 33 34 |1234|
00000004
cat /dev/echo
5678

Blocking I/O
While this version of the echo driver does implement a simple data stream, it has some

limitations. If a process wants to use this device to share a block of data larger than the data
buffer, it has to wait to write an additional buffer’s worth of data until a reader has con-
sumed the previous buffer’s worth of data. This requires the writing process to either coor-
dinate with the reader process(es) or to use a timer and retry write operations periodically.
Neither of these solutions are very practical. Instead, the driver can permit larger writes by
sleeping in the write request while the buffer is full until the request is completed. Read-
ers would awaken the waiting writer when space is available permitting the writer to make
additional progress. Similarly, readers could block waiting for data to return. To more close-
ly match the semantics of pipes and sockets, we have chosen to make read requests only
block at the start of a request and return a short read as soon as data is available. However,
for writes, we attempt to drain the entire buffer. To handle blocking, we use the sx_sleep(9)
function which atomically releases our device’s lock while putting the current thread to
sleep. Passing PCATCH to this function permits signals to interrupt this sleep in which case
sx_sleep() will return a non-zero error value. Listing 2 shows the updated read method.
The write method is similarly updated but with an extra loop to retry until the write has ful-
ly completed. Note that in the write method, we do not have to “hide” errors if the write
partially completes. The generic write system call handling in the dofilewrite() function
maps errors from sx_sleep() to success if at least some data was written. Some of the ioctl
handlers also require updates to awaken sleeping writers when the buffer grows in size or
has its contents cleared.

When testing this version of the driver, Example 2 shows some possibly surprising behav-
ior. While the data previously written is returned, cat(1) continues to wait for additional data
until killed with a signal.

3 of 14

https://man.freebsd.org/sx_sleep/9
https://man.freebsd.org/cat/1

11FreeBSD Journal • November/December 2024

Listing 2: Blocking Read Method

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
	 struct echodev_softc *sc = dev->si_drv1;
	 size_t todo;
	 int error;

	 if (uio->uio_resid == 0)
		 return (0);

	 sx_xlock(&sc->lock);

	 /* Wait for bytes to read. */
	 while (sc->valid == 0) {
		 error = sx_sleep(sc, &sc->lock, PCATCH, “echord”, 0);
		 if (error != 0) {
			 sx_xunlock(&sc->lock);
			 return (error);
		 }
	 }

	 todo = MIN(uio->uio_resid, sc->valid);
	 error = uiomove(sc->buf, todo, uio);
	 if (error == 0) {
		 /* Wakeup any waiting writers. */
		 if (sc->valid == sc->len)
			 wakeup(sc);

		 sc->valid -= todo;
		 memmove(sc->buf, sc->buf + todo, sc->valid);
	 }
	 sx_xunlock(&sc->lock);
	 return (error);
}

Example 2: Blocking I/O Hangs Forever

echo “12345678” > /dev/echo
cat /dev/echo
12345678
^C

Unloading Sanely
We will get to the surprising behavior from Example 2 shortly. The current driver has an-

other surprise. Unloading the driver while a process is blocked in the read or write methods

4 of 14

12FreeBSD Journal • November/December 2024

will hang the process unloading the module until the first process is killed with a signal. This
is not the behavior an administrator expects when unloading a module. Instead, the echo
driver should awaken any sleeping threads during device destruction and ensure they will re-
turn from the driver methods without sleeping again. To support this, the next change adds
a dying flag to the softc and the read and write methods fail with an ENXIO error rather
than blocking if this flag is set. During device destruction, the dying flag is set and sleeping
threads are awakened before calling destroy_dev(). Listing 3 shows the changed lines in
the read method and the updated echodev_destroy() function.

Listing 3: Waking Threads on Unload

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
	 ...
	 /* Wait for bytes to read. */
	 while (sc->valid == 0) {
		 if (sc->dying)
			 error = ENXIO;
		 else
			 error = sx_sleep(sc, &sc->lock, PCATCH, “echord”, 0);
		 if (error != 0) {
			 sx_xunlock(&sc->lock);
			 return (error);
		 }
	 }
	 ...
}

...

static void
echodev_destroy(struct echodev_softc *sc)
{
	 if (sc->dev != NULL) {
		 /* Force any sleeping threads to exit the driver. */
		 sx_xlock(&sc->lock);
		 sc->dying = true;
		 wakeup(sc);
		 sx_xunlock(&sc->lock);

		 destroy_dev(sc->dev);
	 }
	 free(sc->buf, M_ECHODEV);
	 sx_destroy(&sc->lock);
	 free(sc, M_ECHODEV);
}

5 of 14

13FreeBSD Journal • November/December 2024

Conditional Blocking on Read
In Example 2, it was surprising that cat(1) continued to block after reading the available

data from the device given our prior examples. However, this behavior does follow naturally
from our driver since cat(1) just calls read(2) in a loop until it receives EOF and the second
call to read(2) blocks waiting for more data. The semantic used by other stream devices like
pipes and fifos is that reads will return EOF instead of blocking if no process has the device
open for writing. If there are devices open for writing, reads will block waiting for more data.

We can implement these semantics in the echo driver easily. We add a count of writers
to the softc and only block in the read method if this count is non-zero. To detect writers,
we add an open method that increments the counter for each open which requests write
permission. This can be determined by checking for the FWRITE flag in the file flags passed
to the open method. A new close method decrements count when a writer closes. By de-
fault, the close character device switch method is only called for the last close of a device
when no remaining file descriptors remain. Instead, we set the D_TRACKCLOSE character de-
vice switch flag so that the close method is called each time a file descriptor is closed. The
close method awakens any waiting readers if the last writer is closed. Listing 4 shows the
new open and close methods as well as the changed line in the read method. Retrying the
steps from Example 2 no longer results in the surprising behavior as cat(1) now exits after
reading the available data.

Listing 4: Tracking Open Writers

static int
echo_open(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
	 struct echodev_softc *sc = dev->si_drv1;

	 if ((fflag & FWRITE) != 0) {
		 /* Increase the number of writers. */
		 sx_xlock(&sc->lock);
		 if (sc->writers == UINT_MAX) {
			 sx_xunlock(&sc->lock);
			 return (EBUSY);
		 }
		 sc->writers++;
		 sx_xunlock(&sc->lock);
	 }
	 return (0);
}

static int
echo_close(struct cdev *dev, int fflag, int devtype, struct thread *td)
{
	 struct echodev_softc *sc = dev->si_drv1;

	 if ((fflag & FWRITE) != 0) {
		 sx_xlock(&sc->lock);
		 sc->writers--;

6 of 14

https://man.freebsd.org/read/2

14FreeBSD Journal • November/December 2024

		 if (sc->writers == 0) {
			 /* Wakeup any waiting readers. */
			 wakeup(sc);
		 }
		 sx_xunlock(&sc->lock);
	 }
	 return (0);
}

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
	 ...
	 /* Wait for bytes to read. */
	 while (sc->valid == 0 && sc->writers != 0) {
	 ...
}

Non-blocking I/O
Now our echo device supports blocking I/O. However, some consumers may wish

to use non-blocking I/O. A process can request non-blocking I/O either by passing the
O_NONBLOCK flag to open(2), or toggling the O_NONBLOCK flag on an open file descriptor via
fcntl(2). A character device driver can check if non-blocking I/O is enabled by checking for
the O_NONBLOCK flag in the file flags passed to the read
and write methods. If non-blocking I/O is requested,
the error EWOULDBLOCK should be returned instead of
blocking any time the driver would block. For the echo
device, this means adding extra checks before blocking
in the read and write methods. That alone is sufficient
to handle non-blocking I/O requested at open time.
However, to support toggling flags via fcntl(2), an
additional step is required.

Every attempt to set file flags via the fcntl(2)
F_SETFL operation invokes two I/O control commands
on a character device: FIONBIO and FIOASYNC. Even re-
quests that do not change the state of the associated
O_NONBLOCK and O_ASYNC flags invoke these I/O con-
trol commands. If either I/O control command fails, the entire F_SETFL operation fails, and
the file flags remain unchanged. As a result, a character device driver that wants to support
F_SETFL must implement support for both I/O control commands.

FIONBIO and FIOASYNC pass an int as the command argument. This int value is zero if the
associated file flag is clear in the new file flags or non-zero if the associated flag is set in the
new file flags. The I/O control handler should return zero if the requested flag setting is sup-
ported, or an error if the requested setting is not supported. The echo device supports ei-
ther setting for the O_NONBLOCK flag but does not support setting the O_ASYNC flag, so the
FIOASYNC handler for the echo device fails if the int argument is non-zero.

7 of 14

The I/O control handler
should return zero if the
requested flag setting is
supported.

https://man.freebsd.org/open/2
https://man.freebsd.org/fcntl/2

15FreeBSD Journal • November/December 2024

Listing 5 shows the relevant changes to the read and I/O control methods to support
non-blocking I/O.

Listing 5: Support for Non-Blocking I/O

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
	 ...
	 /* Wait for bytes to read. */
	 while (sc->valid == 0 && sc->writers != 0) {
		 if (sc->dying)
			 error = ENXIO;
		 else if (ioflag & O_NONBLOCK)
			 error = EWOULDBLOCK;
		 else
			 error = sx_sleep(sc, &sc->lock, PCATCH, “echord”, 0);
	 ...
}

...

static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
 struct thread *td)
{
	 ...
	 switch (cmd) {
	 ...
	 case FIONBIO:
		 /* O_NONBLOCK is supported. */
		 error = 0;
		 break;
	 case FIOASYNC:
		 /* O_ASYNC is not supported. */
		 if (*(int *)data != 0)
			 error = EINVAL;
		 else
			 error = 0;
		 break;
	 ...
}

Polling I/O Status
Applications that use non-blocking I/O often use an event loop to service requests for

multiple file descriptors. For each iteration of the loop, the application blocks waiting for

8 of 14

16FreeBSD Journal • November/December 2024

one or more file descriptors to be ready (for example, having data available to read, or room
for more data to be written). The application then services each of the ready file descrip-
tors before waiting again. FreeBSD supports two system calls for this type of event loop: se-
lect(2) and poll(2). In the kernel, select(2) and poll(2) are implemented using a com-
mon framework. Each requested file descriptor is polled individually to determine if it is
ready. If no file descriptors are ready, the thread invoking the system call can sleep waiting
for at least one of the file descriptors to become ready. If the file descriptor becomes ready
while a thread is waiting, the file descriptor must awaken the sleeping thread.

The selrecord(9) family of functions manages the sleeping and awakening of threads.
A file descriptor that supports polling must create a struct selinfo object for type of
event it supports. The object should be initialized by clearing the entire object with zeroes
(for example, using memset()). If the file descriptor’s poll function finds that a file descriptor
is not ready, it must call selrecord() on the associated
struct selinfo object for each requested event. Any
time an event occurs that could make a file descriptor
ready, selwakeup() must be called on the struct
selinfo object for that event. Finally, seldrain()
should be used to awaken any remaining threads be-
fore destroying a struct selinfo object.

For character devices, the file descriptor polling
function invokes the character device poll method.
This method accepts a bitmask of poll(2) events as
a function argument and must return a mask of those
events that are currently true. In addition, this function is responsible for calling selre-
cord() if none of the requested events are true. Note that character devices do not support
different types of priority data via the read and write methods, only normal data.

For the echo device we support both read and write events. We add two struct selinfo
 objects to the softc, one for each event. Since the entire softc is zeroed on creation, no fur-
ther changes are required when initializing the softc. Each of the read and write methods
calls selwakeup() for the other event to awaken any threads that might be waiting. A few
other places can also make the echo device ready as well and need calls to selwakeup(). If
an I/O control command grows the buffer or clears its contents, that may make the device
ready to write. If the last writer closes the device, that can also make the device ready to read.
A new poll method determines the current status of the device and calls selrecord() as
needed. Finally, seldrain() is called for each event when destroying the device. Listing 6
shows the added call to selwakeup() in the read method as well as the new poll method.
Note that for the read method, selwakeup() is used for the write event.

Listing 7: Device Polling

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
	 ...
	 error = uiomove(sc->buf, todo, uio);
	 if (error == 0) {
		 /* Wakeup any waiting writers. */

For the echo device we
support both read and
write events.

9 of 14

https://man.freebsd.org/select/2
https://man.freebsd.org/select/2
https://man.freebsd.org/poll/2
https://man.freebsd.org/selrecord/9

17FreeBSD Journal • November/December 2024

		 if (sc->valid == sc->len)
			 wakeup(sc);

		 sc->valid -= todo;
		 memmove(sc->buf, sc->buf + todo, sc->valid);
		 selwakeup(&sc->wsel);
	 }
	 ...
}

...

static int
echo_poll(struct cdev *dev, int events, struct thread *td)
{
	 struct echodev_softc *sc = dev->si_drv1;
	 int revents;

	 revents = 0;
	 sx_slock(&sc->lock);
	 if (sc->valid != 0 || sc->writers == 0)
		 revents |= events & (POLLIN | POLLRDNORM);
	 if (sc->valid < sc->len)
		 revents |= events & (POLLOUT | POLLWRNORM);
	 if (revents == 0) {
		 if ((events & (POLLIN | POLLRDNORM)) != 0)
			 selrecord(td, &sc->rsel);
		 if ((events & (POLLOUT | POLLWRNORM)) != 0)
			 selrecord(td, &sc->wsel);
	 }
	 sx_sunlock(&sc->lock);
	 return (revents);
}

A pair of generic I/O control commands are also useful for inspecting the status of a file
descriptor. FIONREAD and FIONWRITE return the number of bytes that can be read or writ-
ten without blocking, respectively. The byte count is returned in a control command argu-
ment of type int. Listing 8 shows the support for these I/O control commands in the echo
device. Note that the returned value is clamped to INT_MAX to avoid overflow.

Listing 8: FIONREAD and FIONWRITE

static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
 struct thread *td)
{
	 ...
	 switch (cmd) {

10 of 14

18FreeBSD Journal • November/December 2024

	 ...
	 case FIONREAD:
		 sx_slock(&sc->lock);
		 *(int *)data = MIN(INT_MAX, sc->valid);
		 sx_sunlock(&sc->lock);
		 error = 0;
		 break;
	 case FIONWRITE:
		 sx_slock(&sc->lock);
		 *(int *)data = MIN(INT_MAX, sc->len - sc->valid);
		 sx_sunlock(&sc->lock);
		 error = 0;
		 break;
	 ...
}

To make this functionality easier to demonstrate, we have added a new poll command
to the echoctl utility. This command uses poll(2) to query the echo device’s current status.
If the device is readable, it uses the FIONREAD I/O control command to output the number
of bytes available to read. If the device is writable, it uses FIONWRITE to output the num-
ber of bytes that can be written. Example 3 shows a few invocations of this command along
with other operations on the echo device. Note that since there is not another writer in this
example, the device is readable even while it is empty.

Example 3: Polling I/O Status

echoctl poll
Returned events: POLLIN|POLLOUT
0 bytes available to read
room to write 64 bytes
echo “foo” > /dev/echo
echoctl poll
Returned events: POLLIN|POLLOUT
4 bytes available to read
room to write 60 bytes
cat /dev/echo
foo
echoctl poll -r
Returned events: POLLIN
0 bytes available to read

I/O Status Reporting via kqueue(2)kqueue(2)
FreeBSD provides the kqueue(2) kernel event notification facility as a separate API from

select(2) and poll(2). With kqueue(2), applications register a persistent note in the kernel
for each desired event. The kernel generates a stream of events that the application can con-
sume and act upon. Unlike select(2) and poll(2), an application does not need to register
all the events it cares about each time it wants to wait for a new event. This reduces overhead
in applications while also permitting more efficient tracking of desired events in the kernel.

