
September/October 2024

Kernel Development

Character Device Driver Tutorial
Embedded FreeBSD:
Digression into bhyve
Adventures in TCP/IP:
Pacing in the FreeBSD TCP Stack
Practical Ports: Go Paperless	
Porting VPP to FreeBSD:
Basic Usage	
Enhancing FreeBSD Test Suite
Parallelism with Kyua’s Jail Feature	
Valgrind on FreeBSD

Nov/Dec 2019 57

November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2024 Editorial Calendar
•	Networking

(January-February)

•	Development Workflow and CI (March-April)

•	Configuration Management Showdown

(May-June)

•	Storage and File Systems (July-August)

•	Kernel Development (September-October)

•	Virtualization (November-December)

https://www.freebsdfoundation/journal

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
	 John Baldwin •	 Member of the FreeBSD Core Team and
		 Chair of FreeBSD Journal Editorial Board

	 Tom Jones •	FreeBSD Developer, Internet Engineer
		 and Researcher at the University of
		 Aberdeen

	 Ed Maste •	 Senior Director of Technology,
		 FreeBSD Foundation and Member
		 of the FreeBSD Core Team

	 Benedict Reuschling •	 FreeBSD Documentation Committer
		 and Member of the FreeBSD Core Team

	 Jason Tubnor •	 BSD Advocate, Senior Security Lead
		 at 	Latrobe Community Health Service
		 (NFP/NGO), Victoria, Australia

	 Mariusz Zaborski •	 FreeBSD Developer

Advisory Board
	 Anne Dickison •	 Deputy Director
		 FreeBSD Foundation

	 Justin Gibbs •	 Founder of the FreeBSD Foundation,
		 President and Treasurer of the FreeBSD
		 Foundation Board

	 Allan Jude •	 CTO at Klara Inc., the global FreeBSD
		 Professional Services and Support
		 company

	 Dru Lavigne •	 Author of BSD Hacks and
		 The Best of FreeBSD Basics

	 Michael W Lucas •	 Author of more than 40 books including
		 Absolute FreeBSD, the FreeBSD
		 Mastery series, and git commit murder

	 Kirk McKusick •	 Lead author of The Design and
		 Implementation book series

	 George Neville-Neil •	 Past President of the FreeBSD Foundation
		 Board, and co-author of The Design
		 and Implementation of the FreeBSD
		 Operating System

	 Hiroki Sato •	 Director of the FreeBSD Foundation
		 Board, Chair of AsiaBSDCon,
		 and Assistant Professor at Tokyo
		 Institute of Technology

	Robert N. M. Watson •	 Director of the FreeBSD Foundation
		 Board, Founder of the TrustedBSD
		 Project, and University Senior Lecturer
		 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

	 Editor-at-Large •	James Maurer
		 maurer.jim@gmail.com

	Design & Production •	Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2024 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written

permission from the publisher.

3FreeBSD Journal • September/October 2024

Welcome the September/October issue
of the FreeBSD Journal. This is our Kernel
Development issue and includes articles

on topics like Porting VPP to FreeBSD, Valgrind for
FreeBSD, the first installment of a three-part tutorial on
Character Device Drivers, and much more!

Before you dive into these great articles, we have a
quick update for 2025. Starting in January, the Journal
will shift to a quarterly schedule, continuing to bring
you the same top-notch tutorials, articles, and columns.
This new schedule will allow us to focus on delivering
the best FreeBSD content while keeping the Journal
accessible to everyone.

Everything else you love about the Journal will stay
the same, and we look forward to bringing you another
year of valuable FreeBSD content!

On behalf of the FreeBSD Foundation and FreeBSD
Journal Editorial Board,

Anne Dickison
Deputy Director
FreeBSD Foundation

John Baldwin
Chair of the FreeBSD Journal Editorial Board

Kernel Development

4FreeBSD Journal • September/October 2024

September/October 2024

	 8	 �Character Device Driver Tutorial
	 By John Baldwin

	19	 �Porting VPP to FreeBSD: Basic Usage
	 By Tom Jones

	26	�Enhancing FreeBSD Test Suite
Parallelism with Kyua’s Jail Feature

	 By Igor Ostapenko

	34	�Valgrind on FreeBSD
	 By Paul Floyd

	 3	Foundation Letter
By Anne Dickison and John Baldwin

	 5	We Get Letters
By Michael W. Lucas

	45	Embedded FreeBSD: Digression into bhyve
By Christopher R. Bowman

	49	Adventures in TCP/IP: Pacing
		 in the FreeBSD TCP Stack

By Randall Stewart and Michael Tüxen

	56	Practical Ports: Go Paperless
By Benedict Reuschling

	 61	Events Calendar
By Anne Dickison

Dear Most Useless Advice Columnist in Technology
(or Anywhere),

In all of open source, kernel developers are the
elite. They get to implement the really cool stuff and
invent nifty new features, like ZFS and buffer caches
and memory protections. Any advice on how I could
become one of them?

I’ve read your column several times, and honesty
demands that I inform you that I’m going to maximize
my chances of success by listening carefully to
everything you suggest, then doing the exact opposite.

	 —�Novice But Not Naïve

Dear NBNN̈,
“Working in computing isn’t enough for me. I want my failures to be truly inexplicable!”
Very well.
Many people fantasize that kernel developers are programming elite. John Baldwin, of

repeated FreeBSD Core Team fame as well as the editorial board chair of this very Journal,
went from writing documentation straight into kernel development. John has been unfor-
tunate enough to know me for decades so I
can confidently assure you that not only is he
not an elite but the remarkable, incriminat-
ing, and noteworthy things about him have
absolutely nothing to do with programming.
Kernel developers must achieve a minimum
competence, yes, but beyond a couple rules,
there’s nothing special about kernel code.
Imagining that kernel programmers are an
elite will sabotage you before you start, so I
strongly encourage it.

If you insist on proceeding, though, if you
demand you be allowed to weave yourself a chrysalis and transform into a kernel develop-
er like a panic-prone memory-dumping file-corrupting butterfly, immediately separate your
dreams from your goals. A goal is something actionable that is completely within your con-

1 of 3

Many people fantasize
that kernel developers are
programming elite.

5FreeBSD Journal • September/October 2024

by Michael W Lucas

trol to achieve. Accomplishing a dream requires other people to intervene on your behalf.
Going out for a dinner date with that attractive person? Totally a dream. Asking that attrac-
tive person out for a dinner date, and when they remind you that you are inherently unlov-
able and should leave them the heck alone instead of stalking them like the creepy hero of a
so-called “romance?” An absolutely achievable goal!

You cannot control other people. Work on goals. Never on dreams.
What goals can you set that would guide you become a kernel developer?
Start by reading the documentation.

There are books like The Design and Imple-
mentation of the FreeBSD Operating Sys-
tem, FreeBSD Device Drivers, and Design-
ing BSD Rootkits, which add an interesting
twist to learning how the kernel works. The
FreeBSD Developers Handbook is freely
available. Fill your brain. Do the exercises. If
something is beyond you, well, people have
written articles and books discussing it.

Note that I didn’t say “ask other people
how to start learning about the kernel.” If
you haunt the mailing lists, the forums, or
the Internet’s sketchier discussion boards
you’ll occasionally see people asking for help
in learning to program the kernel. You might think that these people are looking for the list
above, but the answer I give here appears on the most cursory search and comes across as
please hold my hand. Do caterpillars ask for help weaving their chrysalis? No! They sweat
and struggle so they can slither into their cramped cocoons and simmer into transcen-
dence. You must do the work. Most transformations end hard right here because humans
cherish cozy comfy non-actionable dreams and aren’t as fond of ugly hard goals.

As with any other part of contributing to an open source project, you need to find a tiny
piece to work on. Start with bugs. Problem reports are a gold mine for the aspiring ker-
nel developer. As you look through possible projects, you must again separate goals from
dreams. “Solve several panic bugs and get my fixes committed” is a dream. It requires that
established kernel developers notice your fixes and choose to incorporate them. “Solve one
reported kernel panic this month” isn’t exactly a goal, because you can’t guarantee that you
will be able to solve it. “Spend ten hours this month working on a reported kernel panic,
without taking breaks every three minutes to gripe on social media, in the work chat, or to
my pet who has to put up with me even though I’m inherently unlovable.” There—that’s a
goal! Complete enough of those goals and you’ll develop the skill of kernel programming.

The hard part of working in the kernel, though?
Other people.
Suppose you develop patches to fix reported problems and attach them to the bug. You

can’t make a project member notice your work. If they notice your work, you can’t make
them take your patch as-is. A project member might use your patch as inspiration or a
proof-of-concept and create a wholly different patch for reasons you hadn’t even thought
of. Making people notice you is a dream. Making yourself dang hard to ignore by submitting
a whole series of quality patches is absolutely a goal.

2 of 3

Most transformations end
hard right here because
humans cherish cozy comfy
non-actionable dreams
and aren’t as fond of
ugly hard goals.

6FreeBSD Journal • September/October 2024

An interesting thing about how caterpillars become butterflies. They don’t. We see the
caterpillar crawl into its cocoon and the butterfly emerge, so we assume that there’s been
a transformation when the harsh reality is, the caterpillar’s chrysalis? It’s a coffin. The cat-
erpillar crawls in and melts to goo surrounding a tiny lump that’s basically a self-assembling
butterfly kit. The butterfly’s first meal is 100% Grade A caterpillar sludge. When you submit
your twentieth patch and still it feels like nobody cares, be grateful that you haven’t trans-
formed yourself into literal physical muck. Mental muck is less noticeable.

Suppose your patches get picked up? What then?
Again, it’s people.
In that glorious aeon when the Sacred

and Penultimately Blessed Computer Sci-
ence Research Group distributed primordial
BSD, a single person could achieve a good
understanding of Unix. A complete install
took only a few megabytes. And yes, that in-
cluded the compiler and source code, what
part of “complete install” was unclear? Col-
lege students were expected to read and
understand the code.

Today? By the time you finish reading the
base system source code, it’s changed and
you get to start over. Becoming a “kernel de-
veloper” is almost impossible. You might, at
best, become a trusted developer respon-
sible for one tiny slice of the kernel. Performing maintenance will require interacting with
other parts of the kernel, which means discussing your changes with the people responsible
for those parts. Working in the kernel is no different than programming in userland, except
people believe you’ve achieved a certain minimal competence.

If you achieve your dream and become a full-on kernel developer, you’ll discover that
people are not a problem. They are the problem. Every change you make will upset some-
one. Users and non-kernel programmers will have this weird idea that you’re the elite, that
you know what you’re doing, that you are less baffled than them.

As you’ve declared an intent to not merely ignore but reverse my thoughts, let me sum-
marize: becoming a kernel programmer is the one true path to happiness and I wish you
well. Dream on!

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS Unlike esteemed FreeBSD Journal Editorial Chair and elite kernel
developer John Baldwin, Michael W. Lucas remained in documentation. His latest book is
Run Your Own Mail Server, which uses FreeBSD as a reference platform. Learn more at
https://mwl.io.

3 of 3

If you achieve your dream
and become a full-on kernel
developer, you’ll discover
that people are not a problem.

7FreeBSD Journal • September/October 2024

mailto:letters@freebsdjournal.org
https://mwl.io
https://www.freebsd.org/doc/en_US.ISO8859-1/books/fdp-primer/po-translations-submitting.html

8FreeBSD Journal • September/October 2024

1 of 11

Character devices provide pseudo files exported to userspace applications by the de-
vice filesystem (devfs(5)). Unlike standard filesystems where the semantics of various
operations such as reading and writing are the same across all files within a filesys-

tem, each character device defines its own semantics for each file operation. Character
device drivers declare a character device switch (struct cdevsw) which includes function
pointers for each file operation.

Character device switches are often implemented as part of a hardware device driver.
FreeBSD’s kernel provides several wrapper APIs which
implement a character device on top of a simpler set
of operations. The disk(9) API implements an inter-
nal character device switch on top of the methods in
struct disk for example. Several device drivers provide a
character device to export device behavior that doesn’t
map to an existing in-kernel subsystem to userspace.

Other character device switches are implemented
purely as a software construct. For example, the /dev/
null and /dev/zero character devices are not associ-
ated with any hardware device.

In a series of three articles, the first of which is this
one, we will build a simple character device driver pro-
gressively adding new functionality to explore charac-
ter device switches and several of the operations character device drivers can implement.
The full source of each version of device driver can be found at https://github.com/bsdjhb/
cdev_tutorial. We will start with a barebones driver which creates a single character device.

Lifecycle Management
A character device driver is responsible for explicitly creating and destroying character

devices. Active character devices are represented by instances of struct cdev. Character
devices are created by the make_dev_s(9) function. This function accepts a pointer to an
arguments structure, a pointer to a character device object pointer, and a printf-style for-
mat string and following arguments. The format string and following arguments are used to
construct the name of the character device.

The arguments structure contains a few mandatory fields and several optional fields. The
structure must be initialized by a call to make_dev_args_init() before setting any fields.

BY JOHN BALDWIN

Character device switches
are often implemented
as part of a hardware
device driver.

Character Device
Driver Tutorial

https://man.freebsd.org/devfs/5
https://man.freebsd.org/disk/9
https://github.com/bsdjhb/cdev_tutorial
https://github.com/bsdjhb/cdev_tutorial
https://man.freebsd.org/make_dev_s/9

9FreeBSD Journal • September/October 2024

The mda_devsw member must point to the character device switch. The mda_uid, mda_gid,
and mda_mode fields should be set to the initial user ID, group ID, and permissions of the
device node. Most character devices are owned by root:wheel, and the constants UID_
ROOT and GID_WHEEL can be used for this. The mda_flags field should also be set to either
MAKEDEV_NOWAIT or MAKEDEV_WAITOK. Additional flags can be included via the C or opera-
tor if needed. For our sample driver, we set MAKEDEV_CHECKNAME so that we can fail grace-
fully with an error if an echo device already exists rather than panicking the system.

Character devices are destroyed by passing a point-
er to the character device to destroy_dev(). This
function will block until all references to the charac-
ter device have been removed. This includes waiting
for any threads currently executing in character device
switch methods for this device to return from those
methods. Once destroy_dev() returns, it is safe to re-
lease any resources used by the character device.
Alternatively, character devices can be destroyed asyn-
chronously via either destroy_dev_sched() or
destroy_dev_sched_cb(). These functions sched-
ule destruction of the character device on an internal
kernel thread. For destroy_dev_sched_cb(), the sup-
plied callback is invoked with the supplied argument after the character device has been de-
stroyed. This can be used to release resources used by the character device. Keep in mind
that one of the resources a character device uses are the character device switch methods.
This means, for example, that module unloading must wait for any character devices using
functions defined in that module to be destroyed.

For our initial driver (Listing 1), we use a module event handler to create a /dev/echo de-
vice when the module is loaded and destroy it when the module is unloaded. After building
and loading this module, the device exists but isn’t able to do much as shown in Example 1.
The character device switch for this driver (echo_cdevsw) is initialized with only two required
fields: d_version must always be set to the constant D_VERSION, and d_name should be set
to the driver name.

Listing 1: Barebones Driver

#include <sys/param.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/module.h>

static struct cdev *echodev;

static struct cdevsw echo_cdevsw = {
 .d_version = D_VERSION,
 .d_name = “echo”
};

static int

2 of 11

Alternatively, character
devices can be destroyed
asynchronously.

10FreeBSD Journal • September/October 2024

echodev_load(void)
{
 struct make_dev_args args;
 int error;

 make_dev_args_init(&args);
 args.mda_flags = MAKEDEV_WAITOK | MAKEDEV_CHECKNAME;
 args.mda_devsw = &echo_cdevsw;
 args.mda_uid = UID_ROOT;
 args.mda_gid = GID_WHEEL;
 args.mda_mode = 0600;
 error = make_dev_s(&args, &echodev, “echo”);
 return (error);
}

static int
echodev_unload(void)
{
 if (echodev != NULL)
 destroy_dev(echodev);
 return (0);
}

static int
echodev_modevent(module_t mod, int type, void *data)
{
 switch (type) {
 case MOD_LOAD:
 return (echodev_load());
 case MOD_UNLOAD:
 return (echodev_unload());
 default:
 return (EOPNOTSUPP);
 }
}

DEV_MODULE(echodev, echodev_modevent, NULL);

Example 1: Using the Barebones Driver

ls -l /dev/echo
crw------- 1 root wheel 0x39 Oct 25 13:06 /dev/echo
cat /dev/echo
cat: /dev/echo: Operation not supported by device

Reading and Writing
Now that we have a character device, let’s add some behavior. As the name “echo” im-

3 of 11

11FreeBSD Journal • September/October 2024

plies, this device should accept input by writing to the device and echo that input back out
by reading from the device. To provide this, we will add read and write methods to the char-
acter device switch.

Read and write requests for character devices are described by a struct uio object. Two
of the fields in this structure are useful for character device drivers: uio_offset is the logi-
cal file offset (e.g. from lseek(2)) for the start of the request and uio_resid is the number of
bytes to transfer. Data is transferred between the application buffer and an in-kernel buf-
fer by the uiomove(9) function. This function updates members of the uio object including
uio_offset and uio_resid and can be called multiple times. A request can be completed
as a short operation by moving a subset of bytes to or from the application buffer.

The second version of the echo driver adds a global static buffer to use as the backing
store for read and write requests. The logical file offset is treated as an offset into the global
buffer. Requests are truncated to the size of the buffer, so that reading beyond the end of
the buffer triggers a zero-byte read indicating EOF. Writes beyond the end of the buffer fail
with the error EFBIG. To protect against concurrent access, a global sx(9) lock is used to pro-
tect the buffer. An sx(9) lock is used instead of a regular mutex since uiomove() might sleep
while it faults in a page backing an application buffer. Listing 2 shows the read and write
character device methods.

Listing 2: Read and Write Using a Global Buffer

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 size_t todo;
 int error;

 if (uio->uio_offset >= sizeof(echobuf))
 return (0);

 sx_slock(&echolock);
 todo = MIN(uio->uio_resid, sizeof(echobuf) - uio->uio_offset);
 error = uiomove(echobuf + uio->uio_offset, todo, uio);
 sx_sunlock(&echolock);
 return (error);
}

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
 size_t todo;
 int error;

 if (uio->uio_offset >= sizeof(echobuf))
 return (EFBIG);

 sx_xlock(&echolock);

4 of 11

https://man.freebsd.org/lseek/2
https://man.freebsd.org/uiomove/9
https://man.freebsd.org/sx/9

12FreeBSD Journal • September/October 2024

 todo = MIN(uio->uio_resid, sizeof(echobuf) - uio->uio_offset);
 error = uiomove(echobuf + uio->uio_offset, todo, uio);
 sx_xunlock(&echolock);
 return (error);
}

The body of these methods are mostly identical. One reason for this is that the argu-
ments to uiomove() are the same for both read and write. This is because the uio object
encodes the direction of the data transfer as part of its state.

If we load this version of the driver, we can now interact with the device by reading and
writing to it. Example 2 shows a few interactions demonstrating the echo behavior. Note
that the output of jot exceeded the size of the driver’s 64-byte buffer, so the subsequent
read of the device was truncated.

Example 2: Echoing Data Using a Global Buffer

cat /dev/echo
echo foo > /dev/echo
cat /dev/echo
foo
jot -c -s “” 70 48 > /dev/echo
cat /dev/echo
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmno#

Device Configuration via ioctl()
The fixed size of the global buffer is a weird quirk of this device. We can permit changing

the buffer size by adding a custom ioctl(2) command for this device. I/O control commands
are named by a command constant and accept an optional argument.

Command constants are defined by one of the _IO, _IOR, _IOW, or _IOWR macros from
the <sys/ioccom.h> header. All these macros accept a group and number as the first two
arguments. Both values are 8 bits. Typically, an ASCII alphabetical character is used as the
group, and all commands for a given driver use the same group. FreeBSD’s kernel defines
several existing sets of I/O control commands. A set of generic commands that can be used
with any file descriptor are defined in <sys/filio.h> using the group ‘f’. Other sets are intend-
ed for use with specific types of file descriptors such as the commands in <sys/sockio.h>
which are defined for sockets. For custom commands for a character device driver, do not
use the ‘f’ group to avoid potential conflicts with the generic commands in <sys/filio.h>.
Each command should use a different value for the number argument. If a command ac-
cepts an optional argument, the type of the argument must be given as the third argument
to the _IOR, _IOW, or _IOWR macro. The _IOR macro defines a command that returns a value
from the driver to the userspace application (the command “reads” the argument from the
driver). The _IOW macro defines a command that passes a value to the driver (the command
“writes” the argument to the driver). The _IOWR macro defines a command that is both read
and written by the driver. The size of the argument is encoded in the command constant.
This means that commands with the same group and number, but a different sized argu-
ment, will have different command constants. This is useful when implementing support for
alternate userspace ABIs (for example, supporting a 32-bit userspace application on a 64-bit

5 of 11

https://man.freebsd.org/ioctl/2

13FreeBSD Journal • September/October 2024

kernel) as the alternate ABIs will use a different command constant.
BSD kernels such as FreeBSD manage the copying of the I/O control command argu-

ment in the generic system call layer. This differs from Linux where the kernel passes the
raw userspace pointer to the device driver, requiring the device driver to copy data to and
from userspace. Instead, BSD kernels use the size argument encoded in the command con-
stant to allocate an in-kernel buffer of the requested size. If the command was defined with
_IOW or _IOWR, the buffer is initialized by copying the argument value in from the userspace
application. If the command was defined with _IOR, the buffer is cleared with zeroes. After
the device driver’s ioctl routine completes, if the command was defined with _IOR or _IOWR,
the buffer’s contents are copied out to the userspace application.

For the echo driver, let’s define three new control commands. The first command returns
the current size of the global buffer. The second command permits setting a new size of the
global buffer. The third command clears the contents of the buffer by resetting all the bytes
to zero.

These commands are defined in a new echodev.h header shown in Listing 3. A header
is used so that the constants can be shared with userspace applications as well as the driv-
er. Note that the first command reads the buffer size into a size_t argument in userspace,
the second command writes a new buffer size from a size_t argument in userspace, and the
third command does not accept an argument. All three commands use the ‘E’ group and
are assigned unique command numbers.

Listing 3: I/O Control Command Constants

#define ECHODEV_GBUFSIZE _IOR('E', 100, size_t) /* get buffer size */
#define ECHODEV_SBUFSIZE _IOW('E', 101, size_t) /* set buffer size */
#define ECHODEV_CLEAR _IO('E', 102) /* clear buffer */

Supporting a dynamically sized buffer requires several driver changes. The global buffer
is replaced with a global pointer to a dynamically allocated buffer, and a new global variable
contains the buffer’s current size. The pointer and length are initialized during module load,
and the current buffer is freed during module unload. Since the buffer’s size is no longer a
constant, the checks for out-of-bounds reads and writes must now be done while holding
the lock.

The in-kernel malloc(9) for FreeBSD requires an additional malloc type argument for
both the allocation and free routines. Malloc types track allocation requests providing fine-
grained statistics. These statistics are available via the -m flag to the vmstat(8) command
which displays a separate line for each type. The kernel does include a general device buffer
malloc type (M_DEVBUF) that drivers can use. However, it is best practice for drivers to define
a dedicated malloc type. This is especially true for drivers in kernel modules. When a mod-
ule is unloaded, malloc types defined in a kernel module are destroyed. If any allocations still
reference those malloc types, the kernel emits a warning about the leaked allocations. The
finer-grained statistics are also useful for debugging and performance analysis. New mal-
loc types are defined via the MALLOC_DEFINE macro. The first argument provides the vari-
able name of the new type. By convention, types are named in all uppercase and use a lead-
ing prefix of “M_”. For this driver, we will use the name M_ECHODEV. The second argument
is a short string name displayed by utilities such as vmstat(8). It is best practice to avoid
whitespace characters in the short name. The third argument is a string description of
the type.

6 of 11

https://man.freebsd.org/malloc/9
https://man.freebsd.org/vmstat/8

14FreeBSD Journal • September/October 2024

Driver support for the custom control commands is implemented in the new function in
Listing 4. The cmd argument contains the command constant for the requested command
and the data argument points to the in-kernel buffer containing the optional command ar-
gument. The overall structure of the function is a switch statement on the cmd argument.
The default error value for unknown commands is ENOTTY, even for non-tty devices. The
two commands which accept a size argument cast data to the correct pointer type before
dereferencing. The ECHODEV_GBUFSIZE command writes the current size to *data, while
ECHODEV_SBUFSIZE reads the desired new size from *data.

For commands which alter the device state, the driver requires a writable file descriptor
(that is, a file descriptor opened with O_RDWR or O_WRONLY). To enforce this, the ECHODEF_
SBUFSIZE and ECHODEV_CLEAR commands require the FWRITE flag to be set in fflag. The
fflag argument contains the file descriptor status flags defined in <sys/fcntl.h>. These flags
map O_RDONLY, O_WRONLY, and O_RDWR to a combination of the FREAD and FWRITE flags. All
other flags from open(2) are included directly in the file descriptor status flags. Note that a
subset of these flags can be changed on an open file descriptor by fcntl(2).

Listing 4: I/O Control Handler

static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
 struct thread *td)
{
 int error;

 switch (cmd) {
 case ECHODEV_GBUFSIZE:
 sx_slock(&echolock);
 *(size_t *)data = echolen;
 sx_sunlock(&echolock);
 error = 0;
 break;
 case ECHODEV_SBUFSIZE:
 {
 size_t new_len;

 if ((fflag & FWRITE) == 0) {
 error = EPERM;
 break;
 }

 new_len = *(size_t *)data;
 sx_xlock(&echolock);
 if (new_len == echolen) {
 /* Nothing to do. */
 } else if (new_len < echolen) {
 echolen = new_len;
 } else {
 echobuf = reallocf(echobuf, new_len, M_ECHODEV,

7 of 11

https://man.freebsd.org/open/2
https://man.freebsd.org/fcntl/2

15FreeBSD Journal • September/October 2024

 M_WAITOK | M_ZERO);
 echolen = new_len;
 }
 sx_xunlock(&echolock);
 error = 0;
 break;
 }
 case ECHODEV_CLEAR:
 if ((fflag & FWRITE) == 0) {
 error = EPERM;
 break;
 }

 sx_xlock(&echolock);
 memset(echobuf, 0, echolen);
 sx_xunlock(&echolock);
 error = 0;
 break;
 default:
 error = ENOTTY;
 break;
 }
 return (error);
}

To invoke these commands from userspace, we need a new user application. The repos-
itory contains an echoctl program used in Example 3. The size command outputs the cur-
rent size of the buffer, the resize command sets a new buffer size, and the clear command
clears the buffer contents. Note that in this example, the output from jot is no longer trun-
cated. The last command in this example displays the dynamic allocation statistics for the
driver’s allocations using M_ECHODEV.

Example 3: Resizing the Global Buffer

echoctl size
64
echo foo > /dev/echo
echoctl clear
cat /dev/echo
echoctl resize 80
jot -c -s “” 70 48 > /dev/echo
cat /dev/echo
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstu
vmstat -m | egrep 'Type|echo'
 Type Use Memory Req Size(s)
 echodev 1 128 2 64,128

8 of 11

16FreeBSD Journal • September/October 2024

Per-Instance Data
So far, our device driver has used global variables to hold its state. For a simple demon-

stration driver with a single device instance this is ok. However, most character devices are
part of a hardware device driver and need to support multiple instances of a device within
a single system. To support this, drivers define a structure containing the software context
for a single device instance. In BSD kernels, this software context is named a “softc”. Driv-
ers typically define a structure type whose name uses
a “_softc” suffix, and variables holding pointers to softc
structures are usually named “sc”.

Character devices provide straightforward support
for per-instance data. struct cdev contains three
members available for storing driver-specific data.
si_drv0 contains an integer value while si_drv1 and
si_drv2 store arbitrary pointers. Device drivers are
free to set these variables while creating character
devices using the mda_unit, mda_si_drv1, and
mda_si_drv2 fields of struct make_dev_args.
These values can then be accessed as members of the
struct cdev argument to character device switch
methods. Historically, device drivers used a unit num-
ber to track per-instance data. Modern device drivers in
FreeBSD store a softc pointer in the si_drv1 field and rarely use the other two fields.

For our echo device driver, we define a struct echodev_softc type containing all of the
state needed for an instance of the echo device. The device driver still stores a single global
holding the softc of the single instance for use during module load and unload, but the rest
of the driver accesses state via the softc pointer. These changes do not change any of the
driver’s functionality but do require refactoring various parts of the driver. Listing 5 shows
the new softc structure type. Listing 6 demonstrates the type of refactoring needed for
each character device switch method by showing the updated read method. Lastly, Listing 7
shows the updated routines used during module load and unload.

Listing 5: softc Structure

struct echodev_softc {
 struct cdev *dev;
 char *buf;
 size_t len;
 struct sx lock;
};

Listing 6: Driver Method Using softc Structure

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 struct echodev_softc *sc = dev->si_drv1;
 size_t todo;
 int error;

Most character devices
are part of a hardware
device driver and need
to support multiple
instances of a device within
a single system.

9 of 11

17FreeBSD Journal • September/October 2024

 sx_slock(&sc->lock);
 if (uio->uio_offset >= sc->len) {
 error = 0;
 } else {
 todo = MIN(uio->uio_resid, sc->len - uio->uio_offset);
 error = uiomove(sc->buf + uio->uio_offset, todo, uio);
 }
 sx_sunlock(&sc->lock);
 return (error);
}

Listing 7: Module Load and Unload Using softc Structure

static int
echodev_create(struct echodev_softc **scp, size_t len)
{
 struct make_dev_args args;
 struct echodev_softc *sc;
 int error;

 sc = malloc(sizeof(*sc), M_ECHODEV, M_WAITOK | M_ZERO);
 sx_init(&sc->lock, “echo”);
 sc->buf = malloc(len, M_ECHODEV, M_WAITOK | M_ZERO);
 sc->len = len;
 make_dev_args_init(&args);
 args.mda_flags = MAKEDEV_WAITOK | MAKEDEV_CHECKNAME;
 args.mda_devsw = &echo_cdevsw;
 args.mda_uid = UID_ROOT;
 args.mda_gid = GID_WHEEL;
 args.mda_mode = 0600;
 args.mda_si_drv1 = sc;
 error = make_dev_s(&args, &sc->dev, “echo”);
 if (error != 0) {
 free(sc->buf, M_ECHODEV);
 sx_destroy(&sc->lock);
 free(sc, M_ECHODEV);
 }
 return (error);
}

static void
echodev_destroy(struct echodev_softc *sc)
{
 if (sc->dev != NULL)
 destroy_dev(sc->dev);
 free(sc->buf, M_ECHODEV);

10 of 11

18FreeBSD Journal • September/October 2024

 sx_destroy(&sc->lock);
 free(sc, M_ECHODEV);
}

static int
echodev_modevent(module_t mod, int type, void *data)
{
 static struct echodev_softc *echo_softc;

 switch (type) {
 case MOD_LOAD:
 return (echodev_create(&echo_softc, 64));
 case MOD_UNLOAD:
 if (echo_softc != NULL)
 echodev_destroy(echo_softc);
 return (0);
 default:
 return (EOPNOTSUPP);
 }
}

Conclusion
Thanks for reading this far. The next article in this series will extend this driver to imple-

ment a FIFO buffer including support for non-blocking I/O and I/O event reporting via
poll(2) and kevent(2).

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Ashland, Virginia with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

11 of 11

https://man.freebsd.org/poll/2
https://man.freebsd.org/kevent/2

19FreeBSD Journal • September/October 2024

1 of 7

The Vector Packet Process (VPP) is a high-performance framework for processing
packets in userspace. Thanks to a project by the FreeBSD Foundation and RGNets, I
was sponsored to port VPP to FreeBSD and I am really happy to share some basic us-

age with readers of the FreeBSD Journal.
VPP enables forwarding and routing applications to be written in userspace with a

API-controllable interface. High-performance networking is made possible by DPDK on Li-
nux and DPDK and netmap on FreeBSD. These APIs allow direct 0 copy access to data and
can be used to make forwarding applications that can significantly exceed the host’s for-
warding performance.

VPP is a full-network router replacement, and, as such, needs some host configuration
to be usable. This article presents some complete examples of how to use VPP on FreeBSD
which most users should be able to follow with a virtual machine of their own. VPP on
FreeBSD also runs on real hardware.

This introduction to using VPP on FreeBSD gives an example set up showing how to do
things on FreeBSD. VPP resources can be difficult to find, the documentation from the proj-
ect at https://fd.io is high quality.

Lets Build a Router

VPP can be put to lots of purposes, the main one and easiest to configure is as some
form of router or bridge. For our example of using VPP as a router, we need to construct a
small example network with three nodes — a client, a server and the router.

To show you how VPP can be used on FreeBSD, I’m going to construct an example net-
work with the minimum of overhead. All you need is VPP and a FreeBSD system. I’m also
going to install iperf3 so we can generate and observe some traffic going through our rout-
er.

From a FreeBSD with a recent ports tree you can get our two required tools with the pkg
command like so:

host # pkg install vpp iperf3

To create three nodes for our network, we are going to take advantage of one of
FreeBSD’s most powerful features, VNET jails. VNET jails give us completely isolated in-

BY TOM JONES

Porting VPP to FreeBSD:
Basic Usage

https://fd.io

20FreeBSD Journal • September/October 2024

stances of the network stack, they are similar in operation to Linux Network Namespaces.
To create a VNET, we need to add the vnet option when creating a jail and pass along the
interfaces it will use.

Finally we will connect our nodes using epair interfaces. These offer the functionality of
two ends of an ethernet cable — if you are familiar with veth interfaces on linux they offer
similar functionality.

We can construct our test network with the following 5 commands:

host # ifconfig epair create
epair0a
host # ifconfig epair create
epair1a
jail -c name=router persist vnet vnet.interface=epair0a vnet.interface=epair1a
jail -c name=client persist vnet vnet.interface=epair0b
jail -c name=server persist vnet vnet.interface=epair1b

The flags to take note of in these jail commands are persist without which the jail will be
removed automatically because there are no processes running inside it, vnet which makes
this jail a vnet jail and vnet.interface= which assigns the given interface to the jail.

When an interface is moved to a new vnet, all of its configuration is stripped away \-
worth noting in case you configure an interface and then move it to a jail and wonder why
nothing is working.

Set up peers
Before turning to VPP, let us set up the client and server sides of the network. Each of

these needs to be given an ip address and the interface moved to the up state. We will also
need to configure default routes for the client and server jails.

host # jexec client
ifconfig
lo0: flags=8008<LOOPBACK,MULTICAST> metric 0 mtu 16384
 options=680003<RXCSUM,TXCSUM,LINKSTATE,RXCSUM_IPV6,TXCSUM_IPV6>
 groups: lo
 nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>
epair0b: flags=1008842<BROADCAST,RUNNING,SIMPLEX,MULTICAST,LOWER_UP> metric 0
mtu 1500
 options=8<VLAN_MTU>
 ether 02:90:ed:bd:8b:0b
 groups: epair
 media: Ethernet 10Gbase-T (10Gbase-T <full-duplex>)
 status: active
 nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
ifconfig epair0b inet 10.1.0.2/24 up
route add default 10.1.0.1
add net default: gateway 10.1.0.1

2 of 7

21FreeBSD Journal • September/October 2024

host # jexec server
ifconfig epair1b inet 10.2.0.2/24 up
route add default 10.2.0.1
add net default: gateway 10.2.0.1

Our client and server jails now have ip addresses and routes towards the VPP router.

Netmap requirements
For our examples, we are going to use VPP with netmap, a high-performance userspace

networking framework that ships as a default component of FreeBSD. Netmap requires a
little interface configuration before it can be used — the interface needs to be in the up
state and have the promisc option configured.

host # jexec router
ifconfig epair0a promisc up
ifconfig epair1a promisc up

Now we are able to start using VPP\!

VPP First Commands
VPP is very flexible and offers configuration by a config file, a command line interface,

and an API with mature Python bindings. VPP needs a base configuration telling it where to
get commands and the names of the files it uses for control if they aren’t the default. We
can give VPP a minimal configuration file on the command line as part of its arguments.
For this example, we tell VPP to drop into interactive mode – offer us a cli, and we tell vpp to
only load the plugins we will use (netmap) which is a sensible default.

If we don’t disable all plugins, we will either need to set up the machine to use DPDK, or
disable that plugin on its own. The syntax to do so is the same as the syntax to enable the
netmap plugin.

host # vpp “unix { interactive} plugins { plugin default { disable } plugin
netmap_plugin.so { enable } plugin ping_plugin.so { enable } }”
 _______ _ _ _____ ___
 __/ __/ _ \ (_)__ | | / / _ \/ _ \
 _/ _// // / / / _ \ | |/ / ___/ ___/
 /_/ /____(_)_/___/ |___/_/ /_/

vpp# show int
 Name Idx State MTU (L3/IP4/IP6/MPLS)
Counter Count
local0 0 down 0/0/0/0

If all is set up, you will see the VPP banner and the default cli prompt (vpp#).
The VPP command line interface offers a lot of options for the creation and manage-

ment of interfaces, groups like bridges, the addition of routes and tools for interrogating the
performance of a VPP instance.

The syntax of the interface configuration commands is similar to the linux iproute2 com-
mands – coming from FreeBSD these are a little alien, but they are reasonably clear once
you start to get used to them.

Our VPP server hasn’t been configured with any host interfaces yet, show int only lists
the default local0 interface.

3 of 7

22FreeBSD Journal • September/October 2024

To use our netmap interfaces with vpp, we need to create them first and then we can
configure them.

The create command lets us create new interfaces, we use the netmap subcommand
and the host interface.

vpp# create netmap name epair0a
netmap_create_if:164: mem 0x882800000
netmap-epair0a
vpp# create netmap name epair1a
netmap-epair1a

Each netmap interface is created with a prefix of netmap- . With the interfaces created,
we can configure them for use and start using VPP as a router.

vpp# set int ip addr netmap-epair0a 10.1.0.1/24
vpp# set int ip addr netmap-epair1a 10.2.0.1/24
vpp# show int addr
local0 (dn):
netmap-epair0a (dn):
 L3 10.1.0.1/24
netmap-epair1a (dn):
 L3 10.2.0.1/24

The command show int addr (the shortened version of show interface address)
confirms our ip address assignment has worked. We can then bring the interfaces up:

vpp# set int state netmap-epair0a up
vpp# set int state netmap-epair1a up
vpp# show int
 Name Idx State MTU (L3/IP4/IP6/MPLS)
Counter Count
local0 0 down 0/0/0/0
netmap-epair0a 1 up 9000/0/0/0
netmap-epair1a 2 up 9000/0/0/0

With our interfaces configured, we can test functionality from VPP by using the ping
command:

vpp# ping 10.1.0.2
116 bytes from 10.1.0.2: icmp_seq=2 ttl=64 time=7.9886 ms
116 bytes from 10.1.0.2: icmp_seq=3 ttl=64 time=10.9956 ms
116 bytes from 10.1.0.2: icmp_seq=4 ttl=64 time=2.6855 ms
116 bytes from 10.1.0.2: icmp_seq=5 ttl=64 time=7.6332 ms

Statistics: 5 sent, 4 received, 20% packet loss
vpp# ping 10.2.0.2
116 bytes from 10.2.0.2: icmp_seq=2 ttl=64 time=5.3665 ms
116 bytes from 10.2.0.2: icmp_seq=3 ttl=64 time=8.6759 ms
116 bytes from 10.2.0.2: icmp_seq=4 ttl=64 time=11.3806 ms

4 of 7

23FreeBSD Journal • September/October 2024

116 bytes from 10.2.0.2: icmp_seq=5 ttl=64 time=1.5466 ms

Statistics: 5 sent, 4 received, 20% packet loss

And if we jump to the client jail, we can verify that VPP is acting as a router:

client # ping 10.2.0.2
PING 10.2.0.2 (10.2.0.2): 56 data bytes
64 bytes from 10.2.0.2: icmp_seq=0 ttl=63 time=0.445 ms
64 bytes from 10.2.0.2: icmp_seq=1 ttl=63 time=0.457 ms
64 bytes from 10.2.0.2: icmp_seq=2 ttl=63 time=0.905 ms
^C
--- 10.2.0.2 ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.445/0.602/0.905/0.214 ms

As a final piece of initial set up, we will start up an iperf3 server in the server jail and use
the client to do a TCP throughput test.:

server # iperf3 -s

client # iperf3 -c 10.2.0.2
Connecting to host 10.2.0.2, port 5201
[5] local 10.1.0.2 port 63847 connected to 10.2.0.2 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.01 sec 341 MBytes 2.84 Gbits/sec 0 1001 KBytes
[5] 1.01-2.01 sec 488 MBytes 4.07 Gbits/sec 0 1.02 MBytes
[5] 2.01-3.01 sec 466 MBytes 3.94 Gbits/sec 144 612 KBytes
[5] 3.01-4.07 sec 475 MBytes 3.76 Gbits/sec 0 829 KBytes
[5] 4.07-5.06 sec 452 MBytes 3.81 Gbits/sec 0 911 KBytes
[5] 5.06-6.03 sec 456 MBytes 3.96 Gbits/sec 0 911 KBytes
[5] 6.03-7.01 sec 415 MBytes 3.54 Gbits/sec 0 911 KBytes
[5] 7.01-8.07 sec 239 MBytes 1.89 Gbits/sec 201 259 KBytes
[5] 8.07-9.07 sec 326 MBytes 2.75 Gbits/sec 0 462 KBytes
[5] 9.07-10.06 sec 417 MBytes 3.51 Gbits/sec 0 667 KBytes
-
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.06 sec 3.98 GBytes 3.40 Gbits/sec 345 sender
[5] 0.00-10.06 sec 3.98 GBytes 3.40 Gbits/sec receiver

iperf Done.

VPP Analysis
Now that we have sent some traffic through VPP, the output of show int contains more

information:

5 of 7

24FreeBSD Journal • September/October 2024

vpp# show int
 Name Idx State MTU (L3/IP4/IP6/MPLS) Counter Count
local0 0 down 0/0/0/0
netmap-epair0a 1 up 9000/0/0/0 rx packets 4006606
 rx bytes 6065742126
 tx packets 2004365
 tx bytes 132304811
 drops 2
 ip4 4006605
netmap-epair1a 2 up 9000/0/0/0 rx packets 2004365
 rx bytes 132304811
 tx packets 4006606
 tx bytes 6065742126
 drops 2
 ip4 2004364

The interface command now gives us a summary of the bytes and packets that have
passed across the VPP interfaces. This can be really helpful to debug how traffic is moving
around, especially if your packets are going missing.

The V in VPP stands for vector and this has two meanings in the project. VPP aims to use
vectorised instructions to accelerate packet processing and it also bundles groups of pack-
ets together into vectors to optimize processing. The theory here is to take groups of pack-
ets through the processing graph together saving cache thrashing and giving optimal per-
formance.

VPP has a lot of tooling for interrogating what is happening while packets are processed.
Deep tuning is beyond this article, but a first tool to look at to understand what is happen-
ing in VPP is the runtime command.

Runtime data is gathered for each vector as it passes through the VPP processing graph,
it collects how long it takes to transverse each node and the number of vectors processed.

To use the run time tooling, it is good to have some traffic. Start a long running iperf3
throughput test like so:

client # iperf3 -c 10.2.0.2 -t 1000

Now in the VPP jail, we can clear the gathered run time statistics so far, wait a little bit and
then look at how we are doing:

vpp# clear runtime
... wait ~5 seconds ...
vpp# show runtime
Time 5.1, 10 sec internal node vector rate 124.30 loops/sec 108211.07
 vector rates in 4.4385e5, out 4.4385e5, drop 0.0000e0, punt 0.0000e0
 Name State Calls Vectors Suspends Clocks Vectors/Call
ethernet-input active 18478 2265684 0 3.03e1 122.62
fib-walk any wait 0 0 3 1.14e4 0.00
ip4-full-reassembly-expire-wal any wait 0 0 102 7.63e3 0.00
ip4-input active 18478 2265684 0 3.07e1 122.62
ip4-lookup active 18478 2265 684 0 3.22e1 122.62
ip4-rewrite active 18478 2265684 0 3.05e1 122.62
ip6-full-reassembly-expire-wal any wait 0 0 102 5.79e3 0.00
ip6-mld-process any wait 0 0 5 6.12e3 0.00

6 of 7

25FreeBSD Journal • September/October 2024

ip6-ra-process any wait 0 0 5 1.18e4 0.00
netmap-epair0a-output active 8383 755477 0 1.12e1 90.12
netmap-epair0a-tx active 8383 755477 0 1.17e3 90.12
netmap-epair1a-output active 12473 1510207 0 1.04e1 121.08
netmap-epair1a-tx active 12473 1510207 0 2.11e3 121.08
netmap-input interrupt wa 16698 2265684 0 4.75e2 135.69
unix-cli-process-0 active 0 0 13 7.34e4 0.00
unix-epoll-input polling 478752 0 0 2.98e4 0.00

The columns in the show runtime output give us a great idea of what is happening in
vpp. They tell us which nodes have been active since the run time counters were cleared,
their current state, how many times this node was called, how much time it used, and how
many vectors were processed per call. Out of the box, the maximum vector size for vpp is
255.

A final debugging task you can perform is to examine the packet processing graph in its
entirety with the show vlib graph command. This command shows each node and the
potential parent and child nodes which could lead to it.

Next Steps
VPP is an incredible piece of software — once the headaches of compatibility were ad-

dressed, the core parts of VPP were reasonably straightforward to port. Even with just min-
imal tuning, VPP is able to reach some impressive performance with netmap on FreeBSD,
and it does even better if you configure DPDK. The VPP documentation is slowly getting
more information about running on FreeBSD, but the developers really need example use
cases of VPP on FreeBSD.

If you start from this example of a simple network, it should be reasonably straight for-
ward to port it onto a large network with faster interfaces.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

7 of 7

26FreeBSD Journal • September/October 2024

1 of 8

Testing is a rather broad concept today. Regardless of approaches, academic views, or
specific situations, it is difficult to resist the simple desire not to force the end user to
test on our behalf. Even a simple error can significantly harm the business in multiple

ways: reputation, time-to-market, conversion rate, expansion, etc. The industry has evolved
from relying on complex manual checks before release
to embracing automation whenever and wherever pos-
sible. Automated testing offers its benefits: shorter cy-
cles, more frequent feedback, additional confidence in
the result, less fear of changes, and so on. Even if auto-
mated testing is a significant part of the development
process, it is just one of many practices improving soft-
ware delivery.

Organizing Tests with Kyua
The FreeBSD Test Suite is typically located in

/usr/tests, with its infrastructure built on Kyua, a test-
ing framework created by Julio Merino. Kyua offers an
expressive test suite definition language, a safe runtime engine, and powerful report gen-
eration. Tests can be written using anything or without relying on a specific library. The unit
and integration tests found in the suite often utilize libraries like atf-c(3), atf-c++(3),
atf-sh(3), or pytest.

Kyua operates with the following hierarchy of key concepts: test suite > test program >
test case.

A test suite groups several binaries (test programs) into one set with a single name. A Lua
script is used to describe a test suite, which is typically saved in a special kyuafile(5). Let’s
consider the following existing file:

cat -n /usr/tests/sys/kern/Kyuafile
 1 -- Automatically generated by bsd.test.mk.
 2
 3 syntax(2)
 4
 5 test_suite(“FreeBSD”)
 6
 7 atf_test_program{name=”basic_signal”, }

BY IGOR OSTAPENKO

It is difficult to resist
the simple desire not to
force the end user to test
on our behalf.

Enhancing FreeBSD
Test Suite Parallelism
with Kyua’s Jail Feature

https://man.freebsd.org/cgi/man.cgi?query=atf-c&sektion=3
https://man.freebsd.org/cgi/man.cgi?query=atf-c%2B%2B&sektion=3
https://man.freebsd.org/cgi/man.cgi?query=atf-sh&sektion=3
https://www.freshports.org/devel/py-pytest/
https://man.freebsd.org/cgi/man.cgi?query=kyuafile&sektion=5

27FreeBSD Journal • September/October 2024

[skipped]
 34 atf_test_program{name=”sonewconn_overflow”, required_programs=”python”,
required_user=”root”, is_exclusive=”true”}
 35 atf_test_program{name=”subr_physmem_test”, }
 36 plain_test_program{name=”subr_unit_test”, }
[skipped]
 45 atf_test_program{name=”unix_seqpacket_test”, timeout=”15”}
 46 atf_test_program{name=”unix_stream”, }
 47 atf_test_program{name=”waitpid_nohang”, }
 48 include(“acct/Kyuafile”)
 49 include(“execve/Kyuafile”)
 50 include(“pipe/Kyuafile”)

Line #3 specifies the required version of the syntax used. Line #5 sets the name for the
test suite. Usually, all /usr/tests/**/Kyuafile descriptions are collected into a single test
suite named FreeBSD. If a binary is based on ATF libraries, it’s registered using atf_test_
program, so Kyua can leverage ATF capabilities and specifics for such a test program. If it’s
not based on a library supported by Kyua and simply communicates results via exit code,
plain_test_program construct is used instead. There is also tap_test_program for test
programs that communicate results using the good old Test Anything Protocol.

Each Kyuafile describes test binaries only within its directory. However, /usr/tests are
structured the way that each test directory explicitly includes its subdirectories, as illustrated
in lines #48, #49, and #50. Consequently, running tests in this directory will execute all tests
from the sys/kern sub-tree, including those in sys/kern/acct, sys/kern/execve, and
sys/kern/pipe:

kyua test -k /usr/tests/sys/kern/Kyuafile

Line #1 indicates that Kyuafile is not created manually in the FreeBSD Test Suite. Instead,
as with most components of the FreeBSD build system, the process is handled through a
Makefile, which builds the test programs and generates the corresponding Kyuafile. To un-
derstand the process in detail, the generated /usr/tests/sys/kern/Kyuafile can be
compared with its source in /usr/src/tests/sys/kern/Makefile — it’s a straightforward
approach.

A test program that is not registered in the Kyuafile will not be recognized by Kyua and
therefore will not be executed.

There is no explicit mention of test cases in the Kyuafile because test cases are defined at
a lower level, within a test program, and it requires support from the library used. It’s often
more convenient to group several similar tests (i.e. test cases) within a single test program
binary rather than creating multiple separate test programs. Plain test programs are expect-
ed to provide only one test case, typically named “main” after the main() function. In con-
trast, tests based on ATF libraries can report multiple test cases. In Kyua, what we generally
call a test is referred to as a test case, which is treated as a unit of execution. Consequently,
a test suite described in a Kyuafile might seem to reference only a single test program, but
it could contain dozens or more test cases. The kyua list command lists test cases in the
format <test program>:<test case>, which can also be used with other commands, for
example, to run a specific test case individually:

2 of 8

https://en.wikipedia.org/wiki/Test_Anything_Protocol

28FreeBSD Journal • September/October 2024

cd /usr/tests/sys/kern
kyua test unix_dgram:basic

Each test case can have optional metadata properties in the form of key/value pairs,
which modify Kyua’s behavior for that specific test case. The Kyuafile example above shows
that the same metadata can be applied to all test cases within a test program. The illustrat-
ed properties are:

•	timeout allows changing the default value, which is 300 seconds.
•	If the binaries specified in required_programs are not found either by their full path or

within the PATH, the test case will be marked as skipped with the respective message.
•	required_user=”root” will skip the test if Kyua is not running with root privileges,

while required_user=”unprivileged” will ensure that the test is run without root ac-
cess rights.

•	is_exclusive=”true” specifies that the test cannot be run concurrently with other
tests.

Parallelism and Jails
Kyua can run test cases in parallel when configured to do so. By default, the parallelism

setting is set to 1, which means tests are run sequentially. This can be adjusted in kyua.conf(5)
or specified as an option:

kyua -v parallelism=8 test

Test cases that require exclusive access to a shared resource should be marked with
is_exclusive=”true” so Kyua knows not to run them in parallel with others. Kyua oper-
ates in two phases. First, it runs all non-exclusive test cases, which can be executed in paral-
lel if configured so. The second phase runs all exclusive test cases sequentially. To keep the
test suite efficient, it’s best to avoid adding new exclusive tests when possible and create
non-exclusive versions instead. Otherwise, the test suite may become too time-consuming
to execute.

However, some tests utilize the jail(8) feature to handle scenarios that are otherwise
difficult to reproduce. For example, network module testing often involves creating tempo-
rary jails to verify module behavior by poking it from
the host through epair(4). There are several reasons
why such tests must be marked as exclusive: they usu-
ally re-use the same jail naming for convenience (while
each jail in the system must have a unique name), the
same IP addresses officially allocated for demo pur-
poses are used to configure interfaces on the host
side leading to potential conflicts with a shared rout-
ing table, and other related issues. While these prob-
lems could be addressed by test cases themselves, do-
ing so would significantly increase the complexity for
test authors and maintainers, and some issues might
be impossible to resolve without external intervention. This is where the latest Kyua version
comes into play.

3 of 8

To keep the test suite
efficient, it’s best to avoid
adding new exclusive tests.

https://man.freebsd.org/cgi/man.cgi?query=kyua.conf&sektion=5
https://man.freebsd.org/cgi/man.cgi?query=jail&sektion=8
https://man.freebsd.org/cgi/man.cgi?query=epair&sektion=4

29FreeBSD Journal • September/October 2024

Execution Environment Concept
In 15-CURRENT Kyua provides a new concept called “execution environment”. It’s going

to be available from 14.2-RELEASE.
By default, tests continue to run as before by spawning child processes — this is referred

to as the host execution environment. A test case can opt-in to use a different execution
environment by specifying a new metadata property called execenv. The general sequence
of steps applied to each test case has been extended to include the following:

1. Execution environment initialization
2. Test execution
3. (optional) Test cleanup
4. Execution environment cleanup
Currently, Kyua supports only one additional execution environment — the jail environ-

ment. While it can be configured for individual test cases, the following example shows how
to apply the execenv metadata property to all test cases within a test program:

atf_test_program{name=”test_program”, execenv=”jail”}

This configuration causes Kyua to provide each test case in the test_program with its
own temporary jail in which to execute. If a test case declares a cleanup routine, it will be exe-
cuted within the same jail. Kyua uses jail(8) for creating these jails, and test cases can pass
additional parameters through a new metadata property called execenv_jail_params:

atf_test_program{name=”test_program”, execenv=”jail”, execenv_jail_params=”vnet allow.raw_
sockets”}

As long as the names of sub-jails do not conflict among different parent jails, and each jail
can have its own VNET stack, we can easily isolate tests — such as the network tests men-
tioned earlier — into separate jails and run them in parallel by removing the is_exclusive
flag. It depends on environment and configuration, but there are reports that netpfil/pf
test suite runs 4 or 5 times faster using the same environment — taking just a few minutes
instead of half an hour.

Implicit Parameters and Hierarchical Jails
Since a test case and its optional cleanup routine run in separate child processes, Kyua

implicitly appends the persist parameter to keep the temporary jail alive, allowing both
child processes to run within the same jail. Kyua ensures that the temporary jail is removed
during the “Execution environment cleanup” step.

Spawning jails by network tests is a common practice. This raises the question of whether
a test case, which is already running inside a jail, is permitted to create sub-jails. In principle,
this is allowed as long as system limits are not exceeded. Each jail has a limit on the number
of sub-jails that can be created. The following new read-only sysctl variables, introduced in
15-CURRENT, provide this information:

sysctl security.jail.children
security.jail.children.cur: 0
security.jail.children.max: 999999

Apparently, the above looks to be the highest jail in the hierarchy, so called prison0, and
almost a million of jails can be created according to the current and maximum values. When

4 of 8

https://man.freebsd.org/cgi/man.cgi?query=jail&sektion=8

30FreeBSD Journal • September/October 2024

jail(8) is used to create a new jail, it applies the following default configuration:

jail -c command=sysctl security.jail.children
security.jail.children.cur: 0
security.jail.children.max: 0

This indicates that no sub-jails are allowed. Obviously, test cases attempting to create new
jails would fail under these conditions. To address this, Kyua assists by adding another im-
plicit parameter that allows the maximum number of child jails, calculated as the parent jail’s
maximum limit minus one. Although it’s possible to configure this from the test case side
using the execenv_jail_params metadata property, it appears to be cumbersome and re-
petitive work.

The following formula clarifies how Kyua creates temporary jails and how this process can
be modified using metadata properties:

jail -qc name=<name> children.max=<parent_max-1> <test case defined params> persist

The name of a temporary jail is derived from the test program path and test case name.
For example, the test case /usr/tests/sys/kern/unix_dgram:basic will use a temporary
jail named kyua_usr_tests_sys_kern_unix_dgram_basic.

kldload concerns
Since all jails, except for prison0, lack the privilege to load kernel modules, this creates in-

conveniences if a test case relies on the jail execution environment.
Kyua’s original philosophy is to be usable by both developers and users. This means that

a system administrator should be able to run the test suite after OS upgrade to ensure ev-
erything is functioning as expected. Clearly, such a host is not a test lab where developers
can freely experiment, break things, or cause fire. Therefore, tests should be designed to
avoid disrupting the normal operation of the host unless explicitly instructed. That’s why
the FreeBSD Test Suite has configuration variables like allow_sysctl_side_effects to fol-
low this approach. Despite the fact that the suite is primarily treated as a developer tool, many
existing tests adhere to this principle by checking if a required module is loaded, rather than
loading it implicitly. A system administrator would not appreciate it if, for example, tests of a
firewall, which is not used by a host, inadvertently affect its traffic or even make it inaccessible.

Therefore, the recommended strategy is to use kldstat -q -m <module-name> within
the test case to check for the presence of required modules and skip the test if the module
is not found. The configuration of the FreeBSD CI ensures that all necessary modules are
loaded and required software packages are installed before running the test suite.

execenvs and WITHOUT_JAIL
A new engine configuration variable is provided — execenvs. By default, it is set to a list

of all supported execution environments:

kyua config
architecture = aarch64
execenvs = host jail
parallelism = 1
platform = arm64
unprivileged_user = tests

5 of 8

https://man.freebsd.org/cgi/man.cgi?query=jail&sektion=8

31FreeBSD Journal • September/October 2024

This variable can be manipulated through kyua.conf(5) or specified as an option for the
kyua(1) CLI. For instance, the following command will execute only host-based tests and
skip all others:

kyua -v execenvs=host test

If the system is built without jail support, only the default host execution environment
will be available. Consequently, any tests that require the jail execution environment will be
skipped.

Getting Started Examples
The following example, based on atf-sh(3), illustrates how to configure the jail environ-

ment at the test case level. It also reminds the importance of root user privileges.

cat /usr/src/tests/sys/kern/test_program.sh
atf_test_case “case1” “cleanup”
case1_head()
{
 atf_set descr 'Test that X does Y'
 atf_set require.user root
 atf_set execenv jail
 atf_set execenv.jail.params vnet allow.raw_sockets
}
case1_body()
{
 if ! kldstat -q -m tesseract; then
 atf_skip “This test requires tesseract”
 fi

 # test code...
}
case1_cleanup()
{
 # cleanup code...
}

atf_init_test_cases()
{
 atf_add_test_case “case1”
}

A single line addition to the Makefile is enough for this test program:

grep test_program /usr/src/tests/sys/kern/Makefile
ATF_TESTS_SH+= test_program

The build system will prepend the #!/usr/libexec/atf-sh shebang line, install the script
without the .sh extension at /usr/tests/sys/kern/test_program, and register it in the
Kyuafile accordingly:

6 of 8

https://man.freebsd.org/cgi/man.cgi?query=kyua.conf&sektion=5
https://man.freebsd.org/cgi/man.cgi?query=kyua&sektion=1
https://man.freebsd.org/cgi/man.cgi?query=atf-sh&sektion=3

32FreeBSD Journal • September/October 2024

grep test_program /usr/tests/sys/kern/Kyuafile
atf_test_program{name=”test_program”, }

Having multiple test cases within a single test program can lead to a Don’t Repeat Your-
self situation. To handle this, common metadata can be moved up to the test suite level in a
Kyuafile, allowing it to apply to the entire test program rather than repeating it for each test
case. However, individual test cases can still override these properties if necessary:

cat /usr/src/tests/sys/kern/test_program2.sh
atf_test_case “case2”
case2_head()
{
 atf_set descr 'Test that A does B'
}
case2_body()
{...}

atf_test_case “case3”
case3_head()
{
 atf_set descr 'Test that Foo does Bar'
 atf_set execenv.jail.params vnet allow.raw_sockets
}
case3_body()
{...}

atf_init_test_cases()
{
 atf_add_test_case “case2”
 atf_add_test_case “case3”
}

Now the main configuration is provided on the test program level:

grep test_program2 /usr/src/tests/sys/kern/Makefile
ATF_TESTS_SH+= test_program2
TEST_METADATA.test_program2+= execenv=”jail”,execenv_jail_params=”vnet”

As a result, Kyua consolidates metadata defined at different levels into the following:

kyua list -k /usr/tests/sys/kern/Kyuafile -v test_program2
test_program2:case2 (FreeBSD)
 description = Test that A does B
 execenv = jail
 execenv_jail_params = vnet
test_program2:case3 (FreeBSD)
 description = Test that Foo does Bar
 execenv = jail
 execenv_jail_params = vnet allow.raw_sockets

7 of 8

It’s important to note the key difference in metadata property naming conventions be-
tween ATF and Kyua — dots (execenv.jail.params) versus underscores (execenv_jail_
params). Additionally, names themselves may vary slightly, the kyuafile(5) and atf-test-
case(4) manual pages can be compared for that.

To switch an existing test to the jail execution environment, the is_exclusive=”true”
metadata property should be negated or removed. Otherwise, the test will not benefit from
parallel execution.

Further Reading
The entry point to the FreeBSD Test Suite is described in tests(7). For test authors, the

following wiki page is a valuable starting point: https://wiki.freebsd.org/TestSuite/Developer-
HowTo.

The official Kyua wiki is an excellent resource for historical aspects, design rationale, and
feature overviews. Detailed information on execution environments can be found in the
kyua.conf(5) and kyuafile(5) manual pages.

Also, reviewing how existing jail-based tests are written and organized is crucial to avoid
reinventing the wheel. The PF test suite located in /usr/src/tests/sys/netpfil/pf is a
great source for understanding of the established practices.

While retroactively adding tests to the existing code can be an enormous effort, incorpo-
rating tests that address bug fixes is a worthwhile opportunity to enhance the FreeBSD Test
Suite, and therefore the project as a whole.

IGOR OSTAPENKO is a FreeBSD contributor with a wide range of software development
experience in various areas, whether it’s systems for manipulating and testing navigation
devices, enterprise solutions for optimizing business processes, reverse-engineering, or B2B/
B2C startups.

33FreeBSD Journal • September/October 2024

8 of 8

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://man.freebsd.org/cgi/man.cgi?query=kyuafile&sektion=5
https://man.freebsd.org/cgi/man.cgi?query=atf-test-case&sektion=4
https://man.freebsd.org/cgi/man.cgi?query=atf-test-case&sektion=4
https://man.freebsd.org/cgi/man.cgi?query=tests&sektion=7
https://wiki.freebsd.org/TestSuite/DeveloperHowTo
https://wiki.freebsd.org/TestSuite/DeveloperHowTo
https://github.com/freebsd/kyua/wiki
https://man.freebsd.org/cgi/man.cgi?query=kyua.conf&sektion=5
https://man.freebsd.org/cgi/man.cgi?query=kyuafile&sektion=5
https://www.freebsdfoundation.org

34FreeBSD Journal • September/October 2024

1 of 10

Ifirst started using Valgrind in the early 2000s. Previously, I had a fair bit of experience with
Purify (now Unicom PuifyPlus) on Solaris/SPARC. To be honest, I wasn’t that impressed
with Valgrind. Sure, it didn’t need a special build process, but it lacked the ability to inter-

act with a debugger.
Switching briefly to FreeBSD, the first version I installed was 2.1 back in late 1995. Like Val-

grind, at first, I was not that impressed. At least it was “a unix” on my home PC if I needed
it. I continued to dabble with FreeBSD, installing new versions from time to time. My main
home system(s) were OS/2 till the late 90s, Solaris for long time until it went into suspend-
ed animation with 11.4. I also got a MacBook in 2007 which is mainly for “desktop” stuff — I
don’t find developing on macOS to be a gratifying experience.

I have always been a bit of a believer in Quality. I had
a short course on Product Quality at university which
converted me to the cause. Much later, I got round
to reading W. Edwards Deming. Though the writing is
rough around the edges, the message is strong and
clear. Since I’d studied Electronics, it was plainly obvi-
ous the benefits from quality processes that Japanese
companies had reaped in the second half of the 20th
century. I ended up working as a software developer in
the domain of Electronics simulation. Not surprisingly, I
carried on using tools like Valgrind.

About five years ago, I decided that it was time to
start giving back to the open-source community. Since
I was already expert in using Valgrind and had already dabbled a tiny bit with the source,
it was the logical project for me. I hesitated a bit between working on the macOS and
FreeBSD Valgrind ports. Two things put me off macOS — frequent major OS and userland
changes that break everything, and the difficulty of getting help from within Apple. There
are the XNU code source dumps and a few books, but after that you are on your own. I
plumped for FreeBSD. That also suited me because I was looking to switch away from So-
laris. There’s been a lot of cross-fertilization between Illumos and FreeBSD so I thought that
would ease the transition. In the meantime, macOS lingers in the official Valgrind repo, but
it hasn’t really been usable since version 10.12 in 2016.

History of Valgrind
Valgrind is now a bit over 20 years old. It started off on i386 Linux. Over the years, sever-

al other CPU architectures have been added (amd64, MIPS, ARM, PPC and s390x) as well as
other operating systems (macOS, Solaris, and, most recently, FreeBSD).

BY PAUL FLOYD
Valgrind on FreeBSD

I decided that it was time
to start giving back to the
open-source community.

https://www.unicomsi.com/products/purifyplus/
https://valgrind.org
https://en.wikipedia.org/wiki/W._Edwards_Deming
https://nnethercote.github.io/2022/07/27/twenty-years-of-valgrind.html

35FreeBSD Journal • September/October 2024

The tools have continued to evolve over those 20 years. Since the initial version in 2002,
the tools added were

2002 memcheck
2002 helgrind
2002 cachegrind
2004 massif
2006 callgrind
2008 drd
2009 exp-bbv
2018 DHAT
In addition, there are several tools that are maintained (or not) out-of-tree.
The development of Valgrind has been carried out by a small number of people - about

twenty have made significant contributions. A few corporations have lent a hand. RedHat/
IBM is probably the one that has contributed the most. Sun did contribute while Solaris was
being actively developed. Apple also contributed until they suddenly became GLP averse.

History of Valgrind on FreeBSD
Valgrind on FreeBSD had a very long and checkered history. I won’t mention everyone

who has contributed (and I’m not even sure that I have
the full list as some of the source code repos are no
longer accessible). Doug Robson did a lot of the initial
work in 2004. The next torch bearer was Stan Sedov
who maintained the port from 2009 to 2011. There was
a protracted push to get the FreeBSD source accepted
upstream at that time, but it didn’t quite make it. The
upstream maintainers were quite strict with their qual-
ity bar, and the FreeBSD port kept getting close, but
was never good enough. Secondly, someone needs to
maintain the port, preferably a member of the Valgrind
team. I don’t know why that never happened. I’ve been
maintaining the FreeBSD port since Apr 2021, and I’ve
had a Valgrind commit bit for a bit over 4 years. Now, I’m the main contributor to Valgrind.

The most recent big change was adding support for aarch64. I added the port to this
CPU in April 2024, in time for the 3.23 release of Valgrind.

The Valgrind Tools
Before I dive into the internals of Valgrind, I’ll give a quick overview of the tools.

Memcheck
This is the tool that most people think of when they refer to Valgrind. It is the default tool.

The main things memcheck does are validate that memory reads are from initialized mem-
ory and that reads and writes are within the bounds of blocks of allocated heap memory.
The missing piece there is checking the bounds of stack memory — that requires instru-
mentation.

DRD and Helgrind
These two tools are both thread hazard detection tools. They will detect accesses to

memory from different threads that do not use some sort of locking mechanism. They will

2 of 10

Valgrind on FreeBSD
had a very long
and checkered history

https://github.com/paulfloyd/freebsd_valgrind

36FreeBSD Journal • September/October 2024

also warn of errors in the use of the pthread functions. The difference between the two is
that Helgrind will try to give the error context for all the threads involved with a hazard. DRD
only gives details for one thread.

Callgrind and Cachegrind
These two tools are for CPU profiling. Callgrind profiles function calls. Cachegrind is his-

torically used to profile CPU instructions with a basic cache and branch predictor model.
These models were never very accurate and now they are quite unrealistic. On top of that,
Valgrind does not do any speculative execution. For those reasons, the current version of
Valgrind no longer uses cache simulation with Cachegrind by default. Some people like the
precise nature of the instruction counts. Personally, I usually prefer sampling profilers like
Google perftools, (port devel/google-perftools), Linux perf and gprofng, especially for large
problems (runtimes in hours or days and memory use in the 100s of Gbytes).

Massif and DHAT
These two tools are memory profiling tools. Massif profiles memory over time. Person-

ally, I find it is overkill. Other tools exist that can usual-
ly produce equally good profiles without the Valgrind
overhead — Google perftools again, and HeapTrack
(port devel/heaptrack). There is an exception to this. If
your application makes heavy use of a custom allocator
based on mmap or statically links with a malloc library,
then those alternative tools won’t work. Massif doesn’t
need to interpose allocation functions in a shared li-
brary, and it also has an option to profile memory at
the mmap level. DHAT is the hidden gem in the Val-
grind suite. This tool profiles memory accesses to heap
memory. This gives you information that will allow you
to see which bits of memory are heavily used, memo-
ry that remains allocated for a long time, memory that
is never used. For memory blocks that aren’t too large,
it will also generate access histograms for that block.
From that, you can see holes or unused members in
structs and classes. You can also infer access patterns which might help in reordering mem-
bers to get them on the same cache line.

Valgrind Basics

Non-dependencies
In order to allow Valgrind to execute all of the client code (not just from main(), but from

the first instructions in the ELF file at program startup) and also to avoid any conflicts with
things like stdio buffers, Valgrind does not link with libc or any external libraries. I sometimes
joke that this is not so much C++ as C- -. That means Valgrind has its own implementation
of a subset of libc. To keep the function names distinct, it uses macros as a kind of pseu-
do-namespace. The Valgrind version of printf is VG_(printf) (great fun for code navigation!).
This also means that we can’t just add a third-party library and use it. The library needs to be
ported to use Valgrind’s libc subset. An example is that there is currently a bugzilla item to
add support for zstd compressed DWARF sections.

3 of 10

If your application
makes heavy use of a
custom allocator based
on mmap or statically links
with a malloc library,
then those alternative tools
won’t work.

https://github.com/gperftools/gperftools
https://www.freshports.org/devel/google-perftools/
https://www.sourceware.org/binutils/docs/gprofng.html
https://github.com/KDE/heaptrack
https://www.freshports.org/devel/heaptrack/

37FreeBSD Journal • September/October 2024

Paranoid programming
Valgrind is very cautious and makes extensive use of asserts that are enabled in release

builds. That makes it a little slower, but there are just so many things that can go wrong. It’s
best to be honest and bomb straight away rather than try to fake it and limp on.

Valgrind has extensive verbose and debug messages. You can crank up the debug/ver-
bosity levels by repeating -v and -d up to 4 times each. In addition to that there are several
more targeted trace options like —trace-syscalls=yes. Debugging in Valgrind can be quite
difficult and all these outputs can be a big aid when developing features. They are also use-
ful for support, e.g., asking the user to upload logs to the Valgrind bugzilla.

Code complexity
Valgrind itself is a bit of a beast. One of the hardest things about working on Valgrind

is that it touches on so many things. There is virtualization for four families of CPUS (Intel/
AMD, ARM, MIPS and PPC with a few sub-variants).
Each of those has multi-thousand-page manuals. You
often need to know all about opcodes to the level of
every bit that they might change. You need a good
knowledge of C, C++, and POSIX. You need to be able
to tell which OS syscalls need special handling. Know-
ing the ELF standard is important - we’ve had issues
because lld and mold do things differently. As well as
ELF there is DWARF for the debuginfo. So far, I’ve only
covered the core of Valgrind.

Despite the complexity, I don’t think that Valgrind
contains a huge amount of code. A clean git clone, not
counting the regression tests, is about 500kloc. With
the regression tests, that goes up to about 750kloc — while there are only 1000 or so re-
gression tests, some of them are enormous, covering vast numbers of combinations of bit
patterns, using scripts to generate all combinations of inputs to test.

The tools themself take up barely 10% of the code. It’s the CPU emulation and the “core”
that dominate. The core consists of many things — libc replacement, syscall wrappers,
memory management, gdb interface, DWARF reader, signal handling, internal data struc-
tures and function redirections.

One further complication when developing Valgrind is that, being entirely static, you can’t
build it with sanitizers. However, you can run Valgrind inside Valgrind! This requires a special
build so you end up with an outer Valgrind and inner Valgrind which is the guest of the outer
Valgrind, and a guest executable, guest of the inner Valgrind. Of course, that makes every-
thing slower to another degree. I do use the free Coverity Scan service to run static analy-
sis on FreeBSD builds of Valgrind. That mostly finds the usual kinds of false positives but has
found a few real bugs including some that I added. I still need to do some work to provide
code models for Valgrind’s internal libc replacements, particularly the allocation functions.

Valgrind at Runtime

Guest execution
The CPU emulation in Valgrind is called VEX (not to be confused with Intel Vector EXten-

sions). I’m not sure of the origins of VEX, possibly “Valgrind Emulation.”

4 of 10

Despite the complexity,
I don’t think that Valgrind
contains a huge amount
of code

38FreeBSD Journal • September/October 2024

When Valgrind runs, there is just one process — the host. Ptrace (as used by debuggers
such as lldb and gdb) is not used. The guest (sometimes referred to as the client) execut-
able runs within the host using Dynamic Binary Instrumentation (DBI). To perform the in-
strumentation, it performs dynamic recompilation using Just-In-Time (JIT) compilation. That
proceeds as follows:

•	Read a bunch of machine code.
•	Translate these into Valgrind Intermediary Representation (IR) — this is the same sort

of representation that compilers use, and by no coincidence Julian Seward also once
worked on the Glasgow Haskell Compiler

•	Instrument the IR depending on the needs of the tool
•	Perform optimization and rewriting on the IR
•	Store the JITted opcodes in a cache and execute them

Memory separation
Valgrind has its own memory manager. It maintains a strict separation of memory that

is used by the host and memory that is used for the guest. Many of the tools replace the
C and C++ allocation and deallocation functions. For these tools, it is the Valgrind memo-
ry manager that handles everything. Tools like cachegrind and callgrind do not replace the
memory allocators (and thus, they include the allocators in their performance profiling).

Valgrind startup
Valgrind starts off in assembler in its own _start routine (no libc, remember?), and the

first things that it does is create a temporary stack for itself, set up logging, and set up the
heap allocator. The point I want to make here is that there is little room for mistakes. If
something goes wrong, if you are lucky, you just won’t get filenames and line numbers in
error messages. If you’re not lucky, then all you will get is a load of hex addresses in a stack
trace. As you can imagine, you fail pretty quickly if you don’t have a stack. Once Valgrind has
done all its internal setup, it is ready to start the guest executable on the synthetic CPU. It
creates another stack for itself that has a configurable size, and it starts the guest execut-
able. From the perspective of the guest executable, it is just like it were running natively.

Handling syscalls, threads, and signals
Valgrind intercepts all system calls. Fortunately, most of them do nothing or just have a

few checks (do the registers contain initialized memory?) and then get forwarded to the ker-
nel. More complicated syscalls will have a behavior that depends on some operation code
(like umtx_op and ioctl). Finally, there are syscalls that do not get forwarded to the kernel
that need to be implemented by Valgrind. An example of that is ‘getcontext’ where Valgrind
needs to fill the context from its synthetic CPU rather than letting the kernel fill it from the
context of the Valgrind host.

One tricky thing is that the code running on the virtual CPU needs to stay on the virtual
CPU. While Valgrind executes some guest code natively on the physical CPU, that’s usual-
ly extremely limited in scope. If the control flow of the guest escapes back to the physical
CPU, things will go horribly wrong. I’ll give two examples of the contortions that are needed
to ensure Valgrind stays in control. Firstly, thread creation. When there are calls to ‘pthread_
create’ Valgrind needs to make sure that the OS doesn’t run the function passed in the third
argument. Instead, it needs to hook the third argument with a “run_thread_in_valgrind”
function. Similarly, for signals Valgrind needs to ensure that guest signal handlers run under

5 of 10

39FreeBSD Journal • September/October 2024

Valgrind, and then that the return from the signal handler goes back to running under Val-
grind. These things require some very hacky code. Valgrind also must do a lot of juggling of
signal masks. When the guest is running, signals are blocked with the host polling and han-
dling signals itself. When there is a syscall, signals are unmasked, the syscall performed, and
signals masked again. Without this little dance, blocking syscalls would not be interruptible.

The Valgrind Port
When I started looking at the Valgrind port, it was in a bad state. As mentioned earlier,

there was a push from 2009 to 2011 to get the port upstreamed. From 2011 to 2018 it slipped
back to minimal maintenance.

Valgrind on amd64 was broken due to a change to add large file support to the ‘stat’
family of functions. A couple of people had found patches for that. I386 was broken in sev-
eral ways. There were no FreeBSD-specific regression tests. Valgrind contains many tests
that run on all platforms, and then all combinations of OS and CPU architecture (e.g.,
amd64, freebsd and amd64-freebsd). There are 600 or so of these common tests. Linux
amd64 has about 200 or so tests on top of those common tests. I don’t remember how
many of those common tests were passing and failing, probably not much more than half.
Fortunately, there was a large amount of low hanging fruit. After sorting some serious is-
sues on i386, after about six months I had about 90%
of the regression tests working. That may sound good,
but there were still some serious limitations. Slogging
through the remaining 10% really was a case of the last
10% taking 90% of the time

War Stories
Signals leading to asserts

Signals. Oh my, I did have a hard time at first under-
standing all this. When running natively, signals will do
the following:

•	The kernel synthesizes a ucontext block which
contains the address where the signal occurred
and a call frame on the stack (or the alt stack), with the call frame return address set to
the ‘retpoline’ (a small asm function for returning from signal handlers)

•	The kernel transfers the running exe to the signal handler
•	The signal handler does its stuff and returns
•	The retpoline calls the sigreturn syscall
•	The kernel gets the original address before the signal from the content and transfers

execution there
On Linux, that picture holds for both non-threaded and threaded applications. On

FreeBSD, once you link with libthr, the picture changes. ‘thr_sighandler’ replaces the user
signal handler. This does some things like signal masking. It calls the user signal handler and
calls sigreturn itself.

Valgrind can’t let guest code execute. So, it handles all possible signals. It synthesizes its
own context with a bit more information. It replaces the guest signal handler with its own
run_signal_handler_in_valgrind function. The return address has set its own retpoline that
will call a valgrind_sigreturn that will transfer execution of the guest back to where came

6 of 10

When I started looking
at the Valgrind port,
it was in a bad state.

40FreeBSD Journal • September/October 2024

from. What could possibly go wrong? As it turns out, almost everything. There have been at
least two things that were broken in this flow that I’ve dealt with.

The first was a very small code change. Valgrind crashed when returning from guest sig-
nal handler functions on i386. After a lot of debugging, I narrowed this down to the assem-
bly retpoline function VG_(x86_freebsd_SUBST_FOR_sigreturn). At some point, there must
have been some change to the size of the ucontext structure. VG_(x86_freebsd_SUBST_
FOR_sigreturn) was looking for the return address at the wrong offset - 0x14 instead of 0x1c.
That meant the virtual CPU was resuming execution at some rubbish address. Boom! That
soon hit an assert.

My second big battle with signals was intermittent. If a signal arrives when Valgrind is
executing “ordinary” guest code on the virtual CPU, that is great because it knows exact-
ly where to resume from. But what happens if a signal arrives during a syscall? Things are a
lot more complicated because syscalls are one of the places where Valgrind is sort-of let-
ting the guest run on the physical CPU. Valgrind can’t make guest syscalls within its glob-
al lock. The syscall might block and that would cause
multi-threaded processes to hang. Instead, it releases
the lock and then makes the syscall. Now, if an inter-
rupt happens in the window when the lock is down,
Valgrind needs to try to figure out exactly where it hap-
pened so that it can decide whether it needs to be re-
started or not. To do that, the machine code function
that does the guest syscall, ML(do_syscall_for_client_
WRK), has an associate table of addresses that corre-
spond to setup, restart, complete, committed and fin-
ished. That worked well, but occasionally would fail with
an assert. The problem was with how the syscall status
gets set. On Linux, it’s just in the RAX register, and that gets returned from the small as-
sembly function, so nothing special needs to be done. On FreeBSD (and Darwin), it’s saved
in the carry flag. That needs a function call to set the carry flag in the synthetic CPU. And
if a signal arrives when Valgrind is in the LibVEX_GuestAMD64_put_rflag_c function call?
That case wasn’t handled — resulting in the assert. Unfortunately, in C there’s no easy way
to tell which function the instruction pointer is executing in. You can take the address of the
start of the function easily enough. But where is the end? I did consider using the Valgrind
DWARF debuginfo (which should always be present and Valgrind has DWARF reading code
built in). In the end, I went for an ugly and non-standard way. I took the address of a dum-
my function just after LibVEX_GuestAMD64_put_rflag_c. It happened to work on i386 and
amd64 even though there is no guarantee that the compiler and linker will lay out functions
in the same way that they appear in source files. Later, when I worked on the aarch64 port
this did not work because the carry flag setting function uses several helper functions, and
they aren’t all laid out in the same order. So, I switched to setting a global variable from the
assembler routine that makes guest system calls.

GlusterFS swapcontext crashes
One more war story. This was one of the first bug reports I got after I released the re-

booted FreeBSD Valgrind. A user running GlusterFS was getting crashes in Valgrind. After
quite a bit of toing and froing, asking for log files and traces, I narrowed it down to the swap-
context syscall. It turned out that switched-to context has two pointers to the signal mask in

7 of 10

What happens if a signal
arrives during a syscall?

https://github.com/paulfloyd/freebsdarm64_valgrind

the thread state that Valgrind saves. Only the first of them was getting set. Another case of
several days of debugging for a one-line code change.

FreeBSD issues
The work I’ve done on Valgrind has also revealed a few bugs in FreeBSD. I had to debug

one of those early on when I was working with i386 binaries running on amd64. I didn’t have
problems with i386 on i386 or amd64 on amd64 but i386 on amd64 was crashing early in
the guest startup, in the link loader (lib rtld). Eventually I discovered that this was a problem
with the detection of the pagesize. Normal standalone applications have this information
in their auxiliary vector (auxv) as AT_PAGESZ (the actual page size) and AT_PAGESIZES (a
pointer to table of possible page sizes). Valgrind synthesizes the aux for the guest, but at the
time, it ignored AT_PAGESIZES. No problem, rtld has a fallback to use the HW_PAGESIZE
sysctl. I386 has two possible page sizes, but amd64 has three possible page sizes. Unfortu-
nately, what was happening was that rtld running on amd64 was using the size of three for
PAGESIZES, but the i386 kernel component was using a size of two. The result was that the
sysctl was returning ENOMEM.

The Elephant in the Room — Sanitizers
Why bother using Valgrind now that we have the sanitizers? I’ll also turn that question

around and ask why use sanitizers when we have Valgrind? Roughly Address Sanitizer and
Memory Sanitizer are equivalent to Memcheck, and Thread Sanitizer is equivalent to DRD
and Helgrind. UB sanitizer has no Valgrind equivalent.

There’s one case when using Valgrind is simply out of the question. That is, if you are us-
ing an unsupported CPU architecture. Valgrind on FreeBSD only supports amd64, i386, and
aarch64. If you are using another architecture, then Valgrind is out of the question. Next,
Valgrind is lagging CPU development. That means if your application relies on using AVX512
then you can’t use Valgrind.

If both sanitizers and Valgrind work on your system, which should you choose? As ever, it
depends.

Valgrind Sanitizer

Speed Very slow, to the point of
being sometimes unusable

Slow

Stack bounds checking No Yes

Instrumentation required No Yes

Availability and support amd64 i386 aarch64 amd64 i386 aarch64 risc-v

When I said Valgrind doesn’t need instrumentation, that was a white lie. If you are using
custom allocators, then you need to write some annotation for either Valgrind or the sani-
tizers to work correctly. Similarly, if you use custom thread locking routines like a spin lock,
you need to annotate them again in both cases. Thread sanitizer does have the advantage
of having built-in annotation for standard library mechanisms that don’t rely on pthreads
such as std::atomic.

FreeBSD is lucky to have its toolchain based on LLVM. That means memory sanitizer is
easily available. GCC doesn’t have memory sanitizer, making it a lot more difficult to use on
Linux. Don’t underestimate how big a task “instrumentation required” is. For the best results
that means you should instrument all your dependent libraries. If you are a KDE applica-

41FreeBSD Journal • September/October 2024

8 of 10

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=246215
https://bugs.kde.org/show_bug.cgi?id=383010

tion developer, that means at least the following sets of libraries: KDE, Qt, libc++. There are
dozens of other dependencies (libfontconfig, libjpeg, etc.). As we Valgrind developers like to
say, “good luck with that!” If you are working for a big company and you have a dedicated
devops team that can set it all up, then it’s not so bad. I’d be interested in hearing from any-
one who has experience in using poudriere for sanitizer builds. I’ve also read about people
with large unit test suites complaining about the excessive build time and disk space require-
ments when building with sanitizers, particularly as you can’t do a “one stop shop” sanitizer
build (address and memory sanitizers are incompatible).

My conclusion here is that you should use whichever best suits your needs.

Future Work
Unfortunately, Valgrind is a tool that bitrots very

quickly. New versions of FreeBSD keep coming out
with new and changed syscalls. Extra items keep get-
ting added to the auxiliary vector. _umtx_op gets more
commands. libc++ keeps finding stranger ways of us-
ing pthreads. Compilers optimize things in ways that
look like they are unsafe. That means that work on Val-
grind is never finished.

CPU architectures
Valgrind on FreeBSD runs on amd64, i386, and

aarch64. I can’t see myself adding MIPS or PPC sup-
port. RISC-V hasn’t yet been added to the official Val-
grind source — a port is on the way, but currently it is being held up by discussions over the
implementation of vector instructions.

Bug list
The Valgrind Bugzilla has around 1000 open bugs in it. While many of these only affect

Linux/macOS/Solaris, there are a good number that do affect FreeBSD.
•	Helgrind produces false positives in thread local storage when there is a lot of thread

creation/destruction. That is because there is a cache for the pthread stacks that include
TLS. Valgrind doesn’t see the recycled TLS as having different memory addresses. Linux
works around this by deactivating the pthread stack cache via a GNU libc environment
variable. I haven’t found a way to do the same thing with FreeBSD libc.

•	When the guest coredumps, it is Valgrind that generates the core file. Currently, the
core file is pretty much with the same layout as a Linux core dump. That means lldb and
gdb can’t do much with the core file. I don’t think that is a big issue as not many people
use core files these days.

•	The thread scheduler. Valgrind has a very rudimentary thread scheduler. Thread con-
text switches occur at system call boundaries or every 100000 basic blocks. The default
scheduler simply releases the global lock, and it’s a question of luck as to which thread
gets the lock. That could well be the previous thread if it is hot in the CPU cache. Linux
has an optional fair scheduler based on futexes. Whilst that can’t be ported directly to
FreeBSD, it shouldn’t be too difficult to post it using _umtx_op.

•	On aarch64 there are occasional DRD false positives related to accesses in thread local
storage

42FreeBSD Journal • September/October 2024

You can’t do
a “one stop shop”
sanitizer build.

9 of 10

https://github.com/petrpavlu/valgrind-riscv64
https://bugs.kde.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=ASSIGNED&bug_status=REOPENED&list_id=2388402&product=valgrind&query_format=advanced

•	The code that verifies ioctls is very limited. Almost all ioctls only get basic size checking
done on their arguments. This needs to be extended, ideally also with testcases.

Conclusions
Working on Valgrind is quite a challenge. Debugging can be extremely difficult – I’ve

often found myself doing things like debugging the guest in parallel with debugging Val-
grind running the guest in parallel with using vgdb to debug the guest running in Valgrind.
I’ve learned a lot about ELF, signals, and syscalls as well, of course, as about Valgrind itself.
There’s always much to learn — the nuances of aarch64 and amd64 opcodes and the mul-
titude of tricks used in the dynamic recompilation.

PAUL FLOYD has been using FreeBSD intermittently since 2.1 and in earnest since 10.0.
He’s been a member of the Valgrind development team for four years. He has a PhD in
Electronics and lives near Grenoble, on the edge of the French Alps working for Siemens
EDA developing tools for analog electronic circuit simulation.

43FreeBSD Journal • September/October 2024

10 of 10

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

45FreeBSD Journal • September/October 2024

In the previous two columns we talked about the Digilent Arty Z7-20 with which I’ve been
experimenting. I find this an interesting board because not only can you toggle primary
pins to interface to the outside world, but you can build your own circuits into the fabric

and interface them to the processor. To do all this, however, you’ll need to use Xilinx/AMDs
software to configure and program the chip. Xilinx calls this tool suit Vivado and you can
download a version which works with the Zynq chips free of charge from their website.

So, what’s the downside? There has to be another shoe waiting to drop somewhere,
right? There are two really. First, Vivado only comes in versions for Windows and Linux. Sec-
ond, the download alone is currently 110GB. For years, I ran the Linux version under VM-
Ware on my Mac and it worked pretty well. But I ended up with several different versions of
my virtual machine, each with different versions of the software installed. These VMs were
large, starting at 30 gigs or so in the early days and growing most recently to 75 gigs in my
most recent installs. Make a couple of versions of these on a couple of machines, and, well,
that starts to add up, and I have trouble keeping
track of which one is the most recent.

I decided I wanted to simplify and centralize.
I want to store all the originals of vendor tools I
downloaded on my networked home file server,
which runs FreeBSD, naturally, and has terabytes
of ZFS space. After all, I can’t depend on my ven-
dor to continue to offer these past versions after
they’ve moved to newer versions. That’s under-
standable, but as a hobbyist, my work doesn’t
always proceed at their pace, so I want to make
sure I keep the original tool downloads. I wanted
my home directory and my working files and projects to be stored on my network server, so
they are available from all my machines and backed up like any other data on my file serv-
er. I wanted all the unzipped and installed versions of the vendor software to be stored on
my file server not in my VMs. This way I can use the magic of ZFS to checkpoint my vendor
software installs. My VMs are a light weight install of Linux, any Linux with which I want to

BY CHRISTOPHER R. BOWMAN

1 of 4

Digression
into bhyve

I can use the magic
of ZFS to checkpoint
my vendor software
installs.

https://digilent.com/shop/arty-z7-zynq-7000-soc-development-board/
https://www.xilinx.com/products/design-tools/vivado.html#editions
https://www.xilinx.com/products/design-tools/vivado/vivado-ml.html

46FreeBSD Journal • September/October 2024

experiment. If I need to upgrade or create a new VM, I know there is no work on there, it’s
all on my file server, so I just need a new basic install and everything else is all still on my file
server. I don’t have to copy over or reinstall the vendor tools. Since recent upgrades to the
compute environment at my home have included a FreeBSD machine with 16 cores and 128
Gigabytes of memory, I want to run these tools on that machine in anticipation of the point
in time where my designs get big enough that they take hours to synthesize. As a bonus, I
get a setup where someone else looking to replicate my work needs only a single FreeBSD
machine.

There seem to be two basic approaches at this
point. I could try to get the installer to run under
FreeBSD’s Linux emulation and run these tools
on my FreeBSD box natively without a Linux VM.
That would be AWESOME! But I’m not sure it
could be done or what problems I would run into
or how long that might take me to figure out, and
I was in the middle of some projects. This really
seems like the best approach, and I’d love to hear
if anyone has this working or wants to try it, but I
chose an approach that I thought would involve
less effort and be more likely to work. I’d heard a
lot about bhyve and decided to investigate that.
If I get a VM running a version of Linux support-
ed by Vivado natively, I figured that would be the
easiest. It only took me an evening or so of read-
ing and another of experimentation and I was
shockingly up and running.

I started with the FreeBSD handbook. It’s really
an amazing resource and kudos to everyone who
helped make it as brilliant as it is. Chapter 24.6. FreeBSD as a Host with bhyve has a really
good introduction to using FreeBSD as a host operating system. For the most part, I cob-
bled together a setup from there and a few other places on the internet. To setup, I created
the basic host setup for networking:

kldload vmm

ifconfig tap0 create up
ifconfig bridge0 create
ifconfig bridge0 addm igb0 addm tap0
ifconfig bridge0 up

I’m using the instructions in 24.6.5. Graphical UEFI Framebuffer for bhyve Guests since
I don’t want to muck around with setting up grub. Using the UEFI Framebuffer also allows
me to export the Linux display via vnc. I can connect from my FreeBSD host if I’m using that
or from any other machine on my network. Though perhaps I should think a bit more about
security.

I downloaded an ISO version of CentOS from before RedHat killed it, and I use the fol-
lowing VM configuration to do the install:

2 of 4

I started with
the FreeBSD handbook.
It’s really an amazing
resource and kudos to
everyone who helped
make it as brilliant as it is.

https://docs.freebsd.org/en/books/handbook/virtualization/#virtualization-host-bhyve
https://docs.freebsd.org/en/books/handbook/virtualization/#virtualization-host-bhyve

47FreeBSD Journal • September/October 2024

bhyve -c 4 -m 32G -w -H \
 -s 0,hostbridge \
 -s 3,ahci-cd,/u1/ISOs/CentOS/CentOS-7-x86_64-DVD-2009.iso \
 -s 4,ahci-hd,/dev/zvol/zroot/vms/centos7 \
 -s 5,virtio-net,tap0 \
 -s 29,fbuf,tcp=0.0.0.0:5900,w=1920,h=1200,wait \
 -s 30,xhci,tablet \
 -s 31,lpc -l com1,stdio \
 -l bootrom,/usr/local/share/uefi-firmware/BHYVE_UEFI.fd \
 vm0

With this I get a 4 core 32-gig virtual machine with the ISO, /u1/ISOs/CentOS/CentOS-
7-x86_64-DVD-2009.iso mounted in the guest as a CDROM. With this I can run a stan-
dard GUI install of Linux which is pretty straight forward. I’m running this on a bare zvol:
/dev/zvol/zroot/vms/centos7. I did this so I could use ZFS snapshots to snapshot my
VM any time I want (initially right after a clean install) so I can roll back at any time. If I put
the VM virtual disk on a ZFS files system, my
snapshot would apply to anything else on that file
filesystem, not just the VM virtual disk image. I
also heard using bare zvols can be faster. In hind-
sight, I could have used a single data set per VM
virtual disk image and used a file on that data set
as the VM virtual disk image rather than a zvol. If
there is one VM per data set, snapshots still apply
to just the VM. I’m not sure which is a better ap-
proach, and subsequent reading has called into
question the zvol vs. file backing speed aspect.
My tool run times aren’t yet long enough that
I’m concerned about eking out every last ounce
of performance. I’ve also heard the nvme devic-
es can be faster than the ahci-hd device for guest
OS that support them, but I haven’t experimented there. If it becomes an issue, it’s relatively
easy to create a new VM now that my data and install doesn’t reside on the VM.

Once I installed CentOS, I configured it to NFS to mount my home directory from my
FreeBSD machine, and I ran the Xilinx Vivado tool installation. It’s a gui install and pret-
ty straightforward. I just make sure I’m installing to an NFS mounted directory. Given the
volume of file operations, I was expecting this to be pretty painful, but it went surprisingly
quickly for a tool that ends up at 66 Gigabytes installed. Granted I have a very fast local net-
work. I don’t expect to edit the tool install, but I created a snapshot — this too for peace of
mind. I don’t want to have to run that install again.

When I applied for a Vivado license, I copied the ethernet MAC address that my Linux
guest reports. It seems to be stable across reboots, but I’d like to figure out how to config-
ure this so that I can be sure that the MAC address on my VM always matches my Vivado li-
cense MAC address.

Now I have a fairly generic CentOS VM with a Vivado installation that I can access via
VNC from any machine on my local network. At this point, I also installed a 15-year-old Li-
nux version of Civilization: Call to Power to play while my FPGA builds are compiling. I was
shocked at how well it works (and how addicted I am to it.)

3 of 4

Now I have a fairly
generic CentOS VM
with a Vivado installation.

48FreeBSD Journal • September/October 2024

While most of this works really well, there are a couple differences from my initial setup
using VMWare on a Mac. First VMWare supports pass through to the host filesystems. The
NFS mounts accomplish basically the same thing, and I can’t notice much speed penalty,
but I have to configure this in Linux instead of the VMWare gui. Not a big difference--I’m
comfortable with that. Where I do find myself wishing for the VMWare solution, is copy
and paste. If I select something in the Linux Guest gui, I can’t easily copy and paste that to
the machine on which I’m running the VNC viewer. This is occasionally a sore point, but
since the user filesystems I’m using under Linux are all NFS mounted from FreeBSD, I can
edit those files live just as easily from FreeBSD (or any other machine that’s NFS mounting
them). As a result, I do almost no editing or work under Linux. Mostly, I just switch to the Li-
nux VNC session window to run the Vivado compiles, and I do everything else outside that.
It works pretty well.

In the next column, we will start to use Vivado to build our first circuit.
If you’ve got feedback, complaints or flames on any of this I’d love to hear from you. You

can contact me at articles@ChrisBowman.com.

CHRISTOPHER R. BOWMAN first used BSD back in 1989 on a VAX 11/785 while working
2 floors below ground level at the Johns Hopkins University Applied Physics Laborato-
ry. He later used FreeBSD in the mid 90’s to design his first 2 Micron CMOS chip at the
University of Maryland. He’s been a FreeBSD user ever since and is interested in hard-
ware design and the software that drives it. He has worked in the semiconductor design
automation industry for the last 20 years.

4 of 4

mailto:articles@ChrisBowman.com

49FreeBSD Journal • September/October 2024

1 of 6

TCP sending and receiving behavior has evolved over the more than 40 years that TCP has
been used. Many of the advances have helped TCP to be able to transmit a reliable stream
of data at very high speeds. However, some of the enhancements (both in the stack and
in the network) come with downsides. Originally, a TCP stack sends a TCP segment in re-
sponse to a received TCP segment (an acknowledgment), or in response to the upper layer
providing new data to send, or due to a timer running off. The TCP sender also implements
a congestion control to protect the network against sending too fast. These features com-
bined can cause a TCP endpoint to be driven most of the time by an “ACK clock” as depict-
ed in the following figure.

Figure 1: An example of ACK-clocking

For simplicity it is assumed that packets are numbered and acknowledged and that the
receiver acknowledges every other packet to minimize the overhead. The arrival of the ac-
knowledgment labeled “1” on the bottom arrow acknowledges packets 0 and 1 that were
sent earlier (not shown in the figure), removes two of the outstanding packets, and allows
two more to be sent aka packets 8 and 9. At that point the sender is blocked (due to its con-
gestion control) waiting for the arrival of the ACK labeled “3” which will acknowledge pack-
et 2 and 3 and again send out the next two packets. This ACK-clocking was prevalent in a
large number of flows in the early Internet and can still be seen today in some circumstanc-
es. ACK-clocking forms a natural pacing of data through the Internet allowing packets to be
sent through a bottleneck, and oftentimes, by the time the next packets from the sender
arrives at the bottleneck, the previous packets are transmitted.

However, over the years, both the network and TCP optimizations have changed this be-
havior. One example of a change in behavior is often seen in cable networks. In such net-
works the down link bandwidth is large, but the uplink bandwidth is small (often only a frac-
tion of the downlink bandwidth).

BY RANDALL STEWART AND MICHAEL TÜXEN

Pacing in
the FreeBSD TCP Stack

50FreeBSD Journal • September/October 2024

 Due to this scarcity of the return path bandwidth, the cable modems will often keep only
the last acknowledgment sent (assuming it is seeing the acknowledgments in sequence)
until it decides to transmit. So, in the above example, instead of allowing ACK-1, ACK-3 and
ACK-5 to be transmitted by the cable modem, it might only send ACK-5. This would then
cause the sender to send one larger burst of 6 packets, instead of spacing out 3 separate
bursts of two packets.

Another example of a modifying behavior can be seen in other slotted technologies
(they hold off sending until their time slot is reached, and then they send out all queued
packets at that time) where the acknowledgments are queued up and then all sent at once
in one burst of 3 ACK packets. This type of technology would then interplay with TCP-LRO
(talked about in our last column) and thus either collapse the acknowledgments into one
single acknowledgment (if the old methods are being used) or queue up for simultaneous
processing of all of the acknowledgments before the send-
ing function is called. In either case, a large burst is again
sent instead of a series of small two packet bursts, separated
by a small increment of time (closely approximating the bot-
tleneck bandwidth plus some propagation delay).

Our example shows only six packets but several dozen
packets can burst all in one tcp_output() call. This is good
for CPU optimization but can cause packet loss in the net-
work since router buffers are limited and large bursts are
more likely to cause a tail drop. This loss would then reduce
the congestion window and hinder overall performance.

In addition to the two examples given above, there are
other reasons that TCP can become bursty (some of which
have always been inherent in TCP) such as application lim-
ited periods. This is where a sending application stalls for
some reason and delays the sending for some number of
milliseconds. During that time, the acknowledgments arrive but there is no more data to
send. But before all the data from the network is drained, which might cause a congestion
control reduction due to idleness, the application sends down another large block of data
to be sent. In such a case, the congestion window is open and a large sending burst can be
generated.

Yet another source of sources of burstiness may come from the peer TCP implementa-
tions that might decide to acknowledge every eighth or sixteenth packet instead of follow-
ing the TCP standard and acknowledging every other packet. Such large stretch acknowl-
edgments will again cause corresponding bursts. TCP pacing, described in the next section,
is a way to improve the sending of TCP segments to smooth out these bursts.

TCP Pacing
The following example illustrates TCP pacing. Let’s assume that a TCP connection is used

to transfer data to its peer at 12 megabits per second including the IP and TCP header. As-
suming a maximum IP packet size of 1500 bytes (which is 12,000 bits), this results in sending
1000 TCP segments per second. When using pacing, sending a TCP segment every milli-
second would be used. A timer that runs off every millisecond could be used to achieve this.
The following figure illustrates such a sending behavior.

2 of 6

Another example of
a modifying behavior
can be seen in other
slotted technologies.

51FreeBSD Journal • September/October 2024

Figure 2: A TCP connection paced at 12Mbps

Doing pacing in such a manner is possible but not desirable due to the high CPU cost
this would take. Instead, for efficiency reasons, when pacing, TCP sends small bursts of
packets with some amount of time between them. The size of the burst is generally cor-
related to the speed that the stack wishes to pace at. If pacing at a higher rate, larger bursts
are in order. If pacing at a lower rate, smaller bursts are used.

When designing a methodology for pacing a TCP stack, there are a number of approach-
es that can be taken. A common one is to have the TCP stack set a rate in a lower layer and
then hand off large bursts of data to be sent to that layer. The lower layer then just multi-
plexes packets from various TCP connections with appropriate timers to space out the data.
This is not the approach taken in the FreeBSD stack, specifically because it limits the control
the TCP stack has over the sending. If a connection needs to send a retransmission, that re-
transmission ends up falling in behind all the packets that are in queue to be sent.

In FreeBSD, a different approach was taken in letting the TCP stack control the sending
and creating of a timing system that is dedicated to calling the TCP stack to send data on a
connection when the pacing interval has ended. This leaves complete control of what to send
in the hands of the TCP stack, but can have some performance implications that need to be
compensated for. This new subsystem created for FreeBSD is described in the next section.

High Precision Timing System

Conceptual Overview
The High Precision Timing System (HPTS) is a loadable kernel module and provides a

simple interface to any TCP stack wishing to use it. Basically, there are two main functions
that a TCP stack would call to get service from HPTS:

•	tcp_hpts_insert() inserts a TCP connection into HPTS to have either tcp_output()
or, in some cases, TCP’s inbound packet processing call tfb_do_queued_segments() at
a specified interval.

•	tcp_hpts_remove() asks HPTS to remove a connection from HPTS. This is often used
when a connection is closed or otherwise no longer going to send data.

There are some other ancillary helping functions that are available in HPTS to help with
timing and other housekeeping functions, but the two functions listed above are the basic
building blocks that a TCP stack uses to implement pacing.

Details
Internally, each CPU has an HPTS wheel, which is an array of lists of connections want-

ing service at various time points. Each slot in the wheel represents 10 microseconds. When
a TCP connection is inserted, it is given the number of slots from now (i.e., 10 microsecond
intervals) that need to elapse before the tcp_output() function is called. The wheel is man-
aged by a combination of both a system timer (i.e., FreeBSD’s callout system) and a soft
timer as proposed in [1]. Basically every time a system call returns, before the return to user

3 of 6

52FreeBSD Journal • September/October 2024

space, HPTS can potentially be called to see if an HPTS wheel needs to be serviced.
The HTPS system also auto tunes its FreeBSD system timer having first a minimum (de-

faulting to 250 microseconds) and a maximum that it can tune up. If an HPTS wheel has
more connections and is getting called more often, the small amount of processing during
FreeBSD system timeout will raise the length of the system timer. There is also a low con-
nection threshold where if the number of connections drops below, then only the system
timer based approach is used. This helps avoid starving out connections by keeping them
on the wheel too long. HPTS attempts to yield a precision of the timer minimum aka 250
microseconds, but this is not guaranteed.

A TCP stack using HPTS to pace has some distinct responsibilities in order to collaborate
with HPTS to achieve its desired pace rate including:

•	Once a pacing timer has been started, the stack must not allow a send or other call to
tcp_output() to perform any output until the pacing timer expires. The stack can look
at the TF2_HPTS_CALLS flag in the t_flags2 field. This flag is or’ed onto the t_flags2
as HPTS calls the tcp_output() function and should be noted and cleared by the stack
inside its tcp_output() function.

•	At the expiration of a pacing timer, in the call from HPTS, the stack needs to verify the
time that it has been idle. It is possible that HPTS will call the stack later than expected,
and it is even possible that HPTS will call the stack early (though this is quite rare). The
amount of time that the stack is late or early needs to be included in the TCP stack’s
next pacing timeout calculation after it has sent data.

•	If the stack decides to use the FreeBSD timer system, it must also prevent timer call-
outs from sending data. The RACK and BBR stacks do not use the FreeBSD timer sys-
tem for timeouts, and, instead, just use HPTS as well.

•	If the stack is queuing packets from LRO, then HPTS may call the input function in-
stead of tcp_output(). If this occurs, no other call to tcp_output() will be made, since
it is assumed that the stack will call its output function if it is needed.

There are also a number of utilities that HTPS offers to assist a TCP stack including:
•	tcp_in_hpts() tells the stack if it is in the HPTS system.
•	tcp_set_hpts() sets up the CPU a connection will use, and is optional to call, since the

HPTS will do this for the connection if the stack does not call this function.
•	tcp_tv_to_hptstick() converts a struct timeval into the number of HPTS slots

the time is.
•	tcp_tv_to_usectick() converts a struct timeval into a 32-bit unsigned integer.
•	tcp_tv_to_lusectick() converts a struct timeval into a 64-bit unsigned integer.
•	tcp_tv_to_msectick() converts a struct timeval into a 32-bit unsigned millisecond

tick.
•	get_hpts_min_sleep_time() returns the minimum sleep time that HPTS is enforcing.
•	tcp_gethptstick() optionally fills in a struct timeval and returns the current

monolithic time as a 32-bit unsigned integer.
•	tcp_get_u64_usecs() optionally fills in a struct timeval and returns the current

monolithic time as a 64-bit unsigned integer.

sysctlsysctl-Variables
The HPTS system can be configured using sysctl-variables to change its performance

characteristics. These values come defaulted to a set of “reasonable” values, but depending

4 of 6

53FreeBSD Journal • September/October 2024

on the application, they might need to be changed. The values are settable under the
net.inet.tcp.hpts system control node.

The following tunables are available:

Name Default Description

no_wake_over_thresh 1 When inserting a connection into HPTS, if this boolean
value is true and the number of connections is larger than
cnt_thresh, do not allow scheduling of a HPTS run. If
the value is 0 (false), then when inserting a connection into
HPTS, it may cause the HPTS system to run connections aka
call tcp_output() for connections due to be scheduled.

less_sleep 1000 When HPTS finishes running, it knows how many slots it
ran over. If the number of slots is over this value then the
dynamic timer needs to be decreased.

more_sleep 100 When HPTS finishes running, if the number of slots run is
less than this value then the dynamic sleep is increased.

min_sleep 250 This is the absolute minimum value that the HPTS sleep
timer will lower to. Decreasing this will cause HPTS to run
more using more CPU. Increasing it will cause HPTS to run
less using less CPU, but it will affect precision negatively.

max_sleep 51200 This is the maximum sleep value (in HPTS ticks) that the
timer can reach. It is typically used only when no connec-
tions are being serviced i.e., HPTS will wake up every 51200
x 10 microseconds (approximately half a second).

loop_max 10 This value represents how many times HPTS will loop
when trying to service all its connections needing service.
When HPTS starts, it pulls together a list of connections
to be serviced and then starts to call tcp_output() on
each connection. If it takes too long to do this, then it’s
possible more connections need service, so it will loop
back around to again service connections. This value rep-
resents the maximum HPTS will do that loop, before be-
ing forced to sleep. Note that being called on return from
a function call never causes any looping to occur; only the
FreeBSD timer call is affected by this parameter.

dyn_maxsleep 5000 This is the maximum value that the dynamic timer can be
raised to when adjusting the callout time upwards is being
performed and seeing the need for more_sleep.

dyn_minsleep 250 This is the minimum value that the dynamic timer can
lower the timeout to when adjusting the callout time
down after seeing less_sleep.

cnt_thresh 100 This is the number of connections on the wheel that
are needed to start relying more on system call returns.
Above this threshold, both system call return and tim-
eouts cause HPTS to run, below this threshold, we rely
more heavily on the callout system to run HPTS.

5 of 6

54FreeBSD Journal • September/October 2024

Optimizations for Pacing in the RACK Stack
When pacing using the HPTS system, there is some performance loss as compared to a

pacing system that runs below a TCP stack. This is because when you call tcp_output() a
lot of decisions are made as to what to send. These decisions usually reference many cache
lines and cover a lot of code. For example, the default TCP stack has over 1500 lines of code
in the tcp_output() path and it includes no code to deal with pacing or burst mitigation.
For the default stack without pacing, going through such a large number of lines of code
and lots of cache misses is compensated easily by the
fact that it might output several dozen segments in
one send. Now, when you implement a pacing system
that is below the TCP stack, it can readily optimize the
sending of the various packets it has to do by keeping
track of what and how much it needs to send next. This
makes a lower layer pacing system have many fewer
cache misses.

In order to obtain similar performance with a high-
er layer system like HPTS, it becomes up to the TCP
stack to find ways to optimize the sending paths (both
transmissions and retransmissions). A stack can do this
by creating a “fast path” sending track. The RACK stack
has implemented these fast paths so that pacing does
not cost quite so much. The BBR stack currently does
pace, as required by the BBRv1 specification that was implemented, but it does not (as yet)
have the fast paths described below.

Fast Path Transmissions
When RACK is pacing the first time, a send call falls through its tcp_output() path and it

will derive the number of bytes that can be sent. This is then lowered to conform to the size
of the pacing microburst that has been established, but during that reduction, a “fast send
block” is set up with the amount that is left to send and pointer to where in the socket send
buffer that data is. A flag is also set so that RACK will remember next time that the fast path
is active. Note that if a timeout occurs, the fast path flag is cleared so that proper decisions
will be made as to which retransmission needs to be sent.

At the entry to RACK’s tcp_output() routine, the fast path flag is checked after validat-
ing that, pacing wise, it is ok to send. If the flag is set, it proceeds to use the previously saved
information to send new data without all of the typical checks that the output path would
normally do. This brings the cost of pacing down considerably, since much of the code and
cache misses are eliminated from this fast output path.

Fast Path Retransmissions
Retransmissions in RACK also have a fast path. This is made possible by RACK’s sendmap

which tracks all data that has been sent. When a piece of data needs retransmission, the
sendmap entry tells the fast path precisely where and how much data needs to be sent. This
bypasses typical socket buffer hunting and other overhead and provides a level of efficiency
even when sending retransmissions.

Retransmissions in RACK
also have a fast path.
This is made possible
by RACK’s sendmap.

6 of 6

55FreeBSD Journal • September/October 2024

Conclusion
HPTS provides a novel service TCP stacks can make use of to implement pacing. In or-

der to achieve efficiencies more equivalent to competing design approaches, both the
TCP stack and the HPTS need to cooperate to minimize overhead and provide for efficient
sending of packet bursts. This column only discusses the need for pacing and the infrastruc-
ture provided to do so in FreeBSD. Future columns will look at another key question when a
TCP stack paces, i.e., what rate to pace at.

Reference
1.	Mohit Aron, Peter Druschel: Soft Timers: Efficient Microsecond Software Timer Support

for Network Processing. In: ACM Transactions on Computer Systems, Vol. 18, No. 3, Au-
gust 2000, pp 197-228. https://dl.acm.org/doi/pdf/10.1145/319344.319167.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer since 2006. He specializes in Transports including TCP
and SCTP but has also been known to poke into other areas of the operating system. He is
currently an independent consultant

MICHAEL TÜXEN (tuexen@freebsd.org) is a professor at the Münster University of Applied
Sciences, a part-time contractor for Netflix, and a FreeBSD source committer since 2009.
His focus is on transport protocols like SCTP and TCP, their standardization at the IETF and
their implementation in FreeBSD.

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

https://dl.acm.org/doi/pdf/10.1145/319344.319167
mailto:rrs@freebsd.org
mailto:tuexen@freebsd.org

56FreeBSD Journal • September/October 2024

During the height of the Pandemic, I was staying home and the days were basically
like any other. Time passed slowly, and looking around my room, I became painful-
ly aware of how untidy it had become. Especially around my work desk, where piles

of books, notes, letters and other pieces of paper had started a race to the top. I decided to
do something about it. I put on a podcast and started picking up, ordering, throwing away,
and cleaning my way toward a clean desk top. This was a great feeling of accomplishment in
times of a global crisis. Motivated by that, I decided to start scanning those papers to reduce
the pile.

I had purchased a mobile scanner a while ago,
which connects via USB and uses some propri-
etary, yet efficient, scanning software. The scan-
ner was not smaller than a rolling pin, and a single
piece of paper would fit. Since I had time, I con-
tinued scanning each paper, giving the resulting
PDF a description and date, moving on to the
next one. This was tedious, but I got through it in
the end. Ordering them afterwards was anoth-
er long task: taxes, insurance, contracts, receipts,
bills (both sent and received), records, certificates,
and more needed to end up in the proper direc-
tories.

The scanning software was only 32-bit, and the entire scanning unit stopped working
a couple of years later — just when another pile of papers was dangerously close to tum-
bling over. It was time to look for alternatives. I had found textproc/py-ocrmypdf a few
months earlier. Essentially, this software re-scans PDFs and makes the text, which is some-
times a big picture, into something that one can extract and search individual words. It uses
pattern recognition to figure out the words and language and the results are surprisingly
good. I ran this over my existing scans and now I can do a full-text search over a document
and find how expensive my flight to BSDCan 2014 had been, for example.

Introducing Paperless-ngx
Then I found paperless-ngx, which ocrmypdf is a part of, but a comparably small part

of a greater whole. It is a document management system that you can pass documents
into and it creates an archive that is fully searchable, automatically detects the content (AI
is everywhere) and files it away according to rules you define. Basically, I can feed it a letter,

BY BENEDICT REUSCHLING

1 of 5

Go Paperless

PRACTICAL

This software re-scans
PDFs and makes the text
into something that one
can extract and search
individual words.

57FreeBSD Journal • September/October 2024

and it figures out that it comes from my bank, files it away based on the date it detected,
while ocrmypdf-ing it makes it searchable and adds useful metadata as well. The file ends
up in a directory that can either be subject related (everything I ever got from that particu-
lar bank), or by year-month-date-description, or something completely up to you. You can
also feed entire directories into paperless-ngx, and it figures out which documents it has al-
ready scanned and skips those, while the rest run through a processing pipeline. With each
document, the chances grow that future documents like it get properly categorized. Plus, it
comes with a nice web UI into which you can drag and drop files for scanning and find ex-
isting documents with ease. Another way to feed
documents into it is via an “incoming” folder that
you can share among colleagues in an office or
by sending documents as attachments (remem-
ber emails?) to it.

The software stack itself is impressive and
may be too intimidating, even with the excel-
lent documentation that the paperless-ngx web-
site provides. Plenty of software and services
have to work together to get a smooth scan-
ning experience. Luckily, there is a port for it
under deskutils/py-paperless-ngx. Even
better, the port maintainer created a post-install
man page detailing all the steps to get a working paperless-ngx stack going. Did I mention
that I love ports maintainers? With these instructions, I was able to set up my own paper-
less-ngx in no time. First on a Raspberry Pi 3 and then on a Pi 4. It works, even though the Pi
3 stretches your patience because of the required processing power to get the final result.
With the Pi 4 though, I’ve had good experiences and the scanning time is decent enough.
You could run this in the office or at home with a negligible footprint on your electricity
bill, while allowing other people to scan their docs without seeing those of others. If you’re
dealing with a lot of documents and want to have them digitized, take a look at the paper-
less-ngx setup we’re doing here. You can thank me later...

Paperless-ngx Setup
Whether you are using a Raspberry Pi, a different embedded device, or a full-blown serv-

er does not really matter. As long as it runs FreeBSD, you can follow along. I’m not spending
any time on the base installation or hardening the system, as there are plenty of other good
articles available that cover that. Just make sure to do exactly that when you connect your
paperless-ngx service to the network for other people to use.

Start by installing the paperless-ngx port:

pkg install deskutils/py-paperless-ngx

You’ll be greeted by the pkg-message after installation, advising you to take a look at
the man page for further instructions. Without them, you have only the basic service, which
does not do too much at this point.

Most files end up in /var/db/paperless, which you can probably put on a separate ZFS
dataset, but in my experience, the compression savings are not worth it. But your mileage
may vary and ZFS is generally a good idea for storing those precious documents.

2 of 5

With each document,
the chances grow that
future documents like it
get properly categorized.

https://docs.paperless-ngx.com/
https://docs.paperless-ngx.com/

58FreeBSD Journal • September/October 2024

 Paperless-ngx wants to have access to a Redis instance, which is what we’re installing
next:

pkg install redis
service redis enable
service redis start

Easy enough, having it both installed and started at boot time, as well as the current ses-
sion with these three commands. If you have Redis running somewhere else in your net-
work, you need to modify and add its credentials to /usr/local/etc/paperless.conf.
When running on localhost, it’s fine to run it without any special privileges since it won’t be
reachable from other hosts this way.

The configuration file is well documented with comments. Some items like THREADS_
PER_WORKER (mine is at 1 on the RPI 4), PAPERLESS_URL (IP address or DNS name), and
PAPERLESS_TIME_ZONE (I use UTF) should be modified to fit your system and network.
Many other settings are fine in their defaults for your first couple of scans. You can always
revisit this file and make modifications later.

Paperless-ngx is backed by a database to store various information. It’s as easy to initialize
as you can imagine using the following command:

service paperless-migrate onestart

If you want to run this every time the system starts, you can execute this service com-
mand as well:

service paperless-migrate enable

After that is done, we will start the backend services that paperless uses in order:

service paperless-beat enable
service paperless-consumer enable
service paperless-webui enable
service paperless-worker enable

You can find individual descriptions of these on the paperless-ngx website. Since we want
to use paperless-ngx without restarting the system, we start all these services next:

service paperless-beat start
service paperless-consumer start
service paperless-webui start
service paperless-worker start

Machine learning is all the rage behind the AI hype. Paperless-ngx uses it as well, but
mostly to aid in the character recognition to figure out the language of the document at
hand. To do that, it uses the Natural Language Toolkit (NLTK). To download the necessary
files, the following one-liner does the trick (replace the python version if necessary):

su -l paperless -c '/usr/local/bin/python3.11 -m nltk.downloader \
 stopwords snowball_data punkt -d /var/db/paperless/nltkdata'

Documents are classified in different ways, which is the responsibility of the Celery com-
ponent. This classification is done automatically upon scanning, but you can trigger it manu-
ally with this invocation:

3 of 5

59FreeBSD Journal • September/October 2024

su -l paperless -c '/usr/local/bin/paperless document_create_classifier'

Celery also runs an optional component called Flower. It monitors a cluster of workers
that Celery controls. This is an optional component and I run my instance without it. But for
those who want all the bells and whistles, here is how to start it:

service paperless-flower enable
service paperless-flower start

Setting up the Web UI
To protect your Django-based Web UI holding all your documents scanned so far, you

can set a superuser password like this:

su -l paperless -c '/usr/local/bin/paperless createsuperuser'

I run an nginx webserver already (SSL proxy), so I can re-use that to point to my paper-
less-ngx website. If you don’t have one already, the port also provides a ready-to-use con-
figuration file in /usr/local/share/examples/paperless-ngx/nginx.conf that you
just have to copy into your /usr/local/etc/nginx/ directory. This includes an SSL con-
figuration as well to not let people sniffing traffic figure out the login and doing other nasty
things. To create a key that’s valid for a whole year, run this lengthy openssl incantation (or
get a key via lets-encrypt):

openssl req -x509 -nodes -days 365 -newkey rsa:4096 \
 -keyout /usr/local/etc/nginx/selfsigned.key \
 -out /usr/local/etc/nginx/selfsigned.crt

Of course, you can make your own adjustments to the nginx.conf when necessary.
When finished, enable it to start at boot time and for the current session:

service nginx enable
service nginx start

Voila! Now point your browser to the web URL defined in the paperless.conf and log
into the application.

Basic configuration in the web UI
Before scanning your first document, I would recommend setting up a couple of items

in the “Manage” section on the left, first. To begin, Correspondents are people or organi-
zations that have sent you the paper. Think of banks, insurance companies, but also indi-
viduals. You can give them a descriptive name and configure paperless-ngx as to whether
it should file a document with this correspondent if it detects certain keywords or other
criteria.

 Next, define document types. A contract is different from a love letter, which differs
from a bill, which is not the same as certificate, and so on. This way, you can let paper-
less-ngx distinguish whether someone has sent you a bill or if that same person gave you a
contract. Both can happen, and especially government agencies have a tendency (at least
where I live) to correspond with you in different contexts, which you want to keep separate
from each other. That’s where paperless-ngx shines: once you defined your most active
Correspondents and their typical documents, you don’t need to worry about the proper
classification anymore. Simply add documents and let paperless-ngx do it’s work. With a bit

4 of 5

60FreeBSD Journal • September/October 2024

of tweaking, you can scan a whole bunch of documents. But how do you order them? That’s
where storage paths come in.

These paths define where in your filesystem the documents should end up and under
which directory hierarchy. I personally use
{created_year}/{correspondent}/{title},
which means I have directories like 2024/insur-
anceXZY/YearlyReport.pdf. If you want to file all
tax-related documents in a separate directory,
define that under the storage paths section and
define a rule to match when a document fits that
criteria. The best part is if you change your mind
about the ordering, changing the storage paths
will automatically move and rename your already
scanned documents within the file system with-
out you doing a lengthy mkdir, cp, mv, rm dance.

Ready, set, scan
That’s all for now. Drag a PDF document that you have lying around onto the web UI and

see paperless-ngx start processing it. The Logs section on the left has details on how paper-
less-ngx choses to match correspondents and other details, which help you fine-tune your
match rules. After processing is done, you can find the final result on the Dashboard or in
the Documents folder. Continue scanning some more documents. They’ll all end up in the
/var/db/paperless/media/documents/archive directory (if you have not changed it
in the paperless.conf), followed by the storage paths definition. I hope you’ll find paper-
less-ngx as useful for your documents as I do. I’m always looking forward to the next letter I
receive just to scan it with paperless-ngx. Thanks to the people creating paperless-ngx and
those who made the FreeBSD port such a great installation experience.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project
and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

5 of 5

But how do you
order them?
That’s where storage
paths come in.

https://www.bsdnow.tv/

BSD Events taking place through March 2025
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

61FreeBSD Journal • September/October 2024

FOSDEM 2025
February 1-2, 2025
Brussels, Belgium
https://fosdem.org/2025/

FOSDEM is a two-day event organized by volunteers to promote the widespread use of free
and open source software. Taking place February 1-2, 2025, FOSDEM offers open source and
free software developers a place to meet, share ideas and collaborate.

SCALE 22X
March 6-9, 2025
Pasadena, CA
https://www.socallinuxexpo.org/scale/22x

SCaLE 22X – the 22nd annual Southern California Linux Expo – will take place March 6-9,
2025, in Pasadena, CA.

SCaLE is the largest community-run open-source and free software conference in North
America.

AsiaBSDCon 2025
March 20-23, 2025
Tokyo, Japan
https://2025.asiabsdcon.org/

AsiaBSDCon is a conference for users and developers on BSD based systems. The
next conference will be held in Tokyo, Japan, March 20-23, 2025. The conference is for
anyone developing, deploying, and using systems based on FreeBSD, NetBSD, OpenBSD,
DragonFlyBSD, Darwin, and MacOS X. AsiaBSDCon is a technical conference that aims
to collect the best technical papers and presentations available to ensure that the latest
developments in our open source community are shared with the widest possible audience.

1 of 1

mailto:freebsd-doc@FreeBSD.org
https://fosdem.org/2025/
https://www.socallinuxexpo.org/scale/22x
https://2025.asiabsdcon.org/

	contents_button 2:
	Button 2:
	Button 3:

