
34FreeBSD Journal • September/October 2024

1 of 10

Ifirst started using Valgrind in the early 2000s. Previously, I had a fair bit of experience with
Purify (now Unicom PuifyPlus) on Solaris/SPARC. To be honest, I wasn’t that impressed
with Valgrind. Sure, it didn’t need a special build process, but it lacked the ability to inter-

act with a debugger.
Switching briefly to FreeBSD, the first version I installed was 2.1 back in late 1995. Like Val-

grind, at first, I was not that impressed. At least it was “a unix” on my home PC if I needed
it. I continued to dabble with FreeBSD, installing new versions from time to time. My main
home system(s) were OS/2 till the late 90s, Solaris for long time until it went into suspend-
ed animation with 11.4. I also got a MacBook in 2007 which is mainly for “desktop” stuff — I
don’t find developing on macOS to be a gratifying experience.

I have always been a bit of a believer in Quality. I had
a short course on Product Quality at university which
converted me to the cause. Much later, I got round
to reading W. Edwards Deming. Though the writing is
rough around the edges, the message is strong and
clear. Since I’d studied Electronics, it was plainly obvi-
ous the benefits from quality processes that Japanese
companies had reaped in the second half of the 20th
century. I ended up working as a software developer in
the domain of Electronics simulation. Not surprisingly, I
carried on using tools like Valgrind.

About five years ago, I decided that it was time to
start giving back to the open-source community. Since
I was already expert in using Valgrind and had already dabbled a tiny bit with the source,
it was the logical project for me. I hesitated a bit between working on the macOS and
FreeBSD Valgrind ports. Two things put me off macOS — frequent major OS and userland
changes that break everything, and the difficulty of getting help from within Apple. There
are the XNU code source dumps and a few books, but after that you are on your own. I
plumped for FreeBSD. That also suited me because I was looking to switch away from So-
laris. There’s been a lot of cross-fertilization between Illumos and FreeBSD so I thought that
would ease the transition. In the meantime, macOS lingers in the official Valgrind repo, but
it hasn’t really been usable since version 10.12 in 2016.

History of Valgrind
Valgrind is now a bit over 20 years old. It started off on i386 Linux. Over the years, sever-

al other CPU architectures have been added (amd64, MIPS, ARM, PPC and s390x) as well as
other operating systems (macOS, Solaris, and, most recently, FreeBSD).

BY PAUL FLOYD
Valgrind on FreeBSD

I decided that it was time
to start giving back to the
open-source community.

https://www.unicomsi.com/products/purifyplus/
https://valgrind.org
https://en.wikipedia.org/wiki/W._Edwards_Deming
https://nnethercote.github.io/2022/07/27/twenty-years-of-valgrind.html

35FreeBSD Journal • September/October 2024

The tools have continued to evolve over those 20 years. Since the initial version in 2002,
the tools added were

2002 memcheck
2002 helgrind
2002 cachegrind
2004 massif
2006 callgrind
2008 drd
2009 exp-bbv
2018 DHAT
In addition, there are several tools that are maintained (or not) out-of-tree.
The development of Valgrind has been carried out by a small number of people - about

twenty have made significant contributions. A few corporations have lent a hand. RedHat/
IBM is probably the one that has contributed the most. Sun did contribute while Solaris was
being actively developed. Apple also contributed until they suddenly became GLP averse.

History of Valgrind on FreeBSD
Valgrind on FreeBSD had a very long and checkered history. I won’t mention everyone

who has contributed (and I’m not even sure that I have
the full list as some of the source code repos are no
longer accessible). Doug Robson did a lot of the initial
work in 2004. The next torch bearer was Stan Sedov
who maintained the port from 2009 to 2011. There was
a protracted push to get the FreeBSD source accepted
upstream at that time, but it didn’t quite make it. The
upstream maintainers were quite strict with their qual-
ity bar, and the FreeBSD port kept getting close, but
was never good enough. Secondly, someone needs to
maintain the port, preferably a member of the Valgrind
team. I don’t know why that never happened. I’ve been
maintaining the FreeBSD port since Apr 2021, and I’ve
had a Valgrind commit bit for a bit over 4 years. Now, I’m the main contributor to Valgrind.

The most recent big change was adding support for aarch64. I added the port to this
CPU in April 2024, in time for the 3.23 release of Valgrind.

The Valgrind Tools
Before I dive into the internals of Valgrind, I’ll give a quick overview of the tools.

Memcheck
This is the tool that most people think of when they refer to Valgrind. It is the default tool.

The main things memcheck does are validate that memory reads are from initialized mem-
ory and that reads and writes are within the bounds of blocks of allocated heap memory.
The missing piece there is checking the bounds of stack memory — that requires instru-
mentation.

DRD and Helgrind
These two tools are both thread hazard detection tools. They will detect accesses to

memory from different threads that do not use some sort of locking mechanism. They will

2 of 10

Valgrind on FreeBSD
had a very long
and checkered history

https://github.com/paulfloyd/freebsd_valgrind

36FreeBSD Journal • September/October 2024

also warn of errors in the use of the pthread functions. The difference between the two is
that Helgrind will try to give the error context for all the threads involved with a hazard. DRD
only gives details for one thread.

Callgrind and Cachegrind
These two tools are for CPU profiling. Callgrind profiles function calls. Cachegrind is his-

torically used to profile CPU instructions with a basic cache and branch predictor model.
These models were never very accurate and now they are quite unrealistic. On top of that,
Valgrind does not do any speculative execution. For those reasons, the current version of
Valgrind no longer uses cache simulation with Cachegrind by default. Some people like the
precise nature of the instruction counts. Personally, I usually prefer sampling profilers like
Google perftools, (port devel/google-perftools), Linux perf and gprofng, especially for large
problems (runtimes in hours or days and memory use in the 100s of Gbytes).

Massif and DHAT
These two tools are memory profiling tools. Massif profiles memory over time. Person-

ally, I find it is overkill. Other tools exist that can usual-
ly produce equally good profiles without the Valgrind
overhead — Google perftools again, and HeapTrack
(port devel/heaptrack). There is an exception to this. If
your application makes heavy use of a custom allocator
based on mmap or statically links with a malloc library,
then those alternative tools won’t work. Massif doesn’t
need to interpose allocation functions in a shared li-
brary, and it also has an option to profile memory at
the mmap level. DHAT is the hidden gem in the Val-
grind suite. This tool profiles memory accesses to heap
memory. This gives you information that will allow you
to see which bits of memory are heavily used, memo-
ry that remains allocated for a long time, memory that
is never used. For memory blocks that aren’t too large,
it will also generate access histograms for that block.
From that, you can see holes or unused members in
structs and classes. You can also infer access patterns which might help in reordering mem-
bers to get them on the same cache line.

Valgrind Basics

Non-dependencies
In order to allow Valgrind to execute all of the client code (not just from main(), but from

the first instructions in the ELF file at program startup) and also to avoid any conflicts with
things like stdio buffers, Valgrind does not link with libc or any external libraries. I sometimes
joke that this is not so much C++ as C- -. That means Valgrind has its own implementation
of a subset of libc. To keep the function names distinct, it uses macros as a kind of pseu-
do-namespace. The Valgrind version of printf is VG_(printf) (great fun for code navigation!).
This also means that we can’t just add a third-party library and use it. The library needs to be
ported to use Valgrind’s libc subset. An example is that there is currently a bugzilla item to
add support for zstd compressed DWARF sections.

3 of 10

If your application
makes heavy use of a
custom allocator based
on mmap or statically links
with a malloc library,
then those alternative tools
won’t work.

https://github.com/gperftools/gperftools
https://www.freshports.org/devel/google-perftools/
https://www.sourceware.org/binutils/docs/gprofng.html
https://github.com/KDE/heaptrack
https://www.freshports.org/devel/heaptrack/

37FreeBSD Journal • September/October 2024

Paranoid programming
Valgrind is very cautious and makes extensive use of asserts that are enabled in release

builds. That makes it a little slower, but there are just so many things that can go wrong. It’s
best to be honest and bomb straight away rather than try to fake it and limp on.

Valgrind has extensive verbose and debug messages. You can crank up the debug/ver-
bosity levels by repeating -v and -d up to 4 times each. In addition to that there are several
more targeted trace options like —trace-syscalls=yes. Debugging in Valgrind can be quite
difficult and all these outputs can be a big aid when developing features. They are also use-
ful for support, e.g., asking the user to upload logs to the Valgrind bugzilla.

Code complexity
Valgrind itself is a bit of a beast. One of the hardest things about working on Valgrind

is that it touches on so many things. There is virtualization for four families of CPUS (Intel/
AMD, ARM, MIPS and PPC with a few sub-variants).
Each of those has multi-thousand-page manuals. You
often need to know all about opcodes to the level of
every bit that they might change. You need a good
knowledge of C, C++, and POSIX. You need to be able
to tell which OS syscalls need special handling. Know-
ing the ELF standard is important - we’ve had issues
because lld and mold do things differently. As well as
ELF there is DWARF for the debuginfo. So far, I’ve only
covered the core of Valgrind.

Despite the complexity, I don’t think that Valgrind
contains a huge amount of code. A clean git clone, not
counting the regression tests, is about 500kloc. With
the regression tests, that goes up to about 750kloc — while there are only 1000 or so re-
gression tests, some of them are enormous, covering vast numbers of combinations of bit
patterns, using scripts to generate all combinations of inputs to test.

The tools themself take up barely 10% of the code. It’s the CPU emulation and the “core”
that dominate. The core consists of many things — libc replacement, syscall wrappers,
memory management, gdb interface, DWARF reader, signal handling, internal data struc-
tures and function redirections.

One further complication when developing Valgrind is that, being entirely static, you can’t
build it with sanitizers. However, you can run Valgrind inside Valgrind! This requires a special
build so you end up with an outer Valgrind and inner Valgrind which is the guest of the outer
Valgrind, and a guest executable, guest of the inner Valgrind. Of course, that makes every-
thing slower to another degree. I do use the free Coverity Scan service to run static analy-
sis on FreeBSD builds of Valgrind. That mostly finds the usual kinds of false positives but has
found a few real bugs including some that I added. I still need to do some work to provide
code models for Valgrind’s internal libc replacements, particularly the allocation functions.

Valgrind at Runtime

Guest execution
The CPU emulation in Valgrind is called VEX (not to be confused with Intel Vector EXten-

sions). I’m not sure of the origins of VEX, possibly “Valgrind Emulation.”

4 of 10

Despite the complexity,
I don’t think that Valgrind
contains a huge amount
of code

38FreeBSD Journal • September/October 2024

When Valgrind runs, there is just one process — the host. Ptrace (as used by debuggers
such as lldb and gdb) is not used. The guest (sometimes referred to as the client) execut-
able runs within the host using Dynamic Binary Instrumentation (DBI). To perform the in-
strumentation, it performs dynamic recompilation using Just-In-Time (JIT) compilation. That
proceeds as follows:

•	Read a bunch of machine code.
•	Translate these into Valgrind Intermediary Representation (IR) — this is the same sort

of representation that compilers use, and by no coincidence Julian Seward also once
worked on the Glasgow Haskell Compiler

•	Instrument the IR depending on the needs of the tool
•	Perform optimization and rewriting on the IR
•	Store the JITted opcodes in a cache and execute them

Memory separation
Valgrind has its own memory manager. It maintains a strict separation of memory that

is used by the host and memory that is used for the guest. Many of the tools replace the
C and C++ allocation and deallocation functions. For these tools, it is the Valgrind memo-
ry manager that handles everything. Tools like cachegrind and callgrind do not replace the
memory allocators (and thus, they include the allocators in their performance profiling).

Valgrind startup
Valgrind starts off in assembler in its own _start routine (no libc, remember?), and the

first things that it does is create a temporary stack for itself, set up logging, and set up the
heap allocator. The point I want to make here is that there is little room for mistakes. If
something goes wrong, if you are lucky, you just won’t get filenames and line numbers in
error messages. If you’re not lucky, then all you will get is a load of hex addresses in a stack
trace. As you can imagine, you fail pretty quickly if you don’t have a stack. Once Valgrind has
done all its internal setup, it is ready to start the guest executable on the synthetic CPU. It
creates another stack for itself that has a configurable size, and it starts the guest execut-
able. From the perspective of the guest executable, it is just like it were running natively.

Handling syscalls, threads, and signals
Valgrind intercepts all system calls. Fortunately, most of them do nothing or just have a

few checks (do the registers contain initialized memory?) and then get forwarded to the ker-
nel. More complicated syscalls will have a behavior that depends on some operation code
(like umtx_op and ioctl). Finally, there are syscalls that do not get forwarded to the kernel
that need to be implemented by Valgrind. An example of that is ‘getcontext’ where Valgrind
needs to fill the context from its synthetic CPU rather than letting the kernel fill it from the
context of the Valgrind host.

One tricky thing is that the code running on the virtual CPU needs to stay on the virtual
CPU. While Valgrind executes some guest code natively on the physical CPU, that’s usual-
ly extremely limited in scope. If the control flow of the guest escapes back to the physical
CPU, things will go horribly wrong. I’ll give two examples of the contortions that are needed
to ensure Valgrind stays in control. Firstly, thread creation. When there are calls to ‘pthread_
create’ Valgrind needs to make sure that the OS doesn’t run the function passed in the third
argument. Instead, it needs to hook the third argument with a “run_thread_in_valgrind”
function. Similarly, for signals Valgrind needs to ensure that guest signal handlers run under

5 of 10

39FreeBSD Journal • September/October 2024

Valgrind, and then that the return from the signal handler goes back to running under Val-
grind. These things require some very hacky code. Valgrind also must do a lot of juggling of
signal masks. When the guest is running, signals are blocked with the host polling and han-
dling signals itself. When there is a syscall, signals are unmasked, the syscall performed, and
signals masked again. Without this little dance, blocking syscalls would not be interruptible.

The Valgrind Port
When I started looking at the Valgrind port, it was in a bad state. As mentioned earlier,

there was a push from 2009 to 2011 to get the port upstreamed. From 2011 to 2018 it slipped
back to minimal maintenance.

Valgrind on amd64 was broken due to a change to add large file support to the ‘stat’
family of functions. A couple of people had found patches for that. I386 was broken in sev-
eral ways. There were no FreeBSD-specific regression tests. Valgrind contains many tests
that run on all platforms, and then all combinations of OS and CPU architecture (e.g.,
amd64, freebsd and amd64-freebsd). There are 600 or so of these common tests. Linux
amd64 has about 200 or so tests on top of those common tests. I don’t remember how
many of those common tests were passing and failing, probably not much more than half.
Fortunately, there was a large amount of low hanging fruit. After sorting some serious is-
sues on i386, after about six months I had about 90%
of the regression tests working. That may sound good,
but there were still some serious limitations. Slogging
through the remaining 10% really was a case of the last
10% taking 90% of the time

War Stories
Signals leading to asserts

Signals. Oh my, I did have a hard time at first under-
standing all this. When running natively, signals will do
the following:

•	The kernel synthesizes a ucontext block which
contains the address where the signal occurred
and a call frame on the stack (or the alt stack), with the call frame return address set to
the ‘retpoline’ (a small asm function for returning from signal handlers)

•	The kernel transfers the running exe to the signal handler
•	The signal handler does its stuff and returns
•	The retpoline calls the sigreturn syscall
•	The kernel gets the original address before the signal from the content and transfers

execution there
On Linux, that picture holds for both non-threaded and threaded applications. On

FreeBSD, once you link with libthr, the picture changes. ‘thr_sighandler’ replaces the user
signal handler. This does some things like signal masking. It calls the user signal handler and
calls sigreturn itself.

Valgrind can’t let guest code execute. So, it handles all possible signals. It synthesizes its
own context with a bit more information. It replaces the guest signal handler with its own
run_signal_handler_in_valgrind function. The return address has set its own retpoline that
will call a valgrind_sigreturn that will transfer execution of the guest back to where came

6 of 10

When I started looking
at the Valgrind port,
it was in a bad state.

40FreeBSD Journal • September/October 2024

from. What could possibly go wrong? As it turns out, almost everything. There have been at
least two things that were broken in this flow that I’ve dealt with.

The first was a very small code change. Valgrind crashed when returning from guest sig-
nal handler functions on i386. After a lot of debugging, I narrowed this down to the assem-
bly retpoline function VG_(x86_freebsd_SUBST_FOR_sigreturn). At some point, there must
have been some change to the size of the ucontext structure. VG_(x86_freebsd_SUBST_
FOR_sigreturn) was looking for the return address at the wrong offset - 0x14 instead of 0x1c.
That meant the virtual CPU was resuming execution at some rubbish address. Boom! That
soon hit an assert.

My second big battle with signals was intermittent. If a signal arrives when Valgrind is
executing “ordinary” guest code on the virtual CPU, that is great because it knows exact-
ly where to resume from. But what happens if a signal arrives during a syscall? Things are a
lot more complicated because syscalls are one of the places where Valgrind is sort-of let-
ting the guest run on the physical CPU. Valgrind can’t make guest syscalls within its glob-
al lock. The syscall might block and that would cause
multi-threaded processes to hang. Instead, it releases
the lock and then makes the syscall. Now, if an inter-
rupt happens in the window when the lock is down,
Valgrind needs to try to figure out exactly where it hap-
pened so that it can decide whether it needs to be re-
started or not. To do that, the machine code function
that does the guest syscall, ML(do_syscall_for_client_
WRK), has an associate table of addresses that corre-
spond to setup, restart, complete, committed and fin-
ished. That worked well, but occasionally would fail with
an assert. The problem was with how the syscall status
gets set. On Linux, it’s just in the RAX register, and that gets returned from the small as-
sembly function, so nothing special needs to be done. On FreeBSD (and Darwin), it’s saved
in the carry flag. That needs a function call to set the carry flag in the synthetic CPU. And
if a signal arrives when Valgrind is in the LibVEX_GuestAMD64_put_rflag_c function call?
That case wasn’t handled — resulting in the assert. Unfortunately, in C there’s no easy way
to tell which function the instruction pointer is executing in. You can take the address of the
start of the function easily enough. But where is the end? I did consider using the Valgrind
DWARF debuginfo (which should always be present and Valgrind has DWARF reading code
built in). In the end, I went for an ugly and non-standard way. I took the address of a dum-
my function just after LibVEX_GuestAMD64_put_rflag_c. It happened to work on i386 and
amd64 even though there is no guarantee that the compiler and linker will lay out functions
in the same way that they appear in source files. Later, when I worked on the aarch64 port
this did not work because the carry flag setting function uses several helper functions, and
they aren’t all laid out in the same order. So, I switched to setting a global variable from the
assembler routine that makes guest system calls.

GlusterFS swapcontext crashes
One more war story. This was one of the first bug reports I got after I released the re-

booted FreeBSD Valgrind. A user running GlusterFS was getting crashes in Valgrind. After
quite a bit of toing and froing, asking for log files and traces, I narrowed it down to the swap-
context syscall. It turned out that switched-to context has two pointers to the signal mask in

7 of 10

What happens if a signal
arrives during a syscall?

https://github.com/paulfloyd/freebsdarm64_valgrind

the thread state that Valgrind saves. Only the first of them was getting set. Another case of
several days of debugging for a one-line code change.

FreeBSD issues
The work I’ve done on Valgrind has also revealed a few bugs in FreeBSD. I had to debug

one of those early on when I was working with i386 binaries running on amd64. I didn’t have
problems with i386 on i386 or amd64 on amd64 but i386 on amd64 was crashing early in
the guest startup, in the link loader (lib rtld). Eventually I discovered that this was a problem
with the detection of the pagesize. Normal standalone applications have this information
in their auxiliary vector (auxv) as AT_PAGESZ (the actual page size) and AT_PAGESIZES (a
pointer to table of possible page sizes). Valgrind synthesizes the aux for the guest, but at the
time, it ignored AT_PAGESIZES. No problem, rtld has a fallback to use the HW_PAGESIZE
sysctl. I386 has two possible page sizes, but amd64 has three possible page sizes. Unfortu-
nately, what was happening was that rtld running on amd64 was using the size of three for
PAGESIZES, but the i386 kernel component was using a size of two. The result was that the
sysctl was returning ENOMEM.

The Elephant in the Room — Sanitizers
Why bother using Valgrind now that we have the sanitizers? I’ll also turn that question

around and ask why use sanitizers when we have Valgrind? Roughly Address Sanitizer and
Memory Sanitizer are equivalent to Memcheck, and Thread Sanitizer is equivalent to DRD
and Helgrind. UB sanitizer has no Valgrind equivalent.

There’s one case when using Valgrind is simply out of the question. That is, if you are us-
ing an unsupported CPU architecture. Valgrind on FreeBSD only supports amd64, i386, and
aarch64. If you are using another architecture, then Valgrind is out of the question. Next,
Valgrind is lagging CPU development. That means if your application relies on using AVX512
then you can’t use Valgrind.

If both sanitizers and Valgrind work on your system, which should you choose? As ever, it
depends.

Valgrind Sanitizer

Speed Very slow, to the point of
being sometimes unusable

Slow

Stack bounds checking No Yes

Instrumentation required No Yes

Availability and support amd64 i386 aarch64 amd64 i386 aarch64 risc-v

When I said Valgrind doesn’t need instrumentation, that was a white lie. If you are using
custom allocators, then you need to write some annotation for either Valgrind or the sani-
tizers to work correctly. Similarly, if you use custom thread locking routines like a spin lock,
you need to annotate them again in both cases. Thread sanitizer does have the advantage
of having built-in annotation for standard library mechanisms that don’t rely on pthreads
such as std::atomic.

FreeBSD is lucky to have its toolchain based on LLVM. That means memory sanitizer is
easily available. GCC doesn’t have memory sanitizer, making it a lot more difficult to use on
Linux. Don’t underestimate how big a task “instrumentation required” is. For the best results
that means you should instrument all your dependent libraries. If you are a KDE applica-

41FreeBSD Journal • September/October 2024

8 of 10

https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=246215
https://bugs.kde.org/show_bug.cgi?id=383010

tion developer, that means at least the following sets of libraries: KDE, Qt, libc++. There are
dozens of other dependencies (libfontconfig, libjpeg, etc.). As we Valgrind developers like to
say, “good luck with that!” If you are working for a big company and you have a dedicated
devops team that can set it all up, then it’s not so bad. I’d be interested in hearing from any-
one who has experience in using poudriere for sanitizer builds. I’ve also read about people
with large unit test suites complaining about the excessive build time and disk space require-
ments when building with sanitizers, particularly as you can’t do a “one stop shop” sanitizer
build (address and memory sanitizers are incompatible).

My conclusion here is that you should use whichever best suits your needs.

Future Work
Unfortunately, Valgrind is a tool that bitrots very

quickly. New versions of FreeBSD keep coming out
with new and changed syscalls. Extra items keep get-
ting added to the auxiliary vector. _umtx_op gets more
commands. libc++ keeps finding stranger ways of us-
ing pthreads. Compilers optimize things in ways that
look like they are unsafe. That means that work on Val-
grind is never finished.

CPU architectures
Valgrind on FreeBSD runs on amd64, i386, and

aarch64. I can’t see myself adding MIPS or PPC sup-
port. RISC-V hasn’t yet been added to the official Val-
grind source — a port is on the way, but currently it is being held up by discussions over the
implementation of vector instructions.

Bug list
The Valgrind Bugzilla has around 1000 open bugs in it. While many of these only affect

Linux/macOS/Solaris, there are a good number that do affect FreeBSD.
•	Helgrind produces false positives in thread local storage when there is a lot of thread

creation/destruction. That is because there is a cache for the pthread stacks that include
TLS. Valgrind doesn’t see the recycled TLS as having different memory addresses. Linux
works around this by deactivating the pthread stack cache via a GNU libc environment
variable. I haven’t found a way to do the same thing with FreeBSD libc.

•	When the guest coredumps, it is Valgrind that generates the core file. Currently, the
core file is pretty much with the same layout as a Linux core dump. That means lldb and
gdb can’t do much with the core file. I don’t think that is a big issue as not many people
use core files these days.

•	The thread scheduler. Valgrind has a very rudimentary thread scheduler. Thread con-
text switches occur at system call boundaries or every 100000 basic blocks. The default
scheduler simply releases the global lock, and it’s a question of luck as to which thread
gets the lock. That could well be the previous thread if it is hot in the CPU cache. Linux
has an optional fair scheduler based on futexes. Whilst that can’t be ported directly to
FreeBSD, it shouldn’t be too difficult to post it using _umtx_op.

•	On aarch64 there are occasional DRD false positives related to accesses in thread local
storage

42FreeBSD Journal • September/October 2024

You can’t do
a “one stop shop”
sanitizer build.

9 of 10

https://github.com/petrpavlu/valgrind-riscv64
https://bugs.kde.org/buglist.cgi?bug_status=UNCONFIRMED&bug_status=CONFIRMED&bug_status=ASSIGNED&bug_status=REOPENED&list_id=2388402&product=valgrind&query_format=advanced

•	The code that verifies ioctls is very limited. Almost all ioctls only get basic size checking
done on their arguments. This needs to be extended, ideally also with testcases.

Conclusions
Working on Valgrind is quite a challenge. Debugging can be extremely difficult – I’ve

often found myself doing things like debugging the guest in parallel with debugging Val-
grind running the guest in parallel with using vgdb to debug the guest running in Valgrind.
I’ve learned a lot about ELF, signals, and syscalls as well, of course, as about Valgrind itself.
There’s always much to learn — the nuances of aarch64 and amd64 opcodes and the mul-
titude of tricks used in the dynamic recompilation.

PAUL FLOYD has been using FreeBSD intermittently since 2.1 and in earnest since 10.0.
He’s been a member of the Valgrind development team for four years. He has a PhD in
Electronics and lives near Grenoble, on the edge of the French Alps working for Siemens
EDA developing tools for analog electronic circuit simulation.

43FreeBSD Journal • September/October 2024

10 of 10