11 of 14

https://man.freebsd.org/kqueue/2

19FreeBSD Journal • November/December 2024

A kernel event consists of a filter (event type) and identifier. The behavior of some events
can be further customized via various flags. For I/O on file descriptors, the two primary fil-
ters are EVFILT_READ and EVFILT_WRITE to determine if a descriptor is readable or writ-
able, respectively. The identifier field for these event filters is the integer file descriptor. In
addition, for read and write events the kernel event structure returns the amount of data
that can be read or written as a separate field. This avoids the need for separate invocations
of the FIONREAD and FIONWRITE I/O control commands.

Inside the kernel, kernel events are described by a struct knote object. This structure
contains copies of the event fields that are used to generate the events returned to the ap-
plication. A list of active events is stored in a struct knlist object. Since I/O events han-
dled by select(2) and poll(2) are usually associated with a kernel event, struct selin-
fo embeds a struct knlist as its si_note member. Each knote is also associated with a
struct filterops object pointed to by the kn_fop member. This structure and the APIs
for manipulating knotes and knote lists are described in kqueue(9).

For character devices, the kqfilter method is responsible for attaching a struct filterops
 object to a knote. This includes setting the kn_fop member and adding the knote onto the
correct knote list. As a result, struct filterops objects for character devices do not use
the f_attach member. The kn_hook member of struct knote is an opaque pointer that
can be set by the kqfilter method to pass state to struct filteropts methods similar to
the si_drv1 field of struct cdev.

For the echo driver, we define two struct filteropts objects: one for read events and
one for write events. Each event includes f_detach and f_event methods. We reuse the
embedded knote list in the existing read and write struct selinfo objects from the softc.
Since the echo driver uses an sx(9) lock, we define custom locking callbacks for use with kn-
list_init() when creating the echo device. The f_detach methods use knlist_remove()
to remove a knote from the associated knote list. The f_event methods set the kn_data
field to the appropriate byte count and mark the event ready if the byte count is non-ze-
ro. The f_event method for the read event also sets EV_EOF if there are no writers. A new
kqfilter character device method attaches a knote to the new struct filterops objects
for the EVFILT_READ and EVFILT_WRITE filters. It also sets the kn_hook member of the
knote to the softc pointer. Finally, all the places in the driver that call selrecord() to awaken
sleeping threads from poll(2) or select(2) now also call KNOTE_LOCKED() to report
an event for knotes associated with the read or write event. Listing 9 shows the struct
filterops object and its associated methods for the read filter. Listing 10 shows the new
kqfilter character device method.

Listing 9: EVFILT_READ Filter

static struct filterops echo_read_filterops = {
	 .f_isfd =	 1,
	 .f_detach =	echo_kqread_detach,
	 .f_event =	 echo_kqread_event
};

...

static void
echo_kqread_detach(struct knote *kn)

12 of 14

https://man.freebsd.org/kqueue/9

20FreeBSD Journal • November/December 2024

{
	 struct echodev_softc *sc = kn->kn_hook;

	 knlist_remove(&sc->rsel.si_note, kn, 0);
}

static int
echo_kqread_event(struct knote *kn, long hint)
{
	 struct echodev_softc *sc = kn->kn_hook;

	 kn->kn_data = sc->valid;
	 if (sc->writers == 0) {
		 kn->kn_flags |= EV_EOF;
		 return (1);
	 }
	 kn->kn_flags &= ~EV_EOF;
	 return (kn->kn_data > 0);
}

Listing 10: kqfilter Device Method

static int
echo_kqfilter(struct cdev *dev, struct knote *kn)
{
	 struct echodev_softc *sc = dev->si_drv1;

	 switch (kn->kn_filter) {
	 case EVFILT_READ:
		 kn->kn_fop = &echo_read_filterops;
		 kn->kn_hook = sc;
		 knlist_add(&sc->rsel.si_note, kn, 0);
		 return (0);
	 case EVFILT_WRITE:
		 kn->kn_fop = &echo_write_filterops;
		 kn->kn_hook = sc;
		 knlist_add(&sc->wsel.si_note, kn, 0);
		 return (0);
	 default:
		 return (EINVAL);
	 }
}

As with the poll(2) support, we have extended the echoctl utility with another com-
mand to demonstrate the kevent(2) support. The new events command registers read
and write events for the echo device and outputs a line for each event that is received. Since
read and write events are level-triggered by default, echoctl sets the EV_CLEAR flag when
registering events for the echo device. This instead only reports events when the device

13 of 14

21FreeBSD Journal • November/December 2024

state changes triggering a call to KNOTE_LOCKED() inside the driver. Example 4 shows the
output of the events command across a series of actions. The first two events are reported
as the initial state when the echo device is idle without any open readers or writers. In anoth-
er shell we execute the command “jot -c -s “” 80 48 > /dev/echo” to write 81 bytes
of data to the echo device. Since the default buffer size is 64 bytes, this command blocks
in the write(2) system call after writing 64 bytes. The write of 64 bytes triggers the next
EVFILT_READ event reporting 64 bytes available to read. Finally, in a third shell we execute
the command “cat /dev/echo” to read all the data from the echo device. The first read(2)
system call from cat(1) reads the 64 bytes of output and triggers an EVFILT_WRITE event.
However, before the echoctl process can query the echo device’s state, the jot(1) process
has awakened and written the remaining 17 bytes of data to the buffer leaving room for 47
bytes. This accounts for the first EVFILT_WRITE event reported in the third block of events.
The write of the remaining 17 bytes also triggered an EVFILT_READ event. However, by the
time this event is reported, the jot(1) process has exited and cat(1) has read the remain-
ing 17 bytes, so the EVFILT_READ event reports EV_EOF with zero bytes to read. The read of
17 bytes by cat(1) also triggered an EVFILT_WRITE event that is reported as the next to last
event. Finally, cat(1) calls read(2) a third time which returns 0 to signal EOF. This read also
triggers an EVFILT_WRITE event which is reported as the last event. This last sequence of
events is not deterministic and may appear in a different order or with slightly different val-
ues across different runs (for example, the first EVFILT_WRITE may report 64 bytes available
to write if jot(1) hasn’t yet written the remaining 17 bytes).

Example 4: I/O Status via Kernel Events

echoctl events -W
EVFILT_READ: EV_EOF 0 bytes
EVFILT_WRITE: 64 bytes
...
EVFILT_READ: 64 bytes
...
EVFILT_WRITE: 47 bytes
EVFILT_READ: EV_EOF 0 bytes
EVFILT_WRITE: 64 bytes
EVFILT_WRITE: 64 bytes

Conclusion
In this article we extended the echo device to support a FIFO data buffer with both

blocking and non-blocking I/O. We also added support for querying device state via
poll(2) and kevent(2). The final article in this series will describe how character devices
can provide a backing store for memory mappings created via mmap(2).

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Ashland, Virginia with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

14 of 14

https://man.freebsd.org/mmap/2
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

22FreeBSD Journal • November/December 2024

1 of 5

The FreeBSD bhyve hypervisor was announced to the world in May 2011 by Neel
Natu and Peter Grehan and then gifted to FreeBSD from NetApp. This finally gave
FreeBSD something to compete against the Linux KVM hypervisor. However, there

were further benefits, it is small and robust as well as being performant, leaning heavily on
CPU instruction sets rather than dealing with interpretation.

The initial implementation was only suitable for FreeBSD guests, and it was some time
before we saw bhvye able to run other operating systems.

First up, there was Linux, and then there was a way to repackage Windows 8 or Windows
Server 2012 to get them to install. This was too much for a regular user to manage and it
wasn’t until the arrival of the bhyve UEFI boot feature that things really took off.

UEFI boot was the killer feature that bhyve had been waiting for. This allowed for a wide
range of operating systems to be installed and run on FreeBSD bhyve. When FreeBSD 11
was released, we finally had a virtualization component
on par with other operating systems.

While UEFI booting was the killer feature for bhyve,
the killer app for bhyve was Windows Server 2016. This
was the turning point when enterprises could take
bhyve and Windows in a vanilla format and have a reli-
able enterprise hypervisor to run business workloads in
a stable fashion.

Suddenly, businesses were able to deploy equip-
ment far and wide with a solution that was 2-clause
BSD licensed and be able to tune — either via hardware
or software — the hypervisor to solve their problems.

There was still a problem, however, because Windows required numerous drivers to be
installed either in-image or after installation to avoid performance issues. In July 2018, this
was partially solved by the implementation of the PCI-NVMe storage emulation, eventually
giving bhyve the edge over KVM in storage performance for general workloads.

Today, Windows running on bhyve still requires at least the VirtIO-net drivers from Red-
Hat to allow for network transfers to be reliable and exceed 1Gb/s. There are other drivers
within the applicable Windows MSI package that is available from RedHat, and these are
recommended to be loaded prior to production implementations. For Linux, most distribu-
tions have all applicable drivers, including AlmaLinux, which we are using in this article. It is
possible and recommended to use NVMe emulated backed storage for Linux installations,
however, it is quite difficult to configure KVM to use an emulated NVMe storage type and
if you plan to move Linux workloads between bhyve and KVM, it is recommended that you
set your guest to simply use VirtIO-blk storage.

BY JASON TUBNOR

Suddenly, businesses
were able to deploy
equipment far and wide.

bhyve	 for the Linux
	 and Windows Users

23FreeBSD Journal • November/December 2024

The following will work for a standard FreeBSD workstation in a typical type-2 hypervisor
configuration or for a dedicated FreeBSD server that is only hosting guest workloads with
the applicable storage and network associated with the guests for a type-1 hypervisor.

Preparation
Typically, all modern processors from the last ten years will be suitable to use with bhyve

virtualization.
Ensure that your hardware is configured with the virtualization technology enabled along

with VT-d support enabled. The use of PCI pass-through is out of scope for this article, but
it is recommended to enable VT-d so that it can be used when needed. After this is config-
ured in your machine’s BIOS/firmware, you can check that it visible to FreeBSD by looking
for POPCNT in the Features2 of the CPU:

dmesg | grep Features2
 Features2=0x7ffafbff<SSE3,PCLMULQDQ,DTES64,MON,DS_CPL,VMX,SMX,EST,TM2,SSSE3,SDBG,FMA,
 CX16,xTPR,PDCM,PCID,SSE4.1,SSE4.2,x2APIC,MOVBE,POPCNT,TSCDLT,AESNI,XSAVE,OSXSAVE,AVX,
 F16C,RDRAND>

Now we have confirmed that our CPU is ready, we need to install a few packages to
make it easy to create and manage guest operating systems:

pkg install openntpd vm-bhyve bhyve-firmware

Briefly, OpenNTPD is a simple time daemon from the OpenBSD project. This keeps the
host time from skewing. When a hypervisor is under extreme pressure from guest workloads,
this can cause the regular system time to quickly get out of sync. OpenNTPD keeps time
in check while ensuring your upstream time source is reporting the correct time using con-
straints over the HTTPS protocol. bhyve-firmware is the meta package that will load the most
recently supported EDK2 Firmware for bhyve from packages. Finally, vm-bhyve is a manage-
ment system for bhyve written in shell, avoiding the need for complex dependencies.

Boot strapping a machine ready for use with vm-bhyve is quite simple but attention is re-
quired for some of the ZFS options to ensure that guests remain performant on underlying
storage for general workloads:

zfs create -o mountpoint=/vm -o recordsize=64k zroot/vm
cat <<EOF >> /etc/rc.conf
vm_enable=”YES”
vm_dir=”zfs:zroot/vm”
vm_list=””
vm_delay=”30”
EOF
vm init

Before we get too far into this, we should download the ISOs that we will be using later so
they are ready for use by the vm-bhyve installer. To download an ISO to the vm-bhyve ISO
store, use the vm iso command:

vm iso https://files.bsd.engineer/Windows11-bhyve.iso

(sha256 - 46c6e0128d1123d5c682dfc698670e43081f6b48fcb230681512edda216d3325)

2 of 5

24FreeBSD Journal • November/December 2024

vm iso https://repo.almalinux.org/almalinux/9.5/isos/x86_64/AlmaLinux-9.5-x86_64-dvd.iso

(sha256 - 3947accd140a2a1833b1ef2c811f8c0d48cd27624cad343992f86cfabd2474c9)
These will be downloaded into the /vm/.iso directory. Note: The AlmaLinux ISO is di-

rectly downloaded from the project and checksums can be verified upstream. The Win-
dows11-bhyve ISO was downloaded from Microsoft and has been modified to ensure that
it will install on hardware that Microsoft deems unsupported and has been provided to as-
sist with this article. As such, this ISO should only be used in a lab environment. It has had
the CPU and TPM requirements removed along with not needing to create a Microsoft ac-
count.

Networking
By default, vm-bhyve uses bridges to connect the systems physical interface with the

tap interfaces that are assigned to each guest. When adding a physical interface to a bridge,
certain features such as TCP Segment Offload (TSO) and Large Receive Offload (LRO) do
not get disabled but need to be disabled for networking functions of guests to work cor-
rectly. If the host has an em(4) interface, this can be disabled by:

ifconfig em0 -tso -lro

To avoid having to disable these after each reboot, add them to the system’s /etc/rc.conf
file:

ifconfig_em0_ipv6=”inet6 2403:5812:73e6:3::9:0 prefixlen 64 -tso -lro”

The above may not be required in every situation depending on the network card being
used but if you experience guest network performance issues, this is what the problem will be.

To configure a vSwitch (bridge) the switch vm sub-command is used:

vm switch create public
vm switch add public em0

This creates a vSwitch called public and then attaches the em0 physical interface to the
vSwitch.

Templates
Templates are required to assist with setting up guest configuration with the correct vir-

tual hardware and other settings needed for them to function correctly. Using root, add the
following to the templates repository:

cat <<EOF > /vm/.templates/linux-uefi.conf
loader=”uefi”
graphics=”yes”
cpu=2
memory=1G
disk0_type=”virtio-blk”
disk0_name=”disk0.img”
disk0_dev=”file”
graphics_listen=”[::]”
graphics_res=”1024x768”

3 of 5

25FreeBSD Journal • November/December 2024

xhci_mouse=”yes”
utctime=”yes”
virt_random=”yes”
EOF

cat <<EOF > /vm/.templates/windows-uefi.conf
loader=”uefi”
graphics=”yes”
cpu=2
memory=4G
disk0_type=”nvme”
disk0_name=”disk0.img”
disk0_dev=”file”
graphics_listen=”[::]”
graphics_res=”1024x768”
xhci_mouse=”yes”
utctime=”no”
virt_random=”yes”
EOF

Creating Guests
With storage, network, installers and templates prepared, guests can now be created.

vm create -t windows-uefi -s 100G windows-guest
vm add -d network -s public windows-guest

vm create -t linux-uefi -s 100G linux-guest
vm add -d network -s public linux-guest

The above creates both windows and linux guests with 100GB of storage allocated (using
file backed storage) using their applicable templates and adds a network interface to each
that is connected to the public vSwitch.

The windows guest needs a slight adjustment in its configuration to enable it to have
network access during installation until the VirtIO drivers are installed. Edit the guests con-
figuration and change the network interface from virtio-net to e1000:

vm configure windows-guest

network0_type=”e1000”
Revert to “virtio-net” once the RedHat VirtIO drivers have been installed.

Installing and Using Guests
To install each guest:

vm install windows-guest Windows11-bhyve.iso
vm install linux-guest AlmaLinux-9.5-x86_64-dvd.iso

Once the installation has been initiated, bhyve will be in a wait state. It will not commence
the ISO boot process until a connection has been made to the VNC console port. To deter-

4 of 5

26FreeBSD Journal • November/December 2024

mine which guest console is running on a corresponding VNC port, use the list sub-com-
mand:

vm list
NAME DATASTORE LOADER CPU MEMORY VNC AUTO STATE
linux-guest default uefi 2 1G [::]:5901 No Locked (host)
windows-guest default uefi 2 8G [::]:5900 No Locked (host)

Using a VNC viewer like TigerVNC or TightVNC, connect the the IPv6 address and port
for each of the guests to commence installation:

[2001:db8:1::a]:5900 # if the host is remote
[::1]:5900 # if it is on your local machine using localhost

After the Windows guest has been installed, the VirtIO drivers can be loaded. The drivers
can be found at:
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/virtio-win-
0.1.266-1/virtio-win-gt-x64.msi
(sha256 – 37b9ee622cff30ad6e58dea42fd15b3acfc05fbb4158cf58d3c792b98dd61272)

Navigate to the above URL with the Edge Browser once Windows has finished installing
to download and install these drivers. Once installed, shut down the host, switch the net-
work interface in the guest configuration file back to virtio-net and the system can be start-
ed as normal.

