
49FreeBSD Journal • September/October 2024

1 of 6

TCP sending and receiving behavior has evolved over the more than 40 years that TCP has
been used. Many of the advances have helped TCP to be able to transmit a reliable stream
of data at very high speeds. However, some of the enhancements (both in the stack and
in the network) come with downsides. Originally, a TCP stack sends a TCP segment in re-
sponse to a received TCP segment (an acknowledgment), or in response to the upper layer
providing new data to send, or due to a timer running off. The TCP sender also implements
a congestion control to protect the network against sending too fast. These features com-
bined can cause a TCP endpoint to be driven most of the time by an “ACK clock” as depict-
ed in the following figure.

Figure 1: An example of ACK-clocking

For simplicity it is assumed that packets are numbered and acknowledged and that the
receiver acknowledges every other packet to minimize the overhead. The arrival of the ac-
knowledgment labeled “1” on the bottom arrow acknowledges packets 0 and 1 that were
sent earlier (not shown in the figure), removes two of the outstanding packets, and allows
two more to be sent aka packets 8 and 9. At that point the sender is blocked (due to its con-
gestion control) waiting for the arrival of the ACK labeled “3” which will acknowledge pack-
et 2 and 3 and again send out the next two packets. This ACK-clocking was prevalent in a
large number of flows in the early Internet and can still be seen today in some circumstanc-
es. ACK-clocking forms a natural pacing of data through the Internet allowing packets to be
sent through a bottleneck, and oftentimes, by the time the next packets from the sender
arrives at the bottleneck, the previous packets are transmitted.

However, over the years, both the network and TCP optimizations have changed this be-
havior. One example of a change in behavior is often seen in cable networks. In such net-
works the down link bandwidth is large, but the uplink bandwidth is small (often only a frac-
tion of the downlink bandwidth).

BY RANDALL STEWART AND MICHAEL TÜXEN

Pacing in
the FreeBSD TCP Stack

50FreeBSD Journal • September/October 2024

 Due to this scarcity of the return path bandwidth, the cable modems will often keep only
the last acknowledgment sent (assuming it is seeing the acknowledgments in sequence)
until it decides to transmit. So, in the above example, instead of allowing ACK-1, ACK-3 and
ACK-5 to be transmitted by the cable modem, it might only send ACK-5. This would then
cause the sender to send one larger burst of 6 packets, instead of spacing out 3 separate
bursts of two packets.

Another example of a modifying behavior can be seen in other slotted technologies
(they hold off sending until their time slot is reached, and then they send out all queued
packets at that time) where the acknowledgments are queued up and then all sent at once
in one burst of 3 ACK packets. This type of technology would then interplay with TCP-LRO
(talked about in our last column) and thus either collapse the acknowledgments into one
single acknowledgment (if the old methods are being used) or queue up for simultaneous
processing of all of the acknowledgments before the send-
ing function is called. In either case, a large burst is again
sent instead of a series of small two packet bursts, separated
by a small increment of time (closely approximating the bot-
tleneck bandwidth plus some propagation delay).

Our example shows only six packets but several dozen
packets can burst all in one tcp_output() call. This is good
for CPU optimization but can cause packet loss in the net-
work since router buffers are limited and large bursts are
more likely to cause a tail drop. This loss would then reduce
the congestion window and hinder overall performance.

In addition to the two examples given above, there are
other reasons that TCP can become bursty (some of which
have always been inherent in TCP) such as application lim-
ited periods. This is where a sending application stalls for
some reason and delays the sending for some number of
milliseconds. During that time, the acknowledgments arrive but there is no more data to
send. But before all the data from the network is drained, which might cause a congestion
control reduction due to idleness, the application sends down another large block of data
to be sent. In such a case, the congestion window is open and a large sending burst can be
generated.

Yet another source of sources of burstiness may come from the peer TCP implementa-
tions that might decide to acknowledge every eighth or sixteenth packet instead of follow-
ing the TCP standard and acknowledging every other packet. Such large stretch acknowl-
edgments will again cause corresponding bursts. TCP pacing, described in the next section,
is a way to improve the sending of TCP segments to smooth out these bursts.

TCP Pacing
The following example illustrates TCP pacing. Let’s assume that a TCP connection is used

to transfer data to its peer at 12 megabits per second including the IP and TCP header. As-
suming a maximum IP packet size of 1500 bytes (which is 12,000 bits), this results in sending
1000 TCP segments per second. When using pacing, sending a TCP segment every milli-
second would be used. A timer that runs off every millisecond could be used to achieve this.
The following figure illustrates such a sending behavior.

2 of 6

Another example of
a modifying behavior
can be seen in other
slotted technologies.

51FreeBSD Journal • September/October 2024

Figure 2: A TCP connection paced at 12Mbps

Doing pacing in such a manner is possible but not desirable due to the high CPU cost
this would take. Instead, for efficiency reasons, when pacing, TCP sends small bursts of
packets with some amount of time between them. The size of the burst is generally cor-
related to the speed that the stack wishes to pace at. If pacing at a higher rate, larger bursts
are in order. If pacing at a lower rate, smaller bursts are used.

When designing a methodology for pacing a TCP stack, there are a number of approach-
es that can be taken. A common one is to have the TCP stack set a rate in a lower layer and
then hand off large bursts of data to be sent to that layer. The lower layer then just multi-
plexes packets from various TCP connections with appropriate timers to space out the data.
This is not the approach taken in the FreeBSD stack, specifically because it limits the control
the TCP stack has over the sending. If a connection needs to send a retransmission, that re-
transmission ends up falling in behind all the packets that are in queue to be sent.

In FreeBSD, a different approach was taken in letting the TCP stack control the sending
and creating of a timing system that is dedicated to calling the TCP stack to send data on a
connection when the pacing interval has ended. This leaves complete control of what to send
in the hands of the TCP stack, but can have some performance implications that need to be
compensated for. This new subsystem created for FreeBSD is described in the next section.

High Precision Timing System

Conceptual Overview
The High Precision Timing System (HPTS) is a loadable kernel module and provides a

simple interface to any TCP stack wishing to use it. Basically, there are two main functions
that a TCP stack would call to get service from HPTS:

•	tcp_hpts_insert() inserts a TCP connection into HPTS to have either tcp_output()
or, in some cases, TCP’s inbound packet processing call tfb_do_queued_segments() at
a specified interval.

•	tcp_hpts_remove() asks HPTS to remove a connection from HPTS. This is often used
when a connection is closed or otherwise no longer going to send data.

There are some other ancillary helping functions that are available in HPTS to help with
timing and other housekeeping functions, but the two functions listed above are the basic
building blocks that a TCP stack uses to implement pacing.

Details
Internally, each CPU has an HPTS wheel, which is an array of lists of connections want-

ing service at various time points. Each slot in the wheel represents 10 microseconds. When
a TCP connection is inserted, it is given the number of slots from now (i.e., 10 microsecond
intervals) that need to elapse before the tcp_output() function is called. The wheel is man-
aged by a combination of both a system timer (i.e., FreeBSD’s callout system) and a soft
timer as proposed in [1]. Basically every time a system call returns, before the return to user

3 of 6

52FreeBSD Journal • September/October 2024

space, HPTS can potentially be called to see if an HPTS wheel needs to be serviced.
The HTPS system also auto tunes its FreeBSD system timer having first a minimum (de-

faulting to 250 microseconds) and a maximum that it can tune up. If an HPTS wheel has
more connections and is getting called more often, the small amount of processing during
FreeBSD system timeout will raise the length of the system timer. There is also a low con-
nection threshold where if the number of connections drops below, then only the system
timer based approach is used. This helps avoid starving out connections by keeping them
on the wheel too long. HPTS attempts to yield a precision of the timer minimum aka 250
microseconds, but this is not guaranteed.

A TCP stack using HPTS to pace has some distinct responsibilities in order to collaborate
with HPTS to achieve its desired pace rate including:

•	Once a pacing timer has been started, the stack must not allow a send or other call to
tcp_output() to perform any output until the pacing timer expires. The stack can look
at the TF2_HPTS_CALLS flag in the t_flags2 field. This flag is or’ed onto the t_flags2
as HPTS calls the tcp_output() function and should be noted and cleared by the stack
inside its tcp_output() function.

•	At the expiration of a pacing timer, in the call from HPTS, the stack needs to verify the
time that it has been idle. It is possible that HPTS will call the stack later than expected,
and it is even possible that HPTS will call the stack early (though this is quite rare). The
amount of time that the stack is late or early needs to be included in the TCP stack’s
next pacing timeout calculation after it has sent data.

•	If the stack decides to use the FreeBSD timer system, it must also prevent timer call-
outs from sending data. The RACK and BBR stacks do not use the FreeBSD timer sys-
tem for timeouts, and, instead, just use HPTS as well.

•	If the stack is queuing packets from LRO, then HPTS may call the input function in-
stead of tcp_output(). If this occurs, no other call to tcp_output() will be made, since
it is assumed that the stack will call its output function if it is needed.

There are also a number of utilities that HTPS offers to assist a TCP stack including:
•	tcp_in_hpts() tells the stack if it is in the HPTS system.
•	tcp_set_hpts() sets up the CPU a connection will use, and is optional to call, since the

HPTS will do this for the connection if the stack does not call this function.
•	tcp_tv_to_hptstick() converts a struct timeval into the number of HPTS slots

the time is.
•	tcp_tv_to_usectick() converts a struct timeval into a 32-bit unsigned integer.
•	tcp_tv_to_lusectick() converts a struct timeval into a 64-bit unsigned integer.
•	tcp_tv_to_msectick() converts a struct timeval into a 32-bit unsigned millisecond

tick.
•	get_hpts_min_sleep_time() returns the minimum sleep time that HPTS is enforcing.
•	tcp_gethptstick() optionally fills in a struct timeval and returns the current

monolithic time as a 32-bit unsigned integer.
•	tcp_get_u64_usecs() optionally fills in a struct timeval and returns the current

monolithic time as a 64-bit unsigned integer.

sysctlsysctl-Variables
The HPTS system can be configured using sysctl-variables to change its performance

characteristics. These values come defaulted to a set of “reasonable” values, but depending

4 of 6

53FreeBSD Journal • September/October 2024

on the application, they might need to be changed. The values are settable under the
net.inet.tcp.hpts system control node.

The following tunables are available:

Name Default Description

no_wake_over_thresh 1 When inserting a connection into HPTS, if this boolean
value is true and the number of connections is larger than
cnt_thresh, do not allow scheduling of a HPTS run. If
the value is 0 (false), then when inserting a connection into
HPTS, it may cause the HPTS system to run connections aka
call tcp_output() for connections due to be scheduled.

less_sleep 1000 When HPTS finishes running, it knows how many slots it
ran over. If the number of slots is over this value then the
dynamic timer needs to be decreased.

more_sleep 100 When HPTS finishes running, if the number of slots run is
less than this value then the dynamic sleep is increased.

min_sleep 250 This is the absolute minimum value that the HPTS sleep
timer will lower to. Decreasing this will cause HPTS to run
more using more CPU. Increasing it will cause HPTS to run
less using less CPU, but it will affect precision negatively.

max_sleep 51200 This is the maximum sleep value (in HPTS ticks) that the
timer can reach. It is typically used only when no connec-
tions are being serviced i.e., HPTS will wake up every 51200
x 10 microseconds (approximately half a second).

loop_max 10 This value represents how many times HPTS will loop
when trying to service all its connections needing service.
When HPTS starts, it pulls together a list of connections
to be serviced and then starts to call tcp_output() on
each connection. If it takes too long to do this, then it’s
possible more connections need service, so it will loop
back around to again service connections. This value rep-
resents the maximum HPTS will do that loop, before be-
ing forced to sleep. Note that being called on return from
a function call never causes any looping to occur; only the
FreeBSD timer call is affected by this parameter.

dyn_maxsleep 5000 This is the maximum value that the dynamic timer can be
raised to when adjusting the callout time upwards is being
performed and seeing the need for more_sleep.

dyn_minsleep 250 This is the minimum value that the dynamic timer can
lower the timeout to when adjusting the callout time
down after seeing less_sleep.

cnt_thresh 100 This is the number of connections on the wheel that
are needed to start relying more on system call returns.
Above this threshold, both system call return and tim-
eouts cause HPTS to run, below this threshold, we rely
more heavily on the callout system to run HPTS.

5 of 6

54FreeBSD Journal • September/October 2024

Optimizations for Pacing in the RACK Stack
When pacing using the HPTS system, there is some performance loss as compared to a

pacing system that runs below a TCP stack. This is because when you call tcp_output() a
lot of decisions are made as to what to send. These decisions usually reference many cache
lines and cover a lot of code. For example, the default TCP stack has over 1500 lines of code
in the tcp_output() path and it includes no code to deal with pacing or burst mitigation.
For the default stack without pacing, going through such a large number of lines of code
and lots of cache misses is compensated easily by the
fact that it might output several dozen segments in
one send. Now, when you implement a pacing system
that is below the TCP stack, it can readily optimize the
sending of the various packets it has to do by keeping
track of what and how much it needs to send next. This
makes a lower layer pacing system have many fewer
cache misses.

In order to obtain similar performance with a high-
er layer system like HPTS, it becomes up to the TCP
stack to find ways to optimize the sending paths (both
transmissions and retransmissions). A stack can do this
by creating a “fast path” sending track. The RACK stack
has implemented these fast paths so that pacing does
not cost quite so much. The BBR stack currently does
pace, as required by the BBRv1 specification that was implemented, but it does not (as yet)
have the fast paths described below.

Fast Path Transmissions
When RACK is pacing the first time, a send call falls through its tcp_output() path and it

will derive the number of bytes that can be sent. This is then lowered to conform to the size
of the pacing microburst that has been established, but during that reduction, a “fast send
block” is set up with the amount that is left to send and pointer to where in the socket send
buffer that data is. A flag is also set so that RACK will remember next time that the fast path
is active. Note that if a timeout occurs, the fast path flag is cleared so that proper decisions
will be made as to which retransmission needs to be sent.

At the entry to RACK’s tcp_output() routine, the fast path flag is checked after validat-
ing that, pacing wise, it is ok to send. If the flag is set, it proceeds to use the previously saved
information to send new data without all of the typical checks that the output path would
normally do. This brings the cost of pacing down considerably, since much of the code and
cache misses are eliminated from this fast output path.

Fast Path Retransmissions
Retransmissions in RACK also have a fast path. This is made possible by RACK’s sendmap

which tracks all data that has been sent. When a piece of data needs retransmission, the
sendmap entry tells the fast path precisely where and how much data needs to be sent. This
bypasses typical socket buffer hunting and other overhead and provides a level of efficiency
even when sending retransmissions.

Retransmissions in RACK
also have a fast path.
This is made possible
by RACK’s sendmap.

6 of 6

55FreeBSD Journal • September/October 2024

Conclusion
HPTS provides a novel service TCP stacks can make use of to implement pacing. In or-

der to achieve efficiencies more equivalent to competing design approaches, both the
TCP stack and the HPTS need to cooperate to minimize overhead and provide for efficient
sending of packet bursts. This column only discusses the need for pacing and the infrastruc-
ture provided to do so in FreeBSD. Future columns will look at another key question when a
TCP stack paces, i.e., what rate to pace at.

Reference
1.	Mohit Aron, Peter Druschel: Soft Timers: Efficient Microsecond Software Timer Support

for Network Processing. In: ACM Transactions on Computer Systems, Vol. 18, No. 3, Au-
gust 2000, pp 197-228. https://dl.acm.org/doi/pdf/10.1145/319344.319167.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer since 2006. He specializes in Transports including TCP
and SCTP but has also been known to poke into other areas of the operating system. He is
currently an independent consultant

MICHAEL TÜXEN (tuexen@freebsd.org) is a professor at the Münster University of Applied
Sciences, a part-time contractor for Netflix, and a FreeBSD source committer since 2009.
His focus is on transport protocols like SCTP and TCP, their standardization at the IETF and
their implementation in FreeBSD.

https://dl.acm.org/doi/pdf/10.1145/319344.319167
mailto:rrs@freebsd.org
mailto:tuexen@freebsd.org

