
19FreeBSD Journal • September/October 2024

1 of 7

The Vector Packet Process (VPP) is a high-performance framework for processing
packets in userspace. Thanks to a project by the FreeBSD Foundation and RGNets, I
was sponsored to port VPP to FreeBSD and I am really happy to share some basic us-

age with readers of the FreeBSD Journal.
VPP enables forwarding and routing applications to be written in userspace with a

API-controllable interface. High-performance networking is made possible by DPDK on Li-
nux and DPDK and netmap on FreeBSD. These APIs allow direct 0 copy access to data and
can be used to make forwarding applications that can significantly exceed the host’s for-
warding performance.

VPP is a full-network router replacement, and, as such, needs some host configuration
to be usable. This article presents some complete examples of how to use VPP on FreeBSD
which most users should be able to follow with a virtual machine of their own. VPP on
FreeBSD also runs on real hardware.

This introduction to using VPP on FreeBSD gives an example set up showing how to do
things on FreeBSD. VPP resources can be difficult to find, the documentation from the proj-
ect at https://fd.io is high quality.

Lets Build a Router

VPP can be put to lots of purposes, the main one and easiest to configure is as some
form of router or bridge. For our example of using VPP as a router, we need to construct a
small example network with three nodes — a client, a server and the router.

To show you how VPP can be used on FreeBSD, I’m going to construct an example net-
work with the minimum of overhead. All you need is VPP and a FreeBSD system. I’m also
going to install iperf3 so we can generate and observe some traffic going through our rout-
er.

From a FreeBSD with a recent ports tree you can get our two required tools with the pkg
command like so:

host # pkg install vpp iperf3

To create three nodes for our network, we are going to take advantage of one of
FreeBSD’s most powerful features, VNET jails. VNET jails give us completely isolated in-

BY TOM JONES

Porting VPP to FreeBSD:
Basic Usage

https://fd.io

20FreeBSD Journal • September/October 2024

stances of the network stack, they are similar in operation to Linux Network Namespaces.
To create a VNET, we need to add the vnet option when creating a jail and pass along the
interfaces it will use.

Finally we will connect our nodes using epair interfaces. These offer the functionality of
two ends of an ethernet cable — if you are familiar with veth interfaces on linux they offer
similar functionality.

We can construct our test network with the following 5 commands:

host # ifconfig epair create
epair0a
host # ifconfig epair create
epair1a
jail -c name=router persist vnet vnet.interface=epair0a vnet.interface=epair1a
jail -c name=client persist vnet vnet.interface=epair0b
jail -c name=server persist vnet vnet.interface=epair1b

The flags to take note of in these jail commands are persist without which the jail will be
removed automatically because there are no processes running inside it, vnet which makes
this jail a vnet jail and vnet.interface= which assigns the given interface to the jail.

When an interface is moved to a new vnet, all of its configuration is stripped away \-
worth noting in case you configure an interface and then move it to a jail and wonder why
nothing is working.

Set up peers
Before turning to VPP, let us set up the client and server sides of the network. Each of

these needs to be given an ip address and the interface moved to the up state. We will also
need to configure default routes for the client and server jails.

host # jexec client
ifconfig
lo0: flags=8008<LOOPBACK,MULTICAST> metric 0 mtu 16384
 options=680003<RXCSUM,TXCSUM,LINKSTATE,RXCSUM_IPV6,TXCSUM_IPV6>
 groups: lo
 nd6 options=21<PERFORMNUD,AUTO_LINKLOCAL>
epair0b: flags=1008842<BROADCAST,RUNNING,SIMPLEX,MULTICAST,LOWER_UP> metric 0
mtu 1500
 options=8<VLAN_MTU>
 ether 02:90:ed:bd:8b:0b
 groups: epair
 media: Ethernet 10Gbase-T (10Gbase-T <full-duplex>)
 status: active
 nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL>
ifconfig epair0b inet 10.1.0.2/24 up
route add default 10.1.0.1
add net default: gateway 10.1.0.1

2 of 7

21FreeBSD Journal • September/October 2024

host # jexec server
ifconfig epair1b inet 10.2.0.2/24 up
route add default 10.2.0.1
add net default: gateway 10.2.0.1

Our client and server jails now have ip addresses and routes towards the VPP router.

Netmap requirements
For our examples, we are going to use VPP with netmap, a high-performance userspace

networking framework that ships as a default component of FreeBSD. Netmap requires a
little interface configuration before it can be used — the interface needs to be in the up
state and have the promisc option configured.

host # jexec router
ifconfig epair0a promisc up
ifconfig epair1a promisc up

Now we are able to start using VPP\!

VPP First Commands
VPP is very flexible and offers configuration by a config file, a command line interface,

and an API with mature Python bindings. VPP needs a base configuration telling it where to
get commands and the names of the files it uses for control if they aren’t the default. We
can give VPP a minimal configuration file on the command line as part of its arguments.
For this example, we tell VPP to drop into interactive mode – offer us a cli, and we tell vpp to
only load the plugins we will use (netmap) which is a sensible default.

If we don’t disable all plugins, we will either need to set up the machine to use DPDK, or
disable that plugin on its own. The syntax to do so is the same as the syntax to enable the
netmap plugin.

host # vpp “unix { interactive} plugins { plugin default { disable } plugin
netmap_plugin.so { enable } plugin ping_plugin.so { enable } }”
 _______ _ _ _____ ___
 __/ __/ _ \ (_)__ | | / / _ \/ _ \
 _/ _// // / / / _ \ | |/ / ___/ ___/
 /_/ /____(_)_/___/ |___/_/ /_/

vpp# show int
 Name Idx State MTU (L3/IP4/IP6/MPLS)
Counter Count
local0 0 down 0/0/0/0

If all is set up, you will see the VPP banner and the default cli prompt (vpp#).
The VPP command line interface offers a lot of options for the creation and manage-

ment of interfaces, groups like bridges, the addition of routes and tools for interrogating the
performance of a VPP instance.

The syntax of the interface configuration commands is similar to the linux iproute2 com-
mands – coming from FreeBSD these are a little alien, but they are reasonably clear once
you start to get used to them.

Our VPP server hasn’t been configured with any host interfaces yet, show int only lists
the default local0 interface.

3 of 7

22FreeBSD Journal • September/October 2024

To use our netmap interfaces with vpp, we need to create them first and then we can
configure them.

The create command lets us create new interfaces, we use the netmap subcommand
and the host interface.

vpp# create netmap name epair0a
netmap_create_if:164: mem 0x882800000
netmap-epair0a
vpp# create netmap name epair1a
netmap-epair1a

Each netmap interface is created with a prefix of netmap- . With the interfaces created,
we can configure them for use and start using VPP as a router.

vpp# set int ip addr netmap-epair0a 10.1.0.1/24
vpp# set int ip addr netmap-epair1a 10.2.0.1/24
vpp# show int addr
local0 (dn):
netmap-epair0a (dn):
 L3 10.1.0.1/24
netmap-epair1a (dn):
 L3 10.2.0.1/24

The command show int addr (the shortened version of show interface address)
confirms our ip address assignment has worked. We can then bring the interfaces up:

vpp# set int state netmap-epair0a up
vpp# set int state netmap-epair1a up
vpp# show int
 Name Idx State MTU (L3/IP4/IP6/MPLS)
Counter Count
local0 0 down 0/0/0/0
netmap-epair0a 1 up 9000/0/0/0
netmap-epair1a 2 up 9000/0/0/0

With our interfaces configured, we can test functionality from VPP by using the ping
command:

vpp# ping 10.1.0.2
116 bytes from 10.1.0.2: icmp_seq=2 ttl=64 time=7.9886 ms
116 bytes from 10.1.0.2: icmp_seq=3 ttl=64 time=10.9956 ms
116 bytes from 10.1.0.2: icmp_seq=4 ttl=64 time=2.6855 ms
116 bytes from 10.1.0.2: icmp_seq=5 ttl=64 time=7.6332 ms

Statistics: 5 sent, 4 received, 20% packet loss
vpp# ping 10.2.0.2
116 bytes from 10.2.0.2: icmp_seq=2 ttl=64 time=5.3665 ms
116 bytes from 10.2.0.2: icmp_seq=3 ttl=64 time=8.6759 ms
116 bytes from 10.2.0.2: icmp_seq=4 ttl=64 time=11.3806 ms

4 of 7

23FreeBSD Journal • September/October 2024

116 bytes from 10.2.0.2: icmp_seq=5 ttl=64 time=1.5466 ms

Statistics: 5 sent, 4 received, 20% packet loss

And if we jump to the client jail, we can verify that VPP is acting as a router:

client # ping 10.2.0.2
PING 10.2.0.2 (10.2.0.2): 56 data bytes
64 bytes from 10.2.0.2: icmp_seq=0 ttl=63 time=0.445 ms
64 bytes from 10.2.0.2: icmp_seq=1 ttl=63 time=0.457 ms
64 bytes from 10.2.0.2: icmp_seq=2 ttl=63 time=0.905 ms
^C
--- 10.2.0.2 ping statistics ---
3 packets transmitted, 3 packets received, 0.0% packet loss
round-trip min/avg/max/stddev = 0.445/0.602/0.905/0.214 ms

As a final piece of initial set up, we will start up an iperf3 server in the server jail and use
the client to do a TCP throughput test.:

server # iperf3 -s

client # iperf3 -c 10.2.0.2
Connecting to host 10.2.0.2, port 5201
[5] local 10.1.0.2 port 63847 connected to 10.2.0.2 port 5201
[ID] Interval Transfer Bitrate Retr Cwnd
[5] 0.00-1.01 sec 341 MBytes 2.84 Gbits/sec 0 1001 KBytes
[5] 1.01-2.01 sec 488 MBytes 4.07 Gbits/sec 0 1.02 MBytes
[5] 2.01-3.01 sec 466 MBytes 3.94 Gbits/sec 144 612 KBytes
[5] 3.01-4.07 sec 475 MBytes 3.76 Gbits/sec 0 829 KBytes
[5] 4.07-5.06 sec 452 MBytes 3.81 Gbits/sec 0 911 KBytes
[5] 5.06-6.03 sec 456 MBytes 3.96 Gbits/sec 0 911 KBytes
[5] 6.03-7.01 sec 415 MBytes 3.54 Gbits/sec 0 911 KBytes
[5] 7.01-8.07 sec 239 MBytes 1.89 Gbits/sec 201 259 KBytes
[5] 8.07-9.07 sec 326 MBytes 2.75 Gbits/sec 0 462 KBytes
[5] 9.07-10.06 sec 417 MBytes 3.51 Gbits/sec 0 667 KBytes
-
[ID] Interval Transfer Bitrate Retr
[5] 0.00-10.06 sec 3.98 GBytes 3.40 Gbits/sec 345 sender
[5] 0.00-10.06 sec 3.98 GBytes 3.40 Gbits/sec receiver

iperf Done.

VPP Analysis
Now that we have sent some traffic through VPP, the output of show int contains more

information:

5 of 7

24FreeBSD Journal • September/October 2024

vpp# show int
 Name Idx State MTU (L3/IP4/IP6/MPLS) Counter Count
local0 0 down 0/0/0/0
netmap-epair0a 1 up 9000/0/0/0 rx packets 4006606
 rx bytes 6065742126
 tx packets 2004365
 tx bytes 132304811
 drops 2
 ip4 4006605
netmap-epair1a 2 up 9000/0/0/0 rx packets 2004365
 rx bytes 132304811
 tx packets 4006606
 tx bytes 6065742126
 drops 2
 ip4 2004364

The interface command now gives us a summary of the bytes and packets that have
passed across the VPP interfaces. This can be really helpful to debug how traffic is moving
around, especially if your packets are going missing.

The V in VPP stands for vector and this has two meanings in the project. VPP aims to use
vectorised instructions to accelerate packet processing and it also bundles groups of pack-
ets together into vectors to optimize processing. The theory here is to take groups of pack-
ets through the processing graph together saving cache thrashing and giving optimal per-
formance.

VPP has a lot of tooling for interrogating what is happening while packets are processed.
Deep tuning is beyond this article, but a first tool to look at to understand what is happen-
ing in VPP is the runtime command.

Runtime data is gathered for each vector as it passes through the VPP processing graph,
it collects how long it takes to transverse each node and the number of vectors processed.

To use the run time tooling, it is good to have some traffic. Start a long running iperf3
throughput test like so:

client # iperf3 -c 10.2.0.2 -t 1000

Now in the VPP jail, we can clear the gathered run time statistics so far, wait a little bit and
then look at how we are doing:

vpp# clear runtime
... wait ~5 seconds ...
vpp# show runtime
Time 5.1, 10 sec internal node vector rate 124.30 loops/sec 108211.07
 vector rates in 4.4385e5, out 4.4385e5, drop 0.0000e0, punt 0.0000e0
 Name State Calls Vectors Suspends Clocks Vectors/Call
ethernet-input active 18478 2265684 0 3.03e1 122.62
fib-walk any wait 0 0 3 1.14e4 0.00
ip4-full-reassembly-expire-wal any wait 0 0 102 7.63e3 0.00
ip4-input active 18478 2265684 0 3.07e1 122.62
ip4-lookup active 18478 2265 684 0 3.22e1 122.62
ip4-rewrite active 18478 2265684 0 3.05e1 122.62
ip6-full-reassembly-expire-wal any wait 0 0 102 5.79e3 0.00
ip6-mld-process any wait 0 0 5 6.12e3 0.00

6 of 7

25FreeBSD Journal • September/October 2024

ip6-ra-process any wait 0 0 5 1.18e4 0.00
netmap-epair0a-output active 8383 755477 0 1.12e1 90.12
netmap-epair0a-tx active 8383 755477 0 1.17e3 90.12
netmap-epair1a-output active 12473 1510207 0 1.04e1 121.08
netmap-epair1a-tx active 12473 1510207 0 2.11e3 121.08
netmap-input interrupt wa 16698 2265684 0 4.75e2 135.69
unix-cli-process-0 active 0 0 13 7.34e4 0.00
unix-epoll-input polling 478752 0 0 2.98e4 0.00

The columns in the show runtime output give us a great idea of what is happening in
vpp. They tell us which nodes have been active since the run time counters were cleared,
their current state, how many times this node was called, how much time it used, and how
many vectors were processed per call. Out of the box, the maximum vector size for vpp is
255.

A final debugging task you can perform is to examine the packet processing graph in its
entirety with the show vlib graph command. This command shows each node and the
potential parent and child nodes which could lead to it.

Next Steps
VPP is an incredible piece of software — once the headaches of compatibility were ad-

dressed, the core parts of VPP were reasonably straightforward to port. Even with just min-
imal tuning, VPP is able to reach some impressive performance with netmap on FreeBSD,
and it does even better if you configure DPDK. The VPP documentation is slowly getting
more information about running on FreeBSD, but the developers really need example use
cases of VPP on FreeBSD.

If you start from this example of a simple network, it should be reasonably straight for-
ward to port it onto a large network with faster interfaces.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

7 of 7