We now have installed guests ready for use but there needs to be control over these so
they can be started and stopped when required. The following commands will perform ba-
sic operations on your guests, such as starting, stopping or immediately powering off re-
spectively:

vm start linux-guest
vm stop windows-guest
vm poweroff windows-guest

The difference between stop and power off is that stop issues an ACPI shutdown re-
quest to the guest where poweroff immediately kills the bhyve process and won’t shut
down the guest cleanly.

Summary
This article is a brief insight into controlling bhyve and installing common operating sys-

tems with tools that are available directly from the FreeBSD package repository. vm-bhyve
can do so much more than what was described here and is comprehensively detailed in the
vm(8) man page.

JASON TUBNOR has over 28 years of IT industry experience in a vast range of disciplines
and is currently the ICT Senior Security Lead at Latrobe Community Health Service (Victo-
ria, Australia). Discovering Linux and Open Source in the mid 1990s, then being introduced
to OpenBSD in 2000, Jason has used these tools to solve various problems in organizations
that cover different industries. Jason is also a co-host on the BSDNow Podcast.

5 of 5

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/virtio-win-0.1.266-1/virtio-win-gt-x64.msi
https://fedorapeople.org/groups/virt/virtio-win/direct-downloads/archive-virtio/virtio-win-0.1.266-1/virtio-win-gt-x64.msi

27FreeBSD Journal • November/December 2024

1 of 7

The Xen Hypervisor began at the University of Cambridge Computer Laboratory in
the late 1990s under the project name Xenoservers. At that time, Xenoservers aimed
to provide “a new distributed computing paradigm, termed ‘global public computing,’

which would allow any user to run any code anywhere. Such platforms price computing re-
sources, and ultimately charge users for resources consumed”.

Using a hypervisor allows for sharing the hardware resources of a physical machine
among several OSes in a secure way. The hypervisor is the piece of software that manages
all those OSes (usually called guests or virtual machines) and provides separation and isola-
tion between them. First released in 2003 as an open-source hypervisor under the GPLv2,
Xen’s design is OS agnostic, which makes it easy to add Xen support into new OSes. Since its
first release more than 20 years ago, Xen has received broad support from a large commu-
nity of individual developers and corporate contributors.

The Architecture
Hypervisors can be divided into two categories:
•	Type 1: those that run directly on bare metal and are in direct control of the hardware.
•	Type 2: hypervisors that are part of an operating system.
Common Type 1 hypervisors are VMware ESX/ESXi and Microsoft Hyper-V, while VM-

ware Workstation and VirtualBox are clear examples of Type 2 hypervisors. Xen is a Type 1
hypervisor with a twist — its design resembles a microkernel in many ways. Xen itself only
takes control of the CPUs, the local and IO APICs, the MMU, the IOMMU, and a timer. The
rest is taken care of by the control domain (Dom0), a specialized guest granted elevated
privileges by the hypervisor. This allows Dom0 to manage all other hardware in the system,
as well as all other guests running on the hypervisor. It is also important to realize that Xen
contains almost no hardware drivers, preventing code duplication with the drivers already
present in OSes.
Architecture

Dom0

Kernel

XEN Toolstack

SATA Driver

XEN

Hardware

GFX Driver

Dom1 Dom2 DomN

BY ROGER PAU MONNÉ

Xen
	 and FreeBSD

28FreeBSD Journal • November/December 2024

When Xen was initially designed there were no hardware virtualization extensions on x86;
options for virtualization either involved full software emulation or binary translation. Both
options are very expensive in terms of performance, so Xen took a different approach. In-
stead of intending to emulate the current x86 interfaces, a new interface was provided to
guests. The purpose of such a new interface was to avoid the overhead of having to deal
with the emulation of hardware interfaces in the hypervisor and, instead, use a new inter-
face between the guest and Xen that’s more natural to implement for both. This virtualiza-
tion approach is also known as Ring Deprivileging.

However, this requires the guest to be aware it’s running under Xen, and to use a differ-
ent set of interfaces compared to running natively. That set of interfaces was designated as
ParaVirtualized, and hence the guests that used those interfaces were usually referred to as
PV guests. The following interfaces are replaced with PV equivalents on PV guests:

•	Disk and network.
•	Interrupts and timers.
•	Kernel entry point.
•	Page tables.
•	Privileged instructions.
The main limitation with such an approach is that it requires extensive changes to core

parts of the guests kernel OSes. Currently, the only OSes that still have x86 Xen PV support
are Linux and NetBSD. There was an initial port of Windows to run as a PV guest that was
never published, plus Solaris also had PV support.

With the addition of hardware virtualization exten-
sions to x86 CPUs, Xen also gained support to run un-
modified (non-PV) guests. Such guests rely on the
usage of hardware virtualization plus emulation of
hardware devices. On a Xen system, such emulation is
either done by the hypervisor itself (for performance
critical devices) or offloaded to an external emulator
running in user-space, by default QEMU. This hardware
virtualized guests that emulates a full PC-compliant
environment is called HVM in Xen terminology.

So now we have gone over two very different types
of guests, on one side we have PV guests that use PV interfaces to avoid emulation, and on
the other side, we have HVM guests that rely on hardware support and software emulation
in order to run unmodified guests.

Emulated IO devices used by HVM guests, such as disks or network cards, don’t perform
very well due to the amount of logic required to handle data transfers and the overhead of
emulating legacy interfaces. To avoid this penalty, Xen HVM guests also get the option to
use PV interfaces for IO. Some other PV interfaces are available to HVM guests (like a one-
shot PV timer) to reduce the possible overhead of using emulated devices.

While HVM allows every possible unmodified x86 guest to run, it also has a wide attack
surface due to emulating all devices required for a PC compatible environment. To reduce
the amount of interfaces (and thus the surface of attack) exposed to guests, a slightly mod-
ified version of HVM guests was created, named PVH. This is a slimmed down version of
HVM, where a lot of emulated devices that would be present on HVM guests are not avail-
able. For example, a PVH guests only gets an emulated local APIC and maybe an emulat-

2 of 7

Instead of intending to
emulate the current x86
interfaces, a new interface
was provided to guests.

29FreeBSD Journal • November/December 2024

ed IO APIC, but there’s no emulated HPET, PIT or legacy PIC (8259). PVH mode, however,
might require modifications in the guest OS kernel so it’s aware it’s running under Xen and
some devices are not available. PVH mode also uses a specific kernel entry point that allows
direct booting into the guest kernel, without relying on an emulated firmware (SeaBIOS or
OVMF), thus greatly speeding up the boot process. Note, however, OVMF can also be run in
PVH mode to chain load OS-specific bootloaders when startup speed is not of great con-
cern and ease of use is preferred. See the table below for a brief comparison of the different
guest modes on x86.

PV PVH HVM
I/O devices PV (xenbus) PV (xenbus) emulated + PV
Legacy devices NO NO YES
Privileged instructions PV hardware virtualized hardware virtualized
System configuration PV (xenbus) ACPI + PV (xenbus) ACPI + PV (xenbus)
Kernel entry point PV PV + native* native

* It’s possible for PVH guests to re-use the native entry point when booted with firmware, but that requires adding logic to the native entry point to detect
when booting in a PVH environment. Not all OSes support this.

The PVH approach has also been adopted by other virtualization technologies like Fire-
cracker from AWS. While Firecracker is based on KVM, it re-uses the Xen PVH entry point
and applies the same attack surface reduction by not exposing (and thus emulating) legacy
x86 devices.

Speaking about ARM architecture, the fact that the Xen port was developed once ARM
already had support for hardware virtualization extensions led to a different approach when
compared to x86. ARM has only one guest type, and it would be the equivalent of PVH on
x86. The focus is also to attempt to not expose an excess of emulated devices to reduce the
complexity and the attack surface.

It’s quite likely that the upcoming RISC-V and PowerPC ports will take the same ap-
proach of supporting only one guest type, more akin to HVM or PVH on x86. Those plat-
forms also have hardware virtualization extensions that forego the need for something like
classic PV support.

Usage and Unique Features
The first commercial uses of Xen were strictly focused on server virtualization, either on

premise usage of Xen-based products or through cloud offerings. However, due to its versa-
tility, Xen has now also extended into the client and embedded space. Xen’s small footprint
and security focus makes it suitable for a wide range of environments.

A great example of a client (desktop) usage of Xen is QubesOS, a Linux-based OS that’s
focused on security through isolation of different processes in virtual machines, all run-
ning on top of the Xen hypervisor and even supporting the usage of Windows applications.
QubesOS relies heavily in some key Xen-specific features:

•	Driver domains: network cards and USB drivers are run in separate VMs, so that security
issues from the usage of those devices cannot compromise the entire system. See the
diagram about driver domains.

•	Stub domains: the QEMU instance that handles the emulation for each HVM guests is
not run in dom0, but rather in a separate PV or PVH domain. This isolation prevents se-
curity issues in QEMU from compromising the entire system.

3 of 7

30FreeBSD Journal • November/December 2024

•	Limited memory sharing: by using the grant sharing interfaces, a domain can decide
what pages of memory are shared to which domains, thus preventing other domains
(even semi-privileged ones) from being able to access all guest memory.

Similarly to QubesOS there’s also OpenXT: a Xen-based Linux distribution focused on cli-
ent security used by governments.
Driver Domains

XEN

HardwareNIC USB

NIC
Driver
Domain

NIC
Backend NIC Frontend

NIC Frontend

NIC Driver USB Driver

USB
Driver
Domain Domain X Domain Y

A couple more of unique Xen x86 features that are used by diverse products:
•	Introspection: allows external monitors (usually running in user-space on a different VM)

to request notifications for actions performed by a guest. Such monitoring includes,
for example, access to a certain register, MSR, or changes in execution privilege lev-
el. A practical application of this technology is DRAKVUF, a malware analysis tool that
doesn’t require any monitor to be installed in the guest OS.

•	VM-fork: much like process forking, Xen allows forking of running VMs. Such a feature
still doesn’t create a fully functional fork, but it’s enough to be used for kernel fuzzing.
The KF/x fuzzing project puts the kernel into a very specific state, and then starts fuzz-
ing by creating forks of the guest. All forks start execution at the same instruction, but
with different inputs. Being able to fork a VM in a very specific state extremely fast and
in parallel is key to achieving a very high rate of iterations per minute.

Since the addition of the ARM port, there’s been a wide interest in using Xen on embed-
ded deployments, from industrial to automotive. Apart from the small footprint and security
focus, there are some key features of Xen that make it appealing for such usages. First, the
amount of code in Xen is quite limited when compared to Type-2 hypervisors, so it’s con-
ceivable to attempt to safety-certify it. There’s currently an effort upstream to attempt to
comply with the applicable parts of the MISRA C standard so Xen can be safety certified.

Some unique features that make it very appealing to embedded uses include:
•	Small code base: makes it possible to audit and safety certify, also the code base is be-

ing adapted to comply with the MISRA C standard.
•	cpupools: Xen has the ability to partition the CPUs into different groups and assign a

different scheduler to each group. Guests can then be assigned to those groups, al-
lowing for a set of guests that run using a real-time scheduler, like RTDS or ARINC653,
while a different set of guests can run using a general-purpose scheduler like credit2.
See CPU Pools diagram.

•	CPU pinning: it’s also possible to apply restrictions on which host CPUs get to schedule
which guest CPUs, so, for example, a guest CPU can be exclusively given a host CPU
when running latency sensitive workloads.

4 of 7

31FreeBSD Journal • November/December 2024

•	Deterministic interrupt latency: significant efforts have been put into Xen to ensure in-
terrupt latency remains both low and deterministic, even in the presence of cache pres-
sure caused by noisy neighbors. There’s a patch series currently in review that adds
cache coloring support to Xen. Additionally, Xen is being ported to run on Arm-v8R
MPU (memory protection unit) based systems. This is a quite significant change in Xen’s
architecture, as it has always been supported on Memory Management Unit (MMU)
based systems. With MPU, there is flat mapping between VA and PA and thus one can
achieve real-time effect since there is no translation involved. There are a limited num-
ber of memory protection regions that can be created by Xen to enforce memory type
and access restrictions on different memory ranges.

•	dom0less/hyperlaunch: a feature that originated in ARM and is currently also being im-
plemented for x86 allows multiple guests to be created statically at boot time. This is very
useful for static partitioned systems, where the number of guests is fixed and known
ahead of time. In such a setup the presence of an initial (privileged) domain is optional, as
some setups don’t require further operations against the initially created guests.

CPU Pools

Security Critical General Purpose

CPU0 CPU2 CPU4

CPU1 CPU3 CPU5

CPU Pool 0
RDTS

CPU Pool 2
Credit2

VM1 VM4 VM2 VM3

Lorem ipsum

FreeBSD Xen Support
FreeBSD Xen support was added quite late compared to other OSes. For instance,

NetBSD was the first OS to formally commit Xen PV support because Linux patches for full
PV support didn’t get merged until Linux 3.0 (around 2012).

FreeBSD had some initial support for PV, but that port was 32bit only and not fully func-
tional. Development on it stopped, and it ended up being deleted from the tree once PVH
support was implemented. In early 2010, FreeBSD saw the addition of PV optimizations
when running as an HVM guest, which allowed FreeBSD to make use of PV devices for I/O
together with the usage of some additional PV interfaces for speedups like the PV timer.

In early 2014, FreeBSD gained support to run as a PVHv1 guest, and shortly after, as a
PVHv1 initial domain. Sadly, the first implementation of PVH (also known as PVHv1) was
wrongly designed, and had backed in too many PV-related limitations. PVHv1 was designed
as an attempt to move a classic PV guest to run inside of an Intel VMX container. This was
fairly limiting, as the guest still had a bunch of restrictions inherited from classic PV, and it
was also limited to Intel hardware only.

After finding out about those design limitations, work started on moving to a different
implementation of PVH. The new approach started with an HVM guest and stripped as

5 of 7

32FreeBSD Journal • November/December 2024

much emulation as possible, including all emulation done by QEMU. Most of this work was,
in fact, developed with FreeBSD, as that’s my main development platform, and I did exten-
sive work in order to implement what was later called PVHv2 and is now plain PVH.

FreeBSD x86 runs as both an HVM and PVH guest and supports running as a PVH dom0
(initial domain). In fact, x86 PVH support was merged earlier in FreeBSD than Linux. Run-
ning in PVH mode, however, still has some missing features compared to a classic PV dom0.
The biggest one is the lack of PCI passthrough support, which, however, requires changes
in both FreeBSD and Xen to be implemented. There’s an ongoing effort in Xen upstream
to add PCI passthrough support for PVH dom0, however, that’s still being worked on, and
when finished, will require changes to FreeBSD for the feature to be usable.

On the ARM side, work is underway to get FreeBSD to run as an Aarch64 Xen guest. That
required splitting the Xen code in FreeBSD to separate the architecture specific bits from
the generic ones. Further work is being done to integrate Xen interrupt multiplexing with
the native interrupt handling done in ARM.

Recent Developments in the Xen Community
Apart from the ongoing effort mentioned before that attempts to bring feature parity

between a PV and PVH dom0 on x86, there’s a lot more going on in upstream Xen. Since
the last Xen release (4.19), PVH dom0 has been a supported mode of operation, albeit with
caveats due to some key features still missing.

The RISC-V and PowerPC ports are making prog-
ress to reach a functional state, hopefully in a couple
of releases we might have them reach a state where
the initial domain can be booted and guests can be
created.

At least on x86, a lot of time in recent years has
been spent on mitigating the flurry of hardware se-
curity vulnerabilities. Since the original Meltdown and
Spectre attacks released in early 2018, the amount of hardware vulnerabilities has been in-
creasing steadily. This requires a lot of work and attention on the Xen side. The hypervisor
itself needs to be fixed so as not to be vulnerable, but it’s also quite likely some new controls
need exposure to the guests so they can protect themselves. To mitigate the impact that
future hardware vulnerabilities have on Xen, we are working on a new feature called Address
Space Isolation (which has also been known as Secret Free Xen), that aims to remove the
direct map plus all sensitive mappings from being permanently mapped in the hypervisor
address space. This would make Xen not vulnerable to speculative execution attacks, thus
allowing the removal of a lot of the mitigations applied on entry points into the hypervisor,
and possibly the need to apply more mitigations for any future speculative issues.

Since the beginning of 2021, all Xen commits have been tested for builds on FreeBSD
using the Cirrus CI testing system. This has been a massive help to keep Xen building on
FreeBSD, as the usage of Clang plus the LLVM toolchain sometimes created or displayed
issues that wouldn’t manifest when using the GNU toolchain. We currently test that Xen
builds on all the supported FreeBSD stable branches, plus the HEAD development branch.
Xen recently retired its custom testing system called osstest, and now solely relies on Git-
lab CI, Cirrus CI and Github actions to perform testing. This allows for a more open and well
documented testing infrastructure, where it’s easier for newcomers to contribute and add

6 of 7

There’s a lot
more going on
in upstream Xen.

33FreeBSD Journal • November/December 2024

tests. Future work in that area should include runtime testing on FreeBSD, even if initially us-
ing QEMU instead of a real hardware platform.

Recent releases also added toolstack support for exposing VirtIO devices to Xen guests.
Both Linux and QEMU currently support using VirtIO devices with grants instead of guest
memory addresses as the basis for memory sharing between the VirtIO frontends and
backends. This addition hasn’t required a VirtIO protocol change, since it’s, instead, imple-
mented as a new transport layer. There are also efforts to introduce a transport layer not
based on memory sharing, as this is a requirement for some security environments. Going
forward, this would allow Xen to use VirtIO devices while keeping the security and isolation
that’s guaranteed when using the native Xen PV IO devices. The overall goal is to be able to
reuse the VirtIO drivers as first-class interfaces on Xen deployments.

Safety certification and the adoption of MISRA C rules has also been one of the main
tasks for the past releases. The last Xen release (4.19) has been extended to support 7 direc-
tives and 113 rules of a total of 18 directives and 182 rules that conform to the MISRA C spec-
ification. Adoption is being done progressively, so that each rule or directive can be debated
and agreed upon before being adopted. Given that the Xen code base wasn’t designed with
MISRA compliance in mind, some of the rules will require either global or local per-instance
deviations. Also, as part of the Safety Certification initiative work, it has started adding safe-
ty requirements and assumptions of use. Safety requirements provide a detailed description
of all the expected behaviors of the software (Xen), enabling independent testing and vali-
dation of these behaviors.

The Future of Xen
Looking back at when x86 PVH support was first added on FreeBSD, it’s been a long and

not always easy road. FreeBSD was an early adopter of PVH for dom0 mode, and a lot of
Xen development has been done while using a FreeBSD PVH dom0. It’s also notable how
FreeBSD has become a first-class Xen citizen in the recent years, as now there is build test-
ing of Xen on FreeBSD for each commit that goes into the Xen repository.

The port of FreeBSD to run as a Xen Aarch64 guest has also gained some traction re-
cently and is certainly a feature to look forward to given the increasing presence of ARM
based platforms both on the server, the client, and the embedded environments.

It’s good to see Xen being used in so many different use-cases, and so different from its
inception design purpose of being focused on server side (cloud) virtualization. I can only
hope to see which new deployments and use-cases of Xen will be used in the future.

How to Reach
The Xen community does all the code review on the xen-devel mailing list. For more in-

formal communications and discussions we also run a couple of Matrix rooms free for every-
one to access. For FreeBSD/Xen specific questions there’s also the freebsd-xen mailing list,
and of course the FreeBSD Bugzilla can be used to report any bugs against FreeBSD/Xen.

ROGER PAU MONNÉ is a Software Engineer at Cloud Software Group and a FreeBSD
committer. His roles in the Xen community include being a x86 maintainer, part of the Xen
Security Team and also a Xen committer. He has done extensive work on the x86 PVH im-
plementation in both Xen and FreeBSD, and now spends most of his time working on secu-
rity-related features or chasing down bugs.

7 of 7

https://xenproject.org/resources/mailing-lists/
https://xenproject.org/resources/matrix/
https://lists.freebsd.org/subscription/freebsd-xen
https://bugs.freebsd.org/
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

34FreeBSD Journal • November/December 2024

1 of 7

Due to changes in life priorities, I drifted away from FreeBSD for a few years around
2017. Later I returned and started building a new FreeBSD-based workstation for my-
self, a Lenovo ThinkPad X220. I noticed that although it was working, the wireless sup-

port was still far from optimal, the iwm driver was neither stable nor peformant enough for
daily use.

I realized that in the wireless networking area, FreeBSD is still struggling to match the
performance of Linux-based systems due to lack of up-to-date hardware support. This is
happening for a reason: FreeBSD is often not considered a first-class citizen, hence it is not
a target of such developments, and the respective por-
tions of its networking subsystem need to be elevated
to meet the latest requirements. This is not a trivial is-
sue to fix, and the FreeBSD Foundation has been spon-
soring a long-term project that aims to bring updates
to the stack and establish a framework to facilitate
re-using the wireless network card drivers from Linux.

This began to bug me and I could not just wait pa-
tiently for the problem to get resolved. I wanted to be
part of the development of FreeBSD again because I
not only enjoyed using it but also learning about it. However, I did not have the luxury of in-
vesting time into mastering both the networking and driver code development in my free
time, so I had to look for other opportunities.

Prototype
I was excited when another approach was brought to my attention (thank you to Gábor

Zahemszky for that!). It was the idea of leveraging the PCI pass-through capabilities of
bhyve to run a Linux guest, for which it becomes possible to talk to the real hardware, set up
the wireless connection, and share the network with the FreeBSD host. I discovered David
Schlachter’s excellent blog post where the whole process is described in detail, and was able
to build my own prototype with the help of that.

While experimenting with the whole process, I studied it from at least two perspectives.
First, whether this is something that would be sustainable in the long run with regard to
system upgrades, and second, whether this is something that users without a deep under-
standing of the solution could easily install and remove. As a former ports developer, I knew
that I would have to be able to maintain the components and keep them isolated from the
base system and somehow integrate with other third-parties. So why not exploit the existing
ports framework for that purpose? And then the concept of the net/wifibox port was con-
ceived in April 2021.

BY GÁBOR PÁLI

In the wireless networking
area, FreeBSD is still
struggling to match
the performance of Linux-
based systems.

Wifibox:
An Embedded Virtualized
Wireless Router

https://www.davidschlachter.com/misc/t480-bhyve-wifi-pci-passthrough
https://www.davidschlachter.com/misc/t480-bhyve-wifi-pci-passthrough

35FreeBSD Journal • November/December 2024

Initially, I used the sysutils/vm-bhyve port to build and manage a virtual machine that
was based on Alpine Linux. Alpine is a lightweight Linux distribution that adopts OpenRC as
the init system, uses the musl standard C library to make it possible to create small applica-
tions, and integrates BusyBox for the most commonly utilized command-line tools. Origi-
nally, it was created as an embedded-first distribution. I learned about it when I was working
with Docker container images and remembered it for the small footprint and ease of use. It
is actively maintained and provides a large number of packages which are managed through
its “aports” system. In retrospect, the whole system bears resemblance to FreeBSD in many
aspects, and I grew fond of it.

Although vm-bhyve is an excellent tool, I felt that it was too much for this specific use
case. Instead, I used it as a model for the basic user interface, such as providing a console for
the user to interact with the virtual machine hosted inside, and the elementary orchestra-
tion routines. Since these routines required interaction with the command-line bhyve tools,
I decided to stick with the shell-based approach. I would probably not have had a better ex-
perience if I tried to implement all the plumbing in some other, higher-level language such
as Python, as it would unnecessarily increase the build times and introduce a dependency
on other third-party packages.

In the end, the user interface of Wifibox was composed of the start, stop, restart,
status, and resume commands. The resume operation had to be handled specially be-
cause it was known that on suspending the notebook, the virtual machine loses its con-
nection to the virtualized PCI device which has to be
recovered somehow. After some experimentation, I
noticed that this could be mitigated by stopping the
virtual machine, reloading the vmm kernel module, and
starting the VM again. There was recently a solution
proposed by Joshua Rogers to fix the issue on the ker-
nel level, but this has not yet been added to the base
system.

The VM’s interaction with the PCI device has of-
ten proven to be a weak point, which often limits the
usability of Wifibox itself. As an enhancement to this
workaround, the repertoire of recovery methods have
been expanded. Certain hardware configurations react differently to how the device is shut
down and restarted. For example, thanks to Joshua’s work, it was discovered that it matters
if the guest itself shuts down the device properly during its own shutdown sequence. It was
also learned that the ath11k_pci Linux kernel module does not well tolerate run in a virtual-
ized environment, because it assumes that the location of the Message Signaled Interrupts
(MSI) table matches with that of the host. This could only be handled if the FreeBSD host
somehow supported injecting the host physical MSI information for the guest or disabling
the MSI virtualization.

VirtFS/9P Support
One of the primary design principles of Wifibox was that users should not know about

the underlying virtual machine, but be able to run it directly on the host as a local applica-
tion. To create the illusion of that, the recently completed work around the VirtFS/9P file
system pass-through support of bhyve was explored. By mounting the appropriate directo-

2 of 7

Alpine is a lightweight
Linux distribution
that adopts OpenRC
as the init system.

https://alpinelinux.org/
https://joshua.hu/brcmfmac-bcm43602-suspension-shutdown-hanging-freeze-linux-freebsd-wifi-bug-pci-passthru

36FreeBSD Journal • November/December 2024

ries on the host for the bhyve guest, the required configuration files could be imported and
the log files could be exported. This way, the user would not have to move or keep files in
sync manually between the virtual machine and the FreeBSD host.

The VirtFS/9P support was made available beginning with FreeBSD 13, but I wanted to
extend it to the older versions at that time, 12 and 11, to broaden its userbase. Fortunately,
this feature is contained in a single module, and I was able to create another port, called
sysutils/bhyve+, to automatically patch the bhyve sources in the base system to have this
module included. With the help of that, there was no need to wait for the original authors
to backport the feature, but this extra dependency could be pulled in for the net/wifi-
box port when needed. Besides the addition of virtfs-9p, the bhyve+ port included many
other fixes that made it possible for Wifibox to run. Basically the goal was to put together a
version of bhyve that could be the same for every major FreeBSD version and minimize the
differences. This would have been based on the version in the 13.x line, but the related archi-
tectural changes made it non-trivial and the idea was later dropped. Over the years, its rele-
vance has slowly faded away and it eventually became obsolete.

The creation of the disk image for the guest had to face many challenges. The primary
 concern was that in the beginning, the image itself was a pre-installed Alpine system. It
was maintained locally on my workstation, it was hard to track what it contained, and it kept
changing due to writes to the various temporary and work files. From the user’s perspec-
tive, it raised the valid question of trusting “somebody else’s VM.” The initial versions were
around 640 MBs, which looked gigantic compared to the ones that are typical for embed-
ded systems. This size partially resulted from the image containing all possibly useful tools
and files, so it was a logical next step make it smaller
and more modular.

Version 1.0
For version 1.0 in May 2022, a lot of effort went into

reworking how the image was created. The prime di-
rective was to make the whole process reproducible
and lean. Technically, the complexity of installing the
system components from scratch was translated to
the port’s Makefile. The image has gained its own
sub-port, net/wifibox-alpine, while the orchestrator
script was split into net/wifibox-core, and net/wifi-
box has become a metaport. Through constant experimentation with the Alpine installa-
tion files, the root file system package, and its package manager, the apk tool, they were
adapted to run atop FreeBSD with the help of the Linuxulator. In addition to the creation of
a Makefile to drive the automated installation of the system to a designated directory on
the host optionally extended with extra files, Alpine packages are downloaded and installed
there. The packages themselves offered a way to modularize the construction of the image
and make it possible for the user to select between them through the various port options.
For example, the firmware files for each of the major wireless card brands could be sepa-
rately installed and FreeBSD package flavors could be created for them.

The package-based approach lent itself to the creation of additional packages and the
modification of the existing ones. Unfortunately, many of the upstream Alpine packag-
es turned out to carry some extra weight, such as documentation or additional binaries, so

3 of 7

The creation of
the disk image for
the guest had to face
many challenges.

37FreeBSD Journal • November/December 2024

they had to be removed. But it also allowed porting applications such as mDNSResponder
to this platform and allowed them to run as part of the solution. The package for the Li-
nux kernel itself had to be heavily edited to lose all the unused components, reduce its re-
source consumption, and shrink its attack surface. Wifibox does not need the standard
initrd-based boot process, therefore the initial temporary root file system is complete-
ly removed and the boot happens directly with its root file system. Configuration files and
patches for architectures other than AMD64 were removed, as Wifibox only supports that
specific one.

The virtual machine image is compressed by SquashFS and keeps the overall size down
to the ballpark of 15 MB. This approach also comes with a read-only root file system that
prevents even the root user from tampering. It is expanded with a memory-backed tem-
porary file system that is mounted under /tmp to manage the run-time file writes besides
the VirtFS/9P mounts for the reading the application configuration files from the host. The
boot process is run through GRUB, hence the Linux kernel (without its modules) is not part
of this image, but pre-loaded with sysutils/grub2-bhyve.

Package Framework
To roll out the required set of Wifibox packages in addition to the ones imported from

upstream, the package framework of Alpine Linux has been adopted. For transparency and
reproducibility, every customized package has its own APKBUILD file and extra files ver-
sion-controlled in git. The packages are built on a
clean, dedicated Alpine Linux bhyve virtual machine,
often dubbed wifibox-dev, which is re-created for ev-
ery minor Alpine release. The resulting packages are
uploaded to GitHub for the user’s convenience. In the
past, there were experiments to build the packages in a
Linux chroot environment, but FreeBSD’s native Linux
emulation support did not prove sufficient enough for
this purpose. The results were similar in case of cross
compilation, which is why I ended up with using bhyve
for this as well. Per Bernhard Fröhlich’s suggestion, I am
currently looking into utilizing GitHub Actions to build
the Wifibox packages automatically and independently
in a native Linux environment.

Linux-based Wireless Stack
A regular Linux-based wireless stack is operated inside the VM. First of all, the Linux ker-

nel is used to detect the PCI wireless device and make it run through one of its drivers and
the corresponding firmware, when necessary. The wlan0 wireless networking interface is
brought up by the standard OpenRC services. Then either WPA Supplicant or hostapd is
hooked up on that to finalize the configuration. Next to the wireless interface, a virtual eth0
Ethernet interface is exposed by bhyve. On the host, there is a bridge interface, wifibox0
defined, which is joined with eth0 in the guest through a tap software tunnel. Using ip-
tables, there is Network Address Translation (NAT) and packet forwarding applied to make
the traffic flow bidirectionally between wlan0 and eth0. The IP addresses are obtained with
the help of Busybox’s built-in udhcpd for the host (over eth0) and either dhcpcd or udhcpd

4 of 7

The resulting packages
are uploaded to GitHub
for the user’s convenience..

38FreeBSD Journal • November/December 2024

in the guest (over wlan0). The IP address range for the host can be controlled in the Wifibox
configuration and adjusted according to the user’s needs.

Due to the introduction of NAT, note that Wifibox uses a different range of IP address for
eth0 and wlan0. As a consequence, certain applications may not work properly out of the
box, and the deployment of additional tools and extra configuration, e.g., port forwarding is
required. This can be considered a benefit from the perspective of security, since there we
have a firewall installed automatically. But this is equally a drawback, because it breaks the
end-to-end connectivity, a core principle of the Internet. To overcome this, there were ex-
periments to push down the packet forwarding to the level of Ethernet. For example, there
is WLAN Kabel that implements moving packets between Ethernet and wireless interfaces.
It was used with moderate success, since the traffic was flowing, but DHCP communica-
tion could not be made to pass through the barrier, and the observed performance was low.
Nevertheless, that is a curious approach which is worth exploring further in the future.

An advantage of using Wifibox is the so-called “Unix domain socket pass-through”, which
helps tools like wpa_cli or wpa_gui communicate directly with the WPA Supplicant run-
ning inside the guest so that the user does not have to run them there and interact with the
VM. That is extra functionality because Unix domain sockets on the guest file system are
not exported by VirtFS/9P so the host will not see them. This is overcome by running a
dedicated uds_passthru process in the guest, which runs a stripped-down version of
socat in the background to convert the sockets to TCP ports. It has a pair on the side of
the host, that communicates on those ports and translates the data back to a socket locally.
With that in place, Wifibox can emulate the presence of that socket to implement smooth
communication. In collaboration with the guest, the orchestrator script automatically man-
ages the socket pass-through through a specific configuration file.

Wifibox as a Product
Although the Wifibox guest OS is mostly based on Alpine Linux, it often includes addi-

tional patches. For example, it imports a number of patches and packages from Arch Linux,
because Arch has a better support for wireless devices. But it was also discovered that the
driver for older Broadcom cards simply did not have support for MSI, which is a must for

5 of 7

https://github.com/escitalopram/wlan_kabel

39FreeBSD Journal • November/December 2024

drivers that want to run in a virtualized environment. Slow initialization lead time of certain
drivers can make the WPA Supplicant unable to find the wlan0 interface on boot, so an ex-
ponential back off mechanism was implemented to enhance its resilience. As experience
shows, a small operating system distribution dedicated to solving these issues is definitely
warranted.

The orchestrator script makes it possible to combine bhyve with other tools to shape its
behavior further. Thanks to Anton Saietskii’s observations, nice was connected to assist with
controlling the priority of the process that is responsible for running the virtual machine and
avoid overloading the host. Similarly, a layer with daemon was added to monitor the status
and revive the machine if it crashed or it was deliberately restarted.

As of the time of writing, Wifibox is actively maintained and it has been receiving
semi-annual updates in March and September. With the help of Ashish Shukla, these re-
leases are published to the FreeBSD Ports Collection, therefore they are available for in-
stalling with the pkg tool. Note that Wifibox is not featured on the installation media for the
FreeBSD releases, which can make it harder to take ad-
vantage of it when one tries to install FreeBSD over a
wireless network. However, it is possible to add all the
required binary packages to the installation media and
use them to initialize the network connection before
starting the installation procedure.

At the project’s home page, both the source code
and pointers to the respective GitHub repositories can
be found, tickets can be opened, and discussions can
be started. There is a separate repository for the ports
themselves where the published development ver-
sions present an opportunity to take a peek into what
is brewing next and test out fixes for issues.

Documentation
Wifibox is bundled with a lot of documentation, so I encourage the reader to explore it

further. And I would like to emphasize an implicit but important organizing principle with re-
gards to documentation. Wifibox follows a phased, “read as you go” model. This means that
it has no extensive online documentation, the README file in the main GitHub repository
covers an introduction, the basic installation instructions, and the list of hardware configura-
tions that are known to be compatible. The user then has to install Wifibox to get access to
the manual page, which has further details on how to use the tool and where the configura-
tion files are. And then in the configuration files, additional instructions are provided on how
to work ourselves through the related steps, together having a validation in place with help-
ful error messages to guide the user. The virtual machine image has its own dedicated man-
ual page. Thanks to John Grafton, Warner Losh, and many other users for giving me feed-
back on how to improve on these.

Summary
This all is an interesting mix of product of curiosity, the desire to provide a quick remedy

for the challenges in FreeBSD’s wireless journey, and inventing another use of the technical
advantages that are provided by PCI pass-through in virtualization and the design of bhyve.

6 of 7

Wifibox is actively
maintained and it has been
receiving semi-annual
updates.

https://github.com/pgj/freebsd-wifibox
https://github.com/pgj/freebsd-wifibox-port
https://github.com/pgj/freebsd-wifibox-port

40FreeBSD Journal • November/December 2024

Wifibox still has its own drawbacks, and it is nowhere near a drop-in replacement for the na-
tive solution. Hence, it is a called an embedded virtualized wireless router which removes
the need to buy dedicated hardware and creatively presents the CPU’s existing virtualization
capabilities as an imitation of that. However, I believe this approach still has ideas to chase,
such as using bhyve to run the Linux kernel and its drivers only in the virtual machine and
expose that directly as a wireless networking device. This would bring the approach one step
closer to the native solution, but it is not yet known if it is feasible and, yes, how much work
it would require. In the meantime, I hope that Wifibox can alleviate the pressure around
making the native solution production-ready and reassure users that FreeBSD is still a great
choice nowadays and they do not have to necessarily give up on getting good speeds and
reliable connections over wireless connections.

GÁBOR PÁLI has been a happy and committed FreeBSD user for many decades and he
also has had the joy of being a documentation and ports developer. He lives on the edge
of the beautiful Hungarian town of Esztergom with his wife. He endorses the adoption of
functional programming in the industry and nowadays he contributes to Apache CouchDB
where he can write Erlang and Scala code.

7 of 7

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number
of applications, off ers powerful solutions, and cutting edge
features. The best part? It’s FREE of charge and comes with
full source code.
Did you know that working with a mature, open source
project is an excellent way to gain new skills, network
with other professionals, and diff erentiate yourself in a
competitive job market? Don’t miss this opportunity to work
with a diverse and committed community bringing about a
better world powered by FreeBSD.

The FreeBSD Community is proudly supported by

The FreeBSD Project is looking for

• Programmers • Testers

• Researchers • Tech writers

• Anyone who wants to get involved

Find out more by

Checking out our website
freebsd.org/projects/newbies.html

Downloading the Software
freebsd.org/where.html

We’re a welcoming community looking
for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don’t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Help Create the Future.
Join the FreeBSD Project!

https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://www.freebsdfoundation.org

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

https://www.freebsdfoundation.org/donate

42FreeBSD Journal • November/December 2024

In previous columns, we took a basic look at the Zynq chip and mentioned it’s fabric. Since
then, we haven’t really mentioned it much. But, in the last column, we got bhyve running
a CentOS image, and so now it’s time to look at our first fabric circuit. This column will be

all circuit and no FreeBSD, but with the next couple columns, we will start to look at systems
that combine the two.

In addition to the Zynq-7000 SoC Technical Reference Manual which documents the
Zynq chip that forms the bulk of the Arty Z7-20 functionality, Digilent’s Arty Z7 Refer-
ence Manual contains a wealth of valuable information on how the Zynq chip is wired and
connected on the board. If we look at section 12, we can see that the board has 4 LEDs
that attach directly to the ZYNQ chip (R14, P14,
N16, M14). If we can set these pins to a logic 1 or
high-voltage level, then the pins will source cur-
rent that will flow through the LEDs and then
through the current-limiting resistor and to
ground causing the LEDs to turn on.

Since we’re just getting started, let’s try to
build the smallest and simplest circuit to turn on
these pins. The simplest circuit would be to stat-
ically tie these pins high in the fabric. Great, how
do we do this? We’re going to have to introduce
Verilog to do this.

Much like in the early days of programming,
where programs were written in machine code and then assembler and eventually in
high-level languages like C, ICs were originally hand drawn or laid out with mylar tape. As
circuits became larger and CAD programs were developed, circuits were designed using
programs — EDA (Electronic Design Automation). Schematic capture programs allowed one
to design circuits by connecting devices — originally transistors, and later gates — graphical-
ly using a GUI. Eventually, languages were created which allowed the description of circuits
textually. I used an early language called SFL for two of my first 3 chips back in the 1.2-mi-
cron days. But over the last decade, two languages have really come to dominate chip de-
sign: VHDL and Verilog. These languages are much like Ada and C in many conceptual ways.
Ada and VHDL are very verbose and have strong type checking. They were both designated
as the preferred language for US DOD work, and while both are still present, they’re about
as popular in their respective fields today. Verilog on the other hand, like C, has become the
most popular language in circuit design. It’s not as strongly typed as VHDL is, just as C isn’t

BY CHRISTOPHER R. BOWMAN

1 of 4

Fabric – Baby Steps

Over the last decade,
two languages have really
come to dominate chip
design: VHDL and Verilog.

https://docs.amd.com/r/en-US/ug585-zynq-7000-SoC-TRM/Zynq-7000-SoC-Technical-Reference-Manual
https://digilent.com/reference/programmable-logic/arty-z7/reference-manual
https://digilent.com/reference/programmable-logic/arty-z7/reference-manual

43FreeBSD Journal • November/December 2024

as strongly typed as Ada. In any case, these days, if you want to do digital (not analog) circuit
design of anything more than a handful of gates, you’re using VHDL or Verilog, with most
new designs use Verilog.

Circuit designs in Verilog get turned into cir-
cuits using a synthesis tool just as we use compil-
ers to turn C into a running program. There is a
bit more to it. For instance, in addition to turning
the Verilog into a set of connected gates imple-
menting the design, when designing a comput-
er chip, you also need to run a tool to place the
gates and route the interconnect wires. Fortu-
nately for us, all that functionality is present in the
Xilinx/AMD tool called Vivado. Not only does Xil-
inx/AMD offer Vivado, but it’s a free download,
and you can get a license to unlock quite a bit of
the functionality of the Zynq chips free of charge.
If you want to do anything more than write pro-
grams for your Arty Z7 board, you’ll need to download and install this software on a Linux or
windows machine. We covered setting up a bhyve instance running Linux in the last column
so that you can run Vivado on a Linux VM under bhyve on your FreeBSD machine.

Now that we’re oriented, let’s turn towards our first and simplest circuit to turn on the
LEDs on our board. First, we will need a Verilog description of our circuit. I can’t possibly
teach you Verilog in one small column, so I will just present the design and try to describe
what it’s doing.

module top(
 output [3:0]led
);

wire [3:0]led;

assign led = {1'b1, 1'b0, 1'b1, 1'b0};

endmodule

First, designs are captured in modules and this one has a 4-bit bus of wires coming out
of it called led. We are driving this bus with a set of 4 concatenated constants. Those con-
stants are 1-bit signals, half of which are logic “hi” or 1, and half are logic “low” or 0. I picked
an alternating set of values so that I can tell which way the LEDs are wired: msb to lsb or
lsb to msb. This way, I don’t have to work it out from the markings on the board and the
documentation.

The next thing we need to do is provide a constraints file. Constraints files have two
major functions: they convey timing information, and in the FPGA world, they also convey
some placement information. For our first experiment, we need to tell the tool what pins on
the chip are connected to the wires of the led bus, and we also need to tell the tool how to
setup the IO pins we wish to use. Digilent, quite helpfully, has a master XDC file that has this
information for this board and many others in a github repo. Unfortunately, they don’t in-
clude a copyright notice in the file or readme and so I can’t include it in my project. The few

2 of 4

Circuit designs in Verilog
get turned into circuits
using a synthesis tool
just as we use compilers
to turn C into a running
program.

44FreeBSD Journal • November/December 2024

relevant lines are provided here, and if you use the make file included in my static_leds repo
for this article, it will download the file from github and uncomment the relevant lines. You’ll
need GNU make and wget installed on your system.

set_property -dict { PACKAGE_PIN R14 IOSTANDARD LVCMOS33 } \
 [get_ports { led[0] }]; #IO_L6N_T0_VREF_34 Sch=LED0
set_property -dict { PACKAGE_PIN P14 IOSTANDARD LVCMOS33 } \
 [get_ports { led[1] }]; #IO_L6P_T0_34 Sch=LED1
set_property -dict { PACKAGE_PIN N16 IOSTANDARD LVCMOS33 } \
 [get_ports { led[2] }]; #IO_L21N_T3_DQS_AD14N_35 Sch=LED2
set_property -dict { PACKAGE_PIN M14 IOSTANDARD LVCMOS33 } \
 [get_ports { led[3] }]; #IO_L23P_T3_35 Sch=LED3

Finally, we need to run Vivado to convert this into a BIT file which is a representation of
the circuit we’ve designed. Sadly, it’s not as easy as just passing these two files to Vivado. Cir-
cuit design is a complex process with many options. Vivado, like many EDA (Electronic De-
sign Automation) tools, is a TCL-based tool that needs a script to operate. In my repo, I’ve
created the simplest GNUMakefile I can to automatically download the XDC file, patch it,
and run Vivado with a TCL script. I encourage you to look through it, but if you just want to
get on with it, update the path variables and then a simple make under Linux should do ev-
erything and leave you with a file implementation/static.bit which is the circuit file we
need to load into the Zynq chip.

So, I have my circuit file, now what? U-boot contains an FPGA bitstream loader, so we will
start with that. Copy the FPGA.bit file to the MSDOS partition of your SD card, insert the
card into the board, and push the reset button. At the U-boot prompt, interrupt the boot
process and run the following commands:

Zynq> fatload mmc 0 0x4000000 static.bit
4045663 bytes read in 249 ms (15.5 MiB/s)
Zynq> fpga loadb 0 0x4000000 4045663

The first command loads the static.bit file from the FAT partition on the SD card into
memory. The second tells U-boot to program the FPGA with the file contents now in mem-
ory at 0x4000000. At this point, you should see two of the four LEDs on the board turn
bright red. Congratulations! You’ve built and loaded your first FPGA design!

We could stop here, but let’s do two more things before we call it quits. Let’s make our
LEDs blink instead of just turning on, and let’s see how we can load the FPGA from under
FreeBSD. That will start to lay the ground work for cool things.

To make the LEDs blink, we need to change our circuit by changing the Verilog. There is a
new repo for this new circuit, but I’ll summarize the changes here. First our new Verilog:

module top(
 input clk,
 output [3:0] led
);

localparam cycles_per_second = 125000000;

reg [3:0]leds;
reg [31:0]counter;

3 of 4

https://github.com/christopher-bowman/static_leds
https://github.com/christopher-bowman/blinky_leds

45FreeBSD Journal • November/December 2024

always @ (posedge clk)
begin
 if (counter == 0) begin
 leds <= leds + 1;
 counter <= cycles_per_second;
 end else counter <= counter - 1;
end

assign led = leds;

endmodule

We’ve now added a clock input that will drive a 31-bit counter, and we’ve made that and
a 4-bit counter. The 31-bit counter loads with the value 123,000,000 and counts down to
zero. When it hits 0, the 4-bit leds counter increments. We choose 125,000,000 because,
looking at the Arty reference manual section 11, we see the ethernet phy supplies a 125MHz
clock on pin H16.

Next, we need to tell Vivado about the clock on pin H16:

set_property -dict { PACKAGE_PIN H16 \
 IOSTANDARD LVCMOS33 } \
 [get_ports { clk }]; #IO_L13P_T2_MRCC_35 Sch=SYSCLK
create_clock -add -name sys_clk_pin -period 8.00 \
 -waveform {0 4} [get_ports { clk }];#set

Again, a simple make should build a file implementation/blinky.bit which can be
transferred to the SD card and loaded into the FPGA as above.

Now you should the see the LEDs blink counting in binary.
Ok, before we wrap it up for this column, let’s talk about one last thing. Let’s see how

we can program the FGPA from inside FreeBSD. Turns out this is simple. There is a /dev/
devcfg device that was originally intended for you to simply cat a bit file to this device, but I
don’t think the work on it was quite completed. There is a simple C program xbin2bit which
has its own git repo. if you have root permissions (by default /dev/devcfg is owned by
root) you can simply run and pass it your bit file:

xbin2bit blinky.bit

Did you run that and see your FreeBSD system halt, but the LEDs keep blinking? Yep,
turns out our Verilog designs need to be a little more sophisticated so that the processor
doesn’t stop. We’ll explore this more in the next column.

If you’ve got questions, comments, feedback, or flames on any of this I’d love to hear
from you. You can contact me at articles@ChrisBowman.com.

CHRISTOPHER R. BOWMAN first used BSD back in 1989 on a VAX 11/785 while working
2 floors below ground level at the Johns Hopkins University Applied Physics Laborato-
ry. He later used FreeBSD in the mid 90’s to design his first 2 Micron CMOS chip at the
University of Maryland. He’s been a FreeBSD user ever since and is interested in hard-
ware design and the software that drives it. He has worked in the semiconductor design
automation industry for the last 20 years.

4 of 4

https://github.com/christopher-bowman/xbin2bit
mailto:articles@ChrisBowman.com
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

46FreeBSD Journal • November/December 2024

1 of 9

The previous column in this series focused on the FreeBSD infrastructure that supports
pacing for TCP stacks. This column continues exploring pacing in FreeBSD by discussing
a pacing methodology that is available in the RACK stack today in the developer version
of FreeBSD. This pacing methodology is called Dynamic Goodput Pacing (DGP) and rep-
resents a new form of pacing that can provide good performance and yet still be fair in the
network. To understand DGP, we first will need to discuss congestion control, since DGP
works by combining two forms of congestion control that traditionally have not been used
together. Consequently, this column will first discuss what congestion control is as well as
two kinds of congestion control that DGP combines into a seamless pacing regime.

Congestion Control
When TCP was first introduced to the budding Internet,

it did not contain anything called congestion control. It had
flow control, i.e., making sure that a sender did not overrun a
receiver, but there was no regard at all to what TCP was do-
ing to the network. This caused a series of outages that have
since been termed “congestion collapse” and brought about
changes to TCP to have a “network aware” component to
try to assure that actions by TCP would not cause problems
on the Internet. This “network aware” component is called
congestion control.

Loss Based
The very first congestion control introduced to the In-

ternet was loss-based congestion control. Today it is one of
the most widely deployed forms of congestion control though it does have its downsides.
There are two main algorithms (though others do exist) used in loss-based congestion —
one called New Reno[1] and the other called Cubic[2]. New Reno and Cubic both share one
fundamental design, Additive Increase and Multiplicative Decrease (AIMD). We will look a bit
more closely at New Reno, since it is simpler to understand.

TCP will start with a number of basic variables set to preset defaults:
•	Congestion Window (cwnd) — How much data that can be sent into the network with-

out causing congestion. This is initialized to the value of the Initial Window.

BY RANDALL STEWART

Dynamic Goodput Pacing:
A New Approach to Packet Pacing

When TCP was first
introduced to the budding
Internet, it did not contain
anything called congestion
control.

47FreeBSD Journal • November/December 2024

•	Slow Start Threshold (ssthresh) — When the cwnd reaches this point the increase
mechanism is slowed down from something called “Slow Start” to “Congestion Avoid-
ance”. The ssthresh value is ostensibly set to infinity initially but will get set to ½ the cur-
rent cwnd whenever a loss is detected.

•	Flight Size (FS) — The number of data bytes in flight to the peer that has not been ac-
knowledged. This of course starts at zero and is incremented every time data is sent
and subtracted from when data is cumulatively acknowledged.

•	Initial Window (IW) — This is the initial value to be set into the cwnd, in most imple-
mentations it is set to 10 segments (10 x 1460), but it may be more or less (initially TCP
had this value set to 1 segment).

•	Algorithm – “Slow Start” (SS) — The slow start algorithm is one of the algorithms used
for the additive increase part. In slow start every time an
acknowledgment arrives the cwnd is increased by the
amount of data acknowledged.

•	Algorithm – “Congestion Avoidance” (CA) — The
congestion avoidance algorithm will increase the cwnd
1 packet every time a full congestion windows worth of
data has been acknowledged.

So initially the cwnd is set to the IW, the increase algo-
rithm is set to SS, and the flight size is set to 0 bytes. The im-
plementation, assuming an infinite amount of data to send,
will send out the IW worth of data towards its peer moving
FS to the IW size as well. The peer will send back acknowl-
edgments for every other packet. (Some implementations
such as macOS may change to every eighth packet or every
single packet.) This means that with each arriving acknowl-
edgement the FS will go down by two packets and the cwnd
will be increased by two packets, which means we can send out four more packets (if the
flight size before the acknowledgment arrived was at its maximum value i.e. the cwnd). This
sequence will continue until a loss is detected.

There are two ways in which we can detect loss: via indications of loss in the returning
acknowledgment (where the cumulative acknowledgment point does not advance) or via a
timeout. In the former case we cut the cwnd in ½ and store this new value in the ssthresh
variable. If it’s via the latter, we set the cwnd to 1 packet and again set ssthresh to ½ the old
cwnd value before the loss.

In either case we start retransmitting the lost data and once all the lost data has been re-
covered, we start sending new data with a new lower cwnd value and an updated ssthresh.
Note that whenever the cwnd rises above the ssthresh point we will change the algorithm
used for increasing cwnd to congestion avoidance. This means that once a whole cwnd of
data has been acknowledged we increase cwnd by one packet.

Now in briefly summarizing how loss-based congestion control works I have skipped over
some finer points (more details on how to recognize loss for example) and some other nu-
ances. But I wanted to give you an idea as to how it is working so we could then shift our at-
tention to routers on the Internet to focus on what happens because of these loss-based
mechanisms.

Routers typically have buffers associated with their links. This way, if a burst of packets

2 of 9

The implementation
will send out the IW worth
of data towards its peer
moving FS to the IW size
as well.

48FreeBSD Journal • November/December 2024

arrives (which happens often), they do not have to discard any packets but can forward the
packets to the next hop through whatever link that leads there. Especially when the link
speeds vary between incoming versus outgoing. Let’s look at Figure 1 below.

Figure 1: A bottleneck router with a buffer

Here we see P3 arriving at 100Mbps and it will get placed into the third slot in the router’s
buffer. P1 is currently being transmitted onto the 10Mbps link and P2 is waiting for its turn to
be transmitted. Assuming a 1500-byte packet P3 will take approximately 120 microseconds
to transmit across the 100Mbps network. When it is its turn to go out onto the 10Mbps des-
tination network it will take 10 times that or 1200 microsec-
onds to be sent. This means that every packet in the router’s
buffer will cause a 1200 microseconds of additional delay to
be added to the packet just arriving.

Now let’s step back and consider what our congestion
control algorithm is going to optimize for. It will send pack-
ets as fast as it can until it loses a packet. If we are the only
ones sending on the network this means that we will have
to completely fill the routers buffer before a loss occurs.
This means we are optimizing the router to always have a
full buffer. And since memory is cheap, routers have grown
quite large buffers. This means that we end up with long de-
lays when a large transfer is happening via a loss-based con-
gestion control algorithm. In Figure 1 we see only 6 slots for
packets but in real routers there can be 100’s or 1000’s of
packets in a routers buffer waiting to be sent. This means
that the round-trip time seen by a TCP connection might vary from just a few milliseconds
(when no packets are in queue) and then spike up to seconds due to buffering by the rout-
ers and TCP’s AIMD congestion control algorithms always wanting to keep the buffer com-
pletely full.

You may have heard the term “buffer bloat” which impacts any real time applications
(video calls, audio calls or games), this is directly caused by loss-based congestion control
and is what we have just described.

Delay Based
For quite a long time, researchers and developers have known about the tendencies of

loss-based congestion control to fill buffers. Long before all the talk of buffer bloat alterna-
tive congestion controls had been proposed to solve this issue. One of the first such pro-
posals was TCP Vegas[3]. The basic idea in TCP Vegas is that the stack keeps track of the

3 of 9

If we are the only ones
sending on the network
this means that we will
have to completely fill
the routers buffer before
a loss occurs.

49FreeBSD Journal • November/December 2024

lowest RTT it has seen, called the “Base RTT”. It uses this information during Congestion
Avoidance to determine an expected bandwidth i.e.:

	 Expected = cwnd / BaseRTT
The actual bandwidth is also calculated as well i.e.:

	 Actual = cwnd / CurrentRTT
Then a simple subtraction is done to determine the difference i.e.:

	 Diff = Expected – Actual
The difference Diff is then used to determine if the cwnd should be advanced or re-

duced based on two thresholds α < ꞵ. These thresholds help to define how much data
should be in the buffer of the bottleneck. If the difference is smaller than α then the cwnd
is increased and when the difference is larger than ꞵ then the cwnd is decreased. Whenever
the difference is between the two then no change is made to the cwnd. This clever formula
with low values (usually 1 and 3) keeps the buffer at the bottleneck to a very small value opti-
mizing the connection to keep the buffer just full enough to
achieve optimal throughput for the connection.

During Slow Start, TCP Vegas modifies the way the in-
crease works by alternating every other RTT. The first RTT
Slow Start increases as New Reno or other loss-based con-
gestion control mechanisms would. However, on the next
RTT, TCP Vegas does not increase the cwnd but measures
the difference using the cwnd to again calculate if the router
buffer has been saturated. When the actual rate falls below
the expected rate by one router buffer, slow start is exited.

Perils of Mixing the Two
Testing with TCP Vegas shows improvements to both

RTT and throughput. So why did we not fully deploy TCP Vegas gaining all its benefits?
The answer to that is contained within what happens when a loss-based congestion-con-

trolled traffic competes against a delay based one. Imagine your TCP Vegas connection
faithfully tuning the connection to keep only 1 or 2 packets in the bottleneck routers buf-
fer. The RTT is low, and your throughput is at your maximum share. Then a loss-based flow
begins, it will of course fill the router buffer until it experiences a loss, which is the only way
it learns to slow down. To the TCP Vegas flow a signal that it is going too fast is received re-
peatedly, getting it to continue to cut its cwnd until it is getting almost no throughput. In
the meantime, the loss-based flow gets all the bandwidth. Basically, the two types of con-
gestion control, when mixed, always end up turning out poorly for the delay-based mech-
anism. Since loss-based congestion control was and is widely deployed on the Internet this
then provided a huge dis-incentive for deploying a delay-based congestion control.

Mixing Loss and Delay Based Approaches with DGP
DGP attempts to integrate both loss-based and delay-based approaches in choosing its

pacing rate. For the delay-based component Timely[4] was chosen (with some adaptation
for the Internet) though arguably any delay-based approach (including TCP Vegas) could
have been adapted for this purpose. Timely uses a delay gradient to calculate a multiplier
which is combined with the current loss-based congestion controls calculations (either New
Reno or Cubic) to derive an overall pacing rate using the following formula:

4 of 9

Testing with TCP Vegas
shows improvements to
both RTT and throughput.

50FreeBSD Journal • November/December 2024

Bw = max(GPest, LTbw) * TimelyMultiplier
FillCwBw = cwnd / CurrentRTT
PaceRate = max (Bw, ((FCC == 0) ? FillCwBw : min(FillCwBw, FCC)))

We will discuss each part of the above formula in the following subsections to give you
an idea of how DGP works. For the deep details on Timely we recommend you read the
paper[4].

Goodput (GPest)
One of the foundational measurements that DGP keeps track of is the goodput. This is

like BBR’s[5] delivery rate but different in a subtle way. The delivery rate calculates the arriv-
ing rate of all data at a TCP receiver. When there is no loss the delivery rate and the DGP
goodput are identical. But in cases of loss, the DGP rate lessens. This is because the good-
put is measured strictly on advances to the cumulative acknowledgment (cum-ack), when
a loss happens the cum-ack stops advancing. All the time it takes to recover a lost packet is
thus folded into the goodput estimate lowering the GPest value.

To measure the goodput initially the IW is allowed to be sent in a burst, this starts the
very first measurement window. The goodput is usually measured over 1 - 2 round trips
worth of data and is calculated based on the advancement of the cum-ack over that peri-
od. During the measurement period a separate RTT is also calculated over that period i.e.
the curGpRTT (which will be used later as input to Timely).
Once the IW is acknowledged we have a seed of the first
measurement. For the next three measurements the esti-
mate is averaged. Once a fourth measurement is made fu-
ture estimates use an apportioned weighted moving aver-
age to update the current GPest. Every time a new GPest
is started the curGpRTT is saved into the prevGpRTT and a
new weighted moving average of RTT is also begun which
will become our new curGpRTT (note this RTT is a separate
measurement from the smoothed round trip that TCP con-
tinues to make as well). The GPest measurement is continu-
ally made by the sender when data is in transit to the receiv-
er. Any time that the sender becomes application limited the
current measurement is ended. Note that an implementa-
tion becoming congestion window limited does not stop the
current measurement. This description has been rather brief
and may warrant a future article on how the RACK stack measures the goodput.

Long Term Bandwidth (LTbw)
DGP also tracks another bandwidth measurement termed the LTbw. The LTbw is the to-

tal sum of all bytes cumulatively acknowledged divided by the total time that the data was
outstanding. This value is almost always lesser than the current goodput value but in cas-
es of sharp decline in the bandwidth measurement it can provide a stability to the current
bandwidth estimate.

Delay Gradient with Timely (TimelyMultiplier)
Timely provides a multiplier that generally ranges somewhere between 50% - 130% of

the estimated bandwidth. Timely uses the following formula (from the paper):

5 of 9

To measure the goodput
initially the IW is allowed
to be sent in a burst,
this starts the very first
measurement window.

51FreeBSD Journal • November/December 2024

Timely was designed for the data center environment where the RTT’s and bandwidths
at various points are known entities. For use in DGP this is not the case, so we substitute
the new_rtt and prev_rtt in the above formulas with the curGpRTT and the prevGpRTT re-
spectively. We only do a Timely calculation at the end of making a goodput estimate. The
multiplier calculated then stays with the connection as is until the next goodput estimate is
complete and the multiplier is again updated along with any update to the goodput. Note
also that timely uses a minRTT i.e. the minimum expected RTT. Again, this is not some-
thing known on the Internet as compared to the data center where the RTT at any point is a
known quantity, and so it is derived as the lowest RTT seen in the last 10 seconds, the same
as BBR. Also, just like BBR, to reestablish the minimum RTT periodically DGP will go into a
“probeRTT” mode where the cwnd is reduced to 4 segments for a short period of time so
that a “new” low RTT can be found. Note that the addition of a BBR style probe-RTT phase
also helps DGP to become more compatible with BBR flows it is competing with.

With these tweaks, the Timely algorithm is adapted into DGP. For the deeper details on
either probeRTT or Timely I suggest reading the papers.

Loss Based Pacing or Filling the Congestion Window (FillCwBw)
To pace out packets for loss-based congestion control a simple method exists. Take the

currentRTT (kept in any stack doing Recent Acknowledgement[6]) and divide that into the
congestion window. This tells the pacing mechanism what rate to pace at that will spread
the current congestion window over the current RTT. Any loss-based congestion control,
New Reno or Cubic, can be used with this method to simply deduce a pacing rate that
would be dictated by the congestion control algorithm. We call this rate the Fill Congestion
Window rate (FillCWBw) since it is designed to fill the congestion window over an RTT.

It should be noted that by pacing packets out over the entire congestion window it is
highly likely that the sender will have less loss. This is due to less pressure on the bottleneck

6 of 9

52FreeBSD Journal • November/December 2024

by allowing some time between each microburst of packets sent. This time allows the bot-
tleneck to drain some before the next microburst of packets arrives. Having less loss will
naturally mean that the congestion window will gain a higher value since loss is the only
thing that causes the cwnd to be reduced.

The Fulcrum Point: Fill Congestion Window Cap (FCC)
So far, DGP has calculated a bandwidth based on the goodput estimate in combina-

tion with Timely to increase or decrease that rate based on the RTT gradient (a delay-based
component). We have also calculated a bandwidth for pacing based on the value of the con-
gestion window (via whatever congestion control is in play) and the current RTT (the loss-
based component). This gives us two distinct bandwidths we could pace at.

So, this is where the Fill Congestion window Cap (FCC) comes into play. If one is set (you
can set it to zero to always get the fastest bandwidth), it becomes the limit of how much we
will allow the loss-based rate to apply. The current default in FreeBSD is set to 30Mbps. So,
for example if the FillCwBw calculated out to 50Mbps and the Bw, factoring in the Time-
ly value on top of the estimate bandwidth came out to 20Mbps, then we would pace at the
limit of the FCC i.e. 30Mbps in a default setting. If the Timely calculated Bw was 80Mbps
then we would pace at 80Mbps.

What happens here is that the FCC serves as a Fulcrum point and limit to how much the
nominal loss-based congestion control algorithm will influence the pacing rate. The FCC
declares that your connection will push against other loss-based flows to maintain a rate of
at least FCC, if possible, based on the congestion control value. If neither value meets the
FCC limit, then the larger of the two will be dominant.

General Performance While Testing on the Internet
In a past large-scale experimentation at my previous company, DGP running with an FCC

limit of 30Mbps (now the default) reduced RTT by up to over 100ms with no real degrada-
tion in Quality of Experience (QoE) metrics. If the FCC point was raised to 50Mbps QoE
metrics improved i.e. things like Play Delay and Rebuffers improved with a sacrifice of little
to no reduction of the RTT. The 30Mbps setting was adopted as a default in response to this
testing, valuing the reduction in RTT (indicating much better router buffer behavior) than
the corresponding gain in QoE metrics.

Enabling DGP in FreeBSD
There are at least two ways of enabling DGP on a FreeBSD system that has the RACK

stack loaded and set as the default stack. If the source code of the application is available,
you can add to the source code the setting of the socket option TCP_RACK_PROFILE to a
value of ‘1’ as follows:

socklen_t slen;
int profileno, err, sd;

….
profileno = 1;
slen = sizeof(profileno);
err = setsockopt(sd, IPPROTO_TCP, TCP_RACK_PROFILE, &profileno, slen);

The above code snippet will enable DGP on the socket associated with sd.

7 of 9

53FreeBSD Journal • November/December 2024

Another mechanism if you do not have access to the source code is to use sysctl to set
the default profile for all TCP connections using the RACK stack to the value of ‘1’. You do
this as follows:

sysctl net.inet.tcp.rack.misc.defprofile = 1

Note that once this value is set, all TCP connections using the RACK stack will use DGP
with a default FCC value of 30Mbps. You can change that default (the FCC) as well to bet-
ter match your network conditions with sysctl as well. The sysctl-variable net.inet.tcp.
rack.pacing.fillcw_cap holds the FCC in bytes per second. For example, if I want to set
the value to 50Mbps the following command can be used:

sysctl net.inet.tcp.rack.pacing.fillcw_cap = 6250000

The default value is 3750000 i.e. 30Mbps, you take the value you would like set in bits per
second and divide by 8. So, 50,000,000 / 8 = 6,250,000.

You can also use the TCP_FILLCW_RATE_CAP socket option if you have access to the
source code as follows:

socklen_t slen;
int err, sd;
uint64_t fcc;
….
fcc = (50000000 / 8);
slen = sizeof(fcc);
err = setsockopt(sd, IPPROTO_TCP, TCP_RACK_PROFILE, &fcc, slen);

Note that this will change the FCC value for just the specified connection and not the
entire system.

You can also turn the FCC feature off and pace at always the maximum allowed by either
Timely or the congestion control by setting the FCC value to 0. This will likely give you the
best performance but will not reduce router buffer usage and thus buffer bloat.

How to Set Parameters?
So what settings are right for your network? In most cases the bottleneck is in your home

gateway so knowing the bandwidth of your Internet connection can give you a good idea
on what the FCC value should be set to for your connection. For example, I have two sites
I administer, one is a symmetric 1Gbps connection, my FCC value for that machine I leave
at the default of 30Mbps. This of course only affects outbound TCP connections using the
RACK stack where the server is sending data. Leaving the default implies that for the most
part delay-based performance will be coming out of my server and each connection will
only push to maintain 3% of the network uplink capacity with loss-based mechanisms.

In my second system it has an asymmetric cable modem and only has 40Mbps up. In
such a situation I have my FCC point set to 5Mbps. If I get more than 7 connections, they
will start to push against each other using the loss-based mechanisms all attempting to get
at least 5Mbps.

Future Work
Currently the FCC point is set in a static fashion on the entire system. This means that

often the value is suboptimal, and a better value could possibly be selected (possibly gain-

8 of 9

54FreeBSD Journal • November/December 2024

ing both performance and reductions in RTT). The author is currently working on a more
dynamic mechanism for setting the FCC point. The basic idea is that the connection would
measure, over some time, the actual path capacity. Then once a value is available for the
“Path Capacity Measurement” (PCM) a set percentage of that would be dedicated as the
FCC point. This would then in theory make DGP more dynamic in tuning to the network
path being used while reserving and pushing for some portion of the available bandwidth
specific to each network type. Hopefully the work will be completed in 2025. Once complet-
ed, the RACK stack will change its default to enable DGP.

References
1.	S. Floyd, T. Henderson: “The NewReno Modification to TCP’s Fast Recovery Algorithm”,

RFC 6582, April 1999.
2.	S. Ha, I. Rhee, L. Xu: “Cubic: A New TCP-Friendly High-Speed TCP Variant”, in: ACM SI-

GOPS Operating Systems Review, Volume 42, Issue 5, July 2008.
3.	L. Brakmo, L. Peterson: “TCP Vegas: End to End Congestion Avoidance on a Global Inter-

net”, in: IEEE Journal on Selected Areas in Communications, Volume 13, No. 8, October
1995.

4.	R. Mittal, V. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Gohabdi, A. Vahdat, Y. Wang, D.
Wetherall, D. Zats: “TIMELY: RTT-based Congestion Control for the Datacenter”, in: ACM
SIGCOMM Computer Communication Review, Volume 45, Issue 4, August 2015.

5.	N. Cardwell, Y. Cheng, C. Gunn, S. Yeganeh, V. Jacobson: “BBR: Congestion-Based Con-
gestion Control”, in: Queue, Volume 14, Issue 5, December 2016.

6.	Y. Cheng, N. Cardwell, N. Dukkipati, P. Jah: “The RACK-TLP Loss Detection Algorithm for
TCP”, RFC 8985, February 2021.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer since 2006. He specializes in Transports including TCP
and SCTP but has also been known to poke into other areas of the operating system. He is
currently an independent consultant.

9 of 9

mailto:rrs@freebsd.org
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

55FreeBSD Journal • November/December 2024

Before the Conference
The idea of taking part in EuroBSDCon first came to mind in 2023. Coimbra would have

been a great location for returning to a conference after many years, but unfortunately I
couldn’t make it. When the call for registration in Dublin approached, I decided that would
be the right occasion. In the meantime, the
BSD Cafe project had been launched, and the
welcoming enthusiasm it received provided a
strong push. I thought I might propose a talk.
My work involves BSD systems daily with a va-
riety of clients, and sharing how I’ve managed
(and still manage) the transition from Linux to
the BSDs might interest the community.

I still remember that moment in June when
I clicked “Submit”. I told my wife, “Whether as a
speaker or as a participant, in September we’re
going to Dublin.” She works with me, so she
would also attend the conference. It was one of the best ideas in recent years.

I still recall when, on my way to the office, I glanced at my smartwatch notification: my
talk had been accepted. In an instant, I felt two distinct, intense emotions: enthusiasm and
terror. I have no issues with public speaking, but doing it again in English at such an event…
In reality, that fear was unfounded, as I would only discover two months later.

As the event drew closer, the organizers provided all the necessary information. They
were extremely patient, even when I asked seemingly trivial questions. It was my first Eu-
roBSDCon, and the “BSD” at the center of the name should have taught me something ev-

ery BSD user knows: everything is documented in
the finest detail. The FAQs were frequently updated.
It’s a known feature: BSD-related documentation is
always impeccable.

We left on Thursday, as we wouldn’t be attend-
ing the tutorials. It was my first time in Ireland, my
first BSD Conference, and my first time as a speaker.
Upon arrival, everything was perfectly organized: di-
rections for transportation, accommodation at the
speakers’ hotel with a splendid view of the Irish Sea.

The organizers know how to pamper their speakers.
That evening we went down to dinner and I was nervous, being terrible at recognizing

BY STEFANO MARINELLI

1 of 8

My EuroBSDCon Experience
in Dublin

Conference Report

Sharing how I’ve managed

the transition from Linux

to the BSDs might interest

the community.

Photos by Carla Suffritti

https://2023.eurobsdcon.org/
https://2024.eurobsdcon.org/
https://bsd.cafe
https://events.eurobsdcon.org/2024/talk/LNMLZX/

56FreeBSD Journal • November/December 2024

faces. I was sure I would run into someone I had known online for a long time but wouldn’t
recognize.

The Day Before the Talks
Friday morning was dedicated to reviewing my notes and slides. Each presentation had a

45-minute slot, including questions, and I was pretty sure I’d go slightly over. In my test runs,
I managed to stay under 50 minutes, though not under 45. The advantage of having the last
talk before the Social Event is that a small time overrun wouldn’t affect other speakers, and
I could “postpone” questions to the Social Event. In any case, I was satisfied with the result. I
didn’t yet know how the audience would receive my talk, but the community’s warmth and
flawless organization already made me feel part of something special.

In the morning, I received an email from Philipp Buehler suggesting a quick trip to the
venue in the afternoon to test the projectors. The goal was to avoid any last-minute techni-
cal issues before my talk that would waste precious time. So, after lunch, we took a pleasant
stroll through Dublin, heading to the conference venue.

The Venue and Early Impressions
EuroBSDCon was held at University College

Dublin (UCD), in the O’Reilly Hall — a location
I found extremely fitting and comfortable. At
the entrance there were two areas: on the right,
check-in and registration (with badges in three
colors: orange for organizers and staff, white for
participants, and green for speakers); on the left,
a zone with t-shirts and more staff and friends.
On arrival, as soon as I introduced myself, the
welcome was warm and friendly. Henning Brau-
er handed us our badges — seeing that green
badge filled me with pride. With him was Katie McMillan, whom I had never interacted with
even online, but I had seen her presentation video from BSDCan, so it was a real pleasure

to meet her. At the other table were several people,
including Mischa Peters (who gave me an OpenBSD.
Amsterdam t-shirt), my “colleague” Jeroen Janssen (aka
h3artbl33d, one of the admins of the Mastodon in-
stance exquisite.social), Peter Hansteen, Paul de Weerd,
René Ladan, Janne Johansson, Guido Van Rooij, Mi-
chael Reim, Benny Siegert, and others. People I’ve re-
spected for years, all gathered there. We talked for over
an hour, with others joining and leaving as time passed.

I already knew the BSD community was positive, but I was surprised at how cohesive the
various groups were. I immediately felt at ease, that sensation you get when you’re in a fa-
miliar place among dear friends.

At a certain point, Franco Fichtner arrived to do the same technical check. OPNSense is
one of my first choices for router/firewall solutions for clients, and chatting with him directly
was a real pleasure.

2 of 8

Conference Report

On arrival, as soon as

I introduced myself,

the welcome was warm

and friendly.

https://www.ucd.ie/universityclub/conferenceandbanqueting/theoreillyhall/
https://www.ucd.ie/universityclub/conferenceandbanqueting/theoreillyhall/
hhttps://openbsd.amsterdam/ttp://
hhttps://openbsd.amsterdam/ttp://
https://exquisite.social
https://opnsense.org/

57FreeBSD Journal • November/December 2024

When the tutorials resumed, participants went back to their sessions. We returned to
the hotel for a bit of relaxation and another review of my talk, as well as to write the “I Solve
Problems” blog post I would publish once back home.

Saturday: The Conference in Full Swing
Saturday morning, 9:30: registration and participants arriving. I was positively anxious,

looking at everyone’s badges to read names and try to identify and remember! Right in the
entrance hall, I started meeting people: Vanja, Toni, and Natalino approached and we intro-
duced ourselves, talking a bit about our roles. Among the buzz, I appreciated being able to
speak some Italian. Alfonso Siciliano also arrived, and we talked
quite a lot. Alfonso is pleasant, friendly, and extremely compe-
tent and serious, with the same qualities I recognized in Leon-
ardo Taccari (from the NetBSD team).

I took a walk around to see how everything was arranged.
There were three conference rooms (Foyer A, Foyer B, and
Stage End) and a wonderful, bright, spacious hall overlooking
the UCD lake. This hall offered tea, coffee, and water. There
was a table where people had left stickers and other swag — I
had brought many BSD Cafe stickers and coasters, which I dis-
tributed personally and left on that table, and they seemed ap-
preciated. There were also sponsor tables and, at the center,
a table reserved for the FreeBSD Foundation. I was delighted
to meet Deb Goodkin and Kim McMahon in person — talking
with them was a real pleasure. Hearing about the Foundation’s ideas and projects directly
from them was fantastic.

Meanwhile, the technical team was fine-tuning the last details — including the whims
of a Decimator device — promptly handled by Michael Dexter, who swiftly hooked up his
laptop and replaced its firmware. The wonders of being among highly competent profes-
sionals!

At 10:30, everyone moved to the Stage End room for the Opening Session, where every-
one greeted each other, the program was presented, and some useful information was pro-

vided. At 11:00, Tom Smyth presented the Key-
note: Evidence based Policy formation in the EU
what Evidence are we Presenting to the EU?

Tom, positively emotional, presented with
passion, competence, and pride. His message
and information were comprehensive and valu-
able, and I believe everyone appreciated his talk.
At the end, after well-deserved applause, the
gift for the speakers was handed out: a marvel-

ous green merino wool scarf with an inscription in Ogham. Choosing which talks to attend
was the hardest part. They were all interesting, but the three tracks ran in parallel, forcing
tough decisions. Fortunately, I knew the presentation videos would be available later.

I attended Franco Fichtner’s talk: Tooling Around With FreeBSD — A tale of scripting a
custom firewall distribution. This was very interesting for someone like me who often uses

Conference Report
3 of 8

https://it-notes.dragas.net/2024/10/03/i-solve-problems-eurobsdcon/http://
https://it-notes.dragas.net/2024/10/03/i-solve-problems-eurobsdcon/http://
https://2024.eurobsdcon.org/venue.html
https://freebsdfoundation.org/
https://ogh.am/?text=EuroBSDCon

58FreeBSD Journal • November/December 2024

OPNSense. Understanding some of their design decisions was enlightening, as it helped me
grasp the project’s direction.

Meeting People and Sharing Experiences
One of the people I had the opportunity to meet — whom I already knew online through

social interactions and his role in the BSD Now podcast — is Jason Tubnor. Jason is friendly
and upbeat, and he asked if he could do a brief
interview about the event, me, BSD Cafe, and
my talk. I gladly accepted, and we did it during
the lunch break. There was a fully equipped
room upstairs, perfectly set up for the purpose.
BSD-style organization — always efficient.

During the lunch break, I also got to meet
and chat with Benedict Reuschling. I’m very
grateful to Benedict (and Jason and the oth-
er presenters) for the BSD Now podcast and
for introducing me to Jim Maurer about a year
ago, enabling me to write my first article for the
FreeBSD Journal. Still in the Foundation’s sphere, I had a pleasant conversation with Ed Mas-
te. Truthfully, I’m a somewhat shy person, and I felt like I might be “bothering” people by
just approaching them. For instance, I didn’t get to speak with Colin Percival, Allan Jude, Dan
Langille, and others — including the great Jon “Maddog” Hall. I’ll catch up next time!

Lunch was served in the hall. There were small portions of various dishes being hand-
ed out. There were also tables with different kinds of sweets, all very good. During the
break, it was possible to meet and chat with many people — too many to list. I fear I’d for-
get some, and that would be a pity, because everyone attending the event is, in some way,
linked to the IT, Open Source, and BSD world — people I’d love to talk with for hours, not
just minutes.

After lunch, I chose to attend Nicola Mingotti’s talk: An introduction to GPIO in RPi3B+
and NetBSD, building a wind-speed logger as an application. I’d already spoken with Nicola
before the event, and the NetBSD + Raspberry Pi combo is something I also frequently use.
Nicola presented one of his setups, the issues he faced, and how this solution effectively
solves his problems.

The next three talks all covered topics
of immense interest to me. Unable to de-
cide, I used that slot to review my own talk,
settling into a very comfortable lounge
area in the UCD building. Soft couches al-
lowed me to focus. My greatest fear was
skipping a part or forgetting something
important. While I was there, I met Dave
Cottlehuber, and we talked a bit about var-
ious things, including email system man-

agement. Meeting Dave confirmed the impression I had formed of him online: a pleasant
and friendly person, as well as extremely knowledgeable.

Conference Report

During the lunch break,

I also got to meet

and chat with Benedict

Reuschling.

4 of 8

https://www.bsdnow.tv/
https://www.bsdnow.tv/579
https://www.bsdnow.tv/579
https://freebsdfoundation.org/our-work/journal/browser-based-edition/networking-10th-anniversary/make-your-own-vpn-freebsd-wireguard-ipv6-and-ad-blocking-included/
https://freebsdfoundation.org/our-work/journal/browser-based-edition/networking-10th-anniversary/make-your-own-vpn-freebsd-wireguard-ipv6-and-ad-blocking-included/

59FreeBSD Journal • November/December 2024

The following talk I attended was by Kim McMahon: How You Can Advocate for FreeBSD
— And How We Can Help. I was very interested in this, and Kim delivered it brilliantly at the
Stage End room. I try to advocate only for solutions I use and trust, without any barriers. To-
day, FreeBSD can tackle the vast majority of challenges I and my clients face, effectively and
efficiently. But I’m not a trained communicator, so getting advice from a professional like
Kim was helpful.

The next talk choice was easy: Foyer A, Walter Belgers: Hacking — 30 years ago. I chose
it both for my interest in the topic (I love real-life experiences) and because my talk would
be next in that same room. Also, I knew this talk wouldn’t be recorded, so this was a unique
chance to see it live. Walter shared fascinating anecdotes and stories in an ironic and en-
gaging way. A different era, a different type of computing, a completely different notion of
security compared to today. Yet some things never change, providing a sense of continuity
over time.

My Talk
The moment had come to get up and move towards the speaker’s station. Suddenly,

adrenaline surged — and then receded. Some
people left the room, others entered. I was busy
connecting my laptop and barely noticed what
was happening around me, except that — much
to my pleasure and honor — Professor Marshall
Kirk McKusick stayed to listen to my presenta-
tion. He’s another person I didn’t have the “cour-
age” to approach this time, but I will next time.

Patrick McEvoy, efficient and profession-
al as always, helped me put on the microphone, took his position, and nodded. Everything
worked perfectly.

People sat down, Henning introduced me. The stage was mine. It was time to tell my sto-
ry: how nearly 30 years ago, a CD-ROM set of Linux distributions, and how, over 22 years
ago, meeting a teacher (Özalp Babaoğlu — one of the fathers of original BSD), buying a la-
ser printer (convincing my parents it was for “university purposes”), and printing out the
FreeBSD Handbook all led me to where I am now. Thanks to a teacher, a printer, and a pas-
sion, here I am among friends, and these friends are here to listen to my story. I instantly be-
came calm. I started timidly, but my shyness lasted only a few minutes.

“I’m Stefano Marinelli. I Solve Problems.” I saw smiles. The reference was understood. No
doubt about that.

As I continued speaking, I saw the audience’s attention grow. Over the years, interest
in BSDs had somewhat waned. Many big companies, after ignoring open source solutions
for years, began embracing Linux and its ecosystem. While this gave a significant boost to
open source in general, it indirectly reduced the adoption of other operating systems like
FreeBSD. Sometimes the reason is corporate politics, know-how (“it’s easier to find people
experienced in Linux”), or purely ideological or commercial motives (“Everyone knows what
Linux is, so it sells better”). But I am doing the exact opposite. I don’t disdain Linux, but I pre-
fer the BSDs. And people wanted to know how that was going.

At one point, as I mentioned my blog post about a NetBSD server running unattended

Conference Report

“I’m Stefano Marinelli.

I Solve Problems.”

5 of 8

https://www.youtube.com/watch?t=19285&v=u_bdSqqHm58
https://en.wikipedia.org/wiki/%C3%96zalp_Babao%C4%9Flu
https://it-notes.dragas.net/2023/08/27/that-old-netbsd-server-running-since-2010/

60FreeBSD Journal • November/December 2024

for over 10 years, I saw a guy in the front row open his eyes wide: “I can’t believe it! You’re
that guy!” A wonderful moment: he had been following my blog for a long time and had at-
tended my talk without realizing I was the same person. After the talk, we spoke for a while,
and he said some very kind things. I greatly appreciated it. Thank you, Raymundo Soto!

At the end of my presentation (I exceeded the time
limit by just a bit), Henning gave me the speaker’s
scarf and suggested postponing questions to the So-
cial Event. Still, a few people approached immediately,
and I was happy to chat and answer questions. If these
people dedicated an hour of their time to listen to me,
the least I could do was listen to their ideas, experienc-
es, and opinions.

As I was leaving, I met Max Stucchi and Salvatore
Cuzzilla. After a handshake, Max confirmed that the GUFI (Gruppo Utenti FreeBSD Italia) is
still alive and invited me to join, which I did with great pleasure.

The Social Event
We then headed to the bus stop that would take us to the Social Event, held at the

BrewDog, a very distinctive building in the Docklands area, overlooking the River Liffey.
The bus was significantly late, so we waited outside for a while. I was still relieved and happy
about how my talk had been received, so that wait was pleasant. We chatted with others,
and finally the bus arrived. We hopped on the upper deck and traveled about 25 minutes
to our destination.

We made our way through the characteristic Docks to reach the pub. After scanning our
badges, we were given three drink tickets. After the positive tension of the talk, it felt great
to relax, chatting with colleagues, enjoying good food and good beer, experiencing a real
Saturday night out in Dublin. Masanobu Saitoh, who had come all the way from Japan to at-
tend the conference, came by my table to express his appreciation. It meant a lot to me, and
one of his photos is among the best taken of me at the event.

Around 22:30, we decided to head back to the hotel and called a taxi. On the way down,
we met Robert Clausecker, who was going the same way, and decided to return together.

My mood was sky-high. I saw how my wife looked at me, happy to see me so calm and
positive, already thinking about the next day.

Sunday: Wrapping Up
On Sunday morning, the event started half an hour later. Surprise upon waking: I was al-

most voiceless. Talking so much over the last few days, plus the Dublin climate — so differ-
ent from Italy’s — probably played equal parts. This further prevented me from interacting
with many people I would have liked to meet.

Sunday’s keynote was presented by Kent Inge Fagerland Simonsen: Is our software sus-
tainable? I was very, very interested in this topic since I’m quite sensitive to the concept of
sustainability in IT. I am convinced that optimization (both hardware and software) is crucial,
especially in the medium/long term. There’s no point in making hardware more energy-ef-
ficient and powerful if we bloat the software so much that it negates or even worsens the
overall situation.

Conference Report
6 of 8

https://it-notes.dragas.net/2023/08/27/that-old-netbsd-server-running-since-2010/

61FreeBSD Journal • November/December 2024

Unfortunately, I couldn’t attend, because system administrators don’t have fixed working
hours. That night, two physical servers decided to fail simultaneously. Since these were im-
portant servers and Sunday was another conference day, I preferred to fix them before leav-
ing the hotel, arriving at the conference a bit later. Nothing that a zfs-send, zfs-receive, and
a DNS update couldn’t handle. I waited for the data to transfer and ensured everything was
fine. Users never noticed a thing, which made the effort worthwhile. FreeBSD, bhyve, and
jails once again helped minimize problems and downtime.

More Talks and the Family Photo
For the next talk, it was tough to choose — they were all very interesting. I ended up at

Alexander Bluhm’s presentation: A Packet’s Journey Through the OpenBSD Network Stack.
It was very interesting. Alexander showed, step
by step, the path of packets and explained the
decisions made along the way. There were many
questions and answers, making it even more
engaging. At the exit, I met Sven Ruediger, who
had just presented his work. We exchanged a
few words. I’m sorry I missed his talk, as I heard
very positive comments about it.

After lunch, everyone gathered for the tra-
ditional family photo. In just a few minutes, we
assembled outside the UCD hall — with the lake behind the photographer — and took the
shot. Over 200 people were quickly lined up in an organized manner. Even here, the BSD
community’s efficiency was evident. It was a joyful, positive moment. The term “family”
photo, rather than “group” photo, perfectly conveys the atmosphere.

Then it was time for another challenging choice: Kirk McKusick, David Brooks, or Jason
Tubnor. I chose Jason’s talk: Building a SD-WAN appliance suitable for an Australian Health
Sector NFP/NGO. Jason has a similar approach to mine, detailing interesting reasons and is-
sues he faced while building his infrastructure. I also like to solve problems using technolo-
gies, not just “boxes,” so I really enjoyed his presentation.

Next, I chose Michael Dexter’s talk: FreeBSD and Windows Environments. Michael is con-
stantly involved with OpenZFS, jails and bhyve — three essential tools in my work — and his
presentation was, as usual, brilliant, informative, and extremely inspiring. He gave me anoth-
er reason to migrate some Windows servers from Linux/KVM to bhyve, and the results have
been excellent. At the end of Michael’s presentation, Patrick McEvoy came up to tell me he
greatly enjoyed my talk. That meant a lot to me. Patrick is someone I highly respect, and his
opinion matters to me.

Unfortunately, luck is blind, but misfortune sees all too well. While I was getting ready
for Dan Langille’s talk, Doing stupid things with FreeBSD jails, I received a flurry of serv-
er alerts and had to rush out to solve them. Fortunately, the wifi connection was excellent,
and I managed to intervene, but I missed the talk. I was free again midway through the
next session, and it didn’t feel right to enter halfway. So, I used the time to talk to Deb and
Kim about my advocacy ideas. People often don’t know what FreeBSD can do for them.
That’s why I try to show, by sharing my story and blog articles, that BSDs are not “untamable
beasts” but our friends.

Conference Report

People often

don’t know what FreeBSD

can do for them.

7 of 8

https://2024.eurobsdcon.org/images/dublin-family-34636.jpg
https://2024.eurobsdcon.org/images/dublin-family-34636.jpg
https://callfortesting.org/
https://callfortesting.org/

62FreeBSD Journal • November/December 2024

The Closing Session
At the end, everyone gathered at Stage End for the closing session. I learned about some

traditions (like the FreeBSD Foundation raffle — how did Vanja get that Lego guitar home, giv-
en its size?) and the auction of “lost” items. The money went to https://www.womensaid.ie/.

The closing session was fun and informative. There were thanks to all sponsors and friends
of the event, a link to download the Family Photo was provided, and we heard about the next
events like AsiaBSDCon and BSDCan. Then came the much-anticipated moment: the an-
nouncement of the next EuroBSDCon location. I hoped it would be reasonably convenient,
since it was now clear that EuroBSDCon would be a must-attend event for me. And... Zagreb!.
Just a few hours’ drive from home, so I must attend. Mischa made me promise that, since I
can go by car, I’ll bring more BSD Cafe gadgets. I will.

Finally, there were goodbyes. It was a heartfelt farewell, with promises to meet again
soon. I thanked and congratulated everyone I could, praising the technical, organizational,
and content quality of the event. I received the same warmth and affection from all. But...

...I still had one last sticker in my pocket. Just one, because a BSD Cafe user (Kaveman)
had told me he would attend the conference, but we hadn’t met yet. Right at the end, just
before leaving, we found each other. It was a pleasure to give him the sticker I had saved for
two days, just for him.

Final Thoughts
Even Liam Proven (whom I didn’t speak to during the event) attended, and a few weeks later,

he wrote an article about it and my talk on The Register — an article that I really appreciated.
After meeting all these people and attending the talks, I realized that the BSDs are more

alive than ever, that development is ongoing, and that the FreeBSD Foundation and the de-
velopers have very clear plans on how to move forward, what is needed, and how to pro-
ceed to make it happen. It was a conference that greatly enriched both me and the other
attendees, because it was led by people who work daily WITH the systems being discussed.
Little commercial hype, a lot of real technical content. So much substance. Tremendous hu-
man and technological value.

EuroBSDCon was a memorable event for me. I doubt I can fully express in words all the
emotions and positivity it conveyed. The BSD community is inclusive, open, and collabora-
tive, and the event showcased this spirit in every participant. Collaboration, not competition.
The BSD community sometimes stays quiet because it’s focused on creating rather than
“selling.” In my view, this is a huge advantage and a strong point.

Janne Johansson summarized my feelings perfectly on IRC:
“If you saw a short guy smiling ALL THE TIME it was Stefano Marinelli. He seemed super

happy to be there every time I saw him (which is the correct way to feel on EuroBSDCons ;))”

STEFANO MARINELLI is an IT Consultant with over two decades of experience in the
realms of IT consulting, training, research, and publishing. His expertise spans across oper-
ating systems, with a special emphasis on *BSD systems — FreeBSD, NetBSD, OpenBSD,
DragonFlyBSD — and Linux. Stefano is also the barista at BSD Cafe, a vibrant community
hub for *BSD enthusiasts, and has led the FreeOsZoo project at the University of Bologna,
making open-source operating system images accessible for virtual machines.

Conference Report
8 of 8

https://www.womensaid.ie/
https://www.theregister.com/2024/10/08/switching_from_linux_to_bsd/
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

BSD Events taking place through March 2025
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

63FreeBSD Journal • November/December 2024

FOSDEM 2025
February 1-2, 2025
Brussels, Belgium
https://fosdem.org/2025/

FOSDEM is a two-day event organized by volunteers to promote the widespread use of free
and open source software. Taking place February 1-2, 2025, FOSDEM offers open source and
free software developers a place to meet, share ideas and collaborate.

SCALE 22X
March 6-9, 2025
Pasadena, CA
https://www.socallinuxexpo.org/scale/22x

SCaLE 22X – the 22nd annual Southern California Linux Expo – will take place March 6-9,
2025, in Pasadena, CA.

SCaLE is the largest community-run open-source and free software conference in North
America.

AsiaBSDCon 2025
March 20-23, 2025
Tokyo, Japan
https://2025.asiabsdcon.org/

AsiaBSDCon is a conference for users and developers on BSD based systems. The
next conference will be held in Tokyo, Japan, March 20-23, 2025. The conference is for
anyone developing, deploying, and using systems based on FreeBSD, NetBSD, OpenBSD,
DragonFlyBSD, Darwin, and MacOS X. AsiaBSDCon is a technical conference that aims
to collect the best technical papers and presentations available to ensure that the latest
developments in our open source community are shared with the widest possible audience.

1 of 1

mailto:freebsd-doc@FreeBSD.org
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html
https://www.freebsd.org/events/events.ics
https://fosdem.org/2025/
https://www.socallinuxexpo.org/scale/22x
https://2025.asiabsdcon.org/

	contents_button 1:
	contents_button 2:
	contents_button 3:
	contents_button 4:

