
1FreeBSD Journal • September/October 2024

1 of 11

Character devices provide pseudo files exported to userspace applications by the de-
vice filesystem (devfs(5)). Unlike standard filesystems where the semantics of various
operations such as reading and writing are the same across all files within a filesys-

tem, each character device defines its own semantics for each file operation. Character
device drivers declare a character device switch (struct cdevsw) which includes function
pointers for each file operation.

Character device switches are often implemented as part of a hardware device driver.
FreeBSD’s kernel provides several wrapper APIs which
implement a character device on top of a simpler set
of operations. The disk(9) API implements an inter-
nal character device switch on top of the methods in
struct disk for example. Several device drivers provide a
character device to export device behavior that doesn’t
map to an existing in-kernel subsystem to userspace.

Other character device switches are implemented
purely as a software construct. For example, the /dev/
null and /dev/zero character devices are not associ-
ated with any hardware device.

In a series of three articles, the first of which is this
one, we will build a simple character device driver pro-
gressively adding new functionality to explore charac-
ter device switches and several of the operations character device drivers can implement.
The full source of each version of device driver can be found at https://github.com/bsdjhb/
cdev_tutorial. We will start with a barebones driver which creates a single character device.

Lifecycle Management
A character device driver is responsible for explicitly creating and destroying character

devices. Active character devices are represented by instances of struct cdev. Character
devices are created by the make_dev_s(9) function. This function accepts a pointer to an
arguments structure, a pointer to a character device object pointer, and a printf-style for-
mat string and following arguments. The format string and following arguments are used to
construct the name of the character device.

The arguments structure contains a few mandatory fields and several optional fields. The
structure must be initialized by a call to make_dev_args_init() before setting any fields.

BY JOHN BALDWIN

Character device switches
are often implemented
as part of a hardware
device driver.

Character Device
Driver Tutorial

https://man.freebsd.org/devfs/5
https://man.freebsd.org/disk/9
https://github.com/bsdjhb/cdev_tutorial
https://github.com/bsdjhb/cdev_tutorial
https://man.freebsd.org/make_dev_s/9

2FreeBSD Journal • September/October 2024

The mda_devsw member must point to the character device switch. The mda_uid, mda_gid,
and mda_mode fields should be set to the initial user ID, group ID, and permissions of the
device node. Most character devices are owned by root:wheel, and the constants UID_
ROOT and GID_WHEEL can be used for this. The mda_flags field should also be set to either
MAKEDEV_NOWAIT or MAKEDEV_WAITOK. Additional flags can be included via the C or opera-
tor if needed. For our sample driver, we set MAKEDEV_CHECKNAME so that we can fail grace-
fully with an error if an echo device already exists rather than panicking the system.

Character devices are destroyed by passing a point-
er to the character device to destroy_dev(). This
function will block until all references to the charac-
ter device have been removed. This includes waiting
for any threads currently executing in character device
switch methods for this device to return from those
methods. Once destroy_dev() returns, it is safe to re-
lease any resources used by the character device.
Alternatively, character devices can be destroyed asyn-
chronously via either destroy_dev_sched() or
destroy_dev_sched_cb(). These functions sched-
ule destruction of the character device on an internal
kernel thread. For destroy_dev_sched_cb(), the sup-
plied callback is invoked with the supplied argument after the character device has been de-
stroyed. This can be used to release resources used by the character device. Keep in mind
that one of the resources a character device uses are the character device switch methods.
This means, for example, that module unloading must wait for any character devices using
functions defined in that module to be destroyed.

For our initial driver (Listing 1), we use a module event handler to create a /dev/echo de-
vice when the module is loaded and destroy it when the module is unloaded. After building
and loading this module, the device exists but isn’t able to do much as shown in Example 1.
The character device switch for this driver (echo_cdevsw) is initialized with only two required
fields: d_version must always be set to the constant D_VERSION, and d_name should be set
to the driver name.

Listing 1: Barebones Driver

#include <sys/param.h>
#include <sys/conf.h>
#include <sys/kernel.h>
#include <sys/module.h>

static struct cdev *echodev;

static struct cdevsw echo_cdevsw = {
 .d_version = D_VERSION,
 .d_name = “echo”
};

static int

2 of 11

Alternatively, character
devices can be destroyed
asynchronously.

3FreeBSD Journal • September/October 2024

echodev_load(void)
{
 struct make_dev_args args;
 int error;

 make_dev_args_init(&args);
 args.mda_flags = MAKEDEV_WAITOK | MAKEDEV_CHECKNAME;
 args.mda_devsw = &echo_cdevsw;
 args.mda_uid = UID_ROOT;
 args.mda_gid = GID_WHEEL;
 args.mda_mode = 0600;
 error = make_dev_s(&args, &echodev, “echo”);
 return (error);
}

static int
echodev_unload(void)
{
 if (echodev != NULL)
 destroy_dev(echodev);
 return (0);
}

static int
echodev_modevent(module_t mod, int type, void *data)
{
 switch (type) {
 case MOD_LOAD:
 return (echodev_load());
 case MOD_UNLOAD:
 return (echodev_unload());
 default:
 return (EOPNOTSUPP);
 }
}

DEV_MODULE(echodev, echodev_modevent, NULL);

Example 1: Using the Barebones Driver

ls -l /dev/echo
crw------- 1 root wheel 0x39 Oct 25 13:06 /dev/echo
cat /dev/echo
cat: /dev/echo: Operation not supported by device

Reading and Writing
Now that we have a character device, let’s add some behavior. As the name “echo” im-

3 of 11

4FreeBSD Journal • September/October 2024

plies, this device should accept input by writing to the device and echo that input back out
by reading from the device. To provide this, we will add read and write methods to the char-
acter device switch.

Read and write requests for character devices are described by a struct uio object. Two
of the fields in this structure are useful for character device drivers: uio_offset is the logi-
cal file offset (e.g. from lseek(2)) for the start of the request and uio_resid is the number of
bytes to transfer. Data is transferred between the application buffer and an in-kernel buf-
fer by the uiomove(9) function. This function updates members of the uio object including
uio_offset and uio_resid and can be called multiple times. A request can be completed
as a short operation by moving a subset of bytes to or from the application buffer.

The second version of the echo driver adds a global static buffer to use as the backing
store for read and write requests. The logical file offset is treated as an offset into the global
buffer. Requests are truncated to the size of the buffer, so that reading beyond the end of
the buffer triggers a zero-byte read indicating EOF. Writes beyond the end of the buffer fail
with the error EFBIG. To protect against concurrent access, a global sx(9) lock is used to pro-
tect the buffer. An sx(9) lock is used instead of a regular mutex since uiomove() might sleep
while it faults in a page backing an application buffer. Listing 2 shows the read and write
character device methods.

Listing 2: Read and Write Using a Global Buffer

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 size_t todo;
 int error;

 if (uio->uio_offset >= sizeof(echobuf))
 return (0);

 sx_slock(&echolock);
 todo = MIN(uio->uio_resid, sizeof(echobuf) - uio->uio_offset);
 error = uiomove(echobuf + uio->uio_offset, todo, uio);
 sx_sunlock(&echolock);
 return (error);
}

static int
echo_write(struct cdev *dev, struct uio *uio, int ioflag)
{
 size_t todo;
 int error;

 if (uio->uio_offset >= sizeof(echobuf))
 return (EFBIG);

 sx_xlock(&echolock);

4 of 11

https://man.freebsd.org/lseek/2
https://man.freebsd.org/uiomove/9
https://man.freebsd.org/sx/9

5FreeBSD Journal • September/October 2024

 todo = MIN(uio->uio_resid, sizeof(echobuf) - uio->uio_offset);
 error = uiomove(echobuf + uio->uio_offset, todo, uio);
 sx_xunlock(&echolock);
 return (error);
}

The body of these methods are mostly identical. One reason for this is that the argu-
ments to uiomove() are the same for both read and write. This is because the uio object
encodes the direction of the data transfer as part of its state.

If we load this version of the driver, we can now interact with the device by reading and
writing to it. Example 2 shows a few interactions demonstrating the echo behavior. Note
that the output of jot exceeded the size of the driver’s 64-byte buffer, so the subsequent
read of the device was truncated.

Example 2: Echoing Data Using a Global Buffer

cat /dev/echo
echo foo > /dev/echo
cat /dev/echo
foo
jot -c -s “” 70 48 > /dev/echo
cat /dev/echo
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmno#

Device Configuration via ioctl()
The fixed size of the global buffer is a weird quirk of this device. We can permit changing

the buffer size by adding a custom ioctl(2) command for this device. I/O control commands
are named by a command constant and accept an optional argument.

Command constants are defined by one of the _IO, _IOR, _IOW, or _IOWR macros from
the <sys/ioccom.h> header. All these macros accept a group and number as the first two
arguments. Both values are 8 bits. Typically, an ASCII alphabetical character is used as the
group, and all commands for a given driver use the same group. FreeBSD’s kernel defines
several existing sets of I/O control commands. A set of generic commands that can be used
with any file descriptor are defined in <sys/filio.h> using the group ‘f’. Other sets are intend-
ed for use with specific types of file descriptors such as the commands in <sys/sockio.h>
which are defined for sockets. For custom commands for a character device driver, do not
use the ‘f’ group to avoid potential conflicts with the generic commands in <sys/filio.h>.
Each command should use a different value for the number argument. If a command ac-
cepts an optional argument, the type of the argument must be given as the third argument
to the _IOR, _IOW, or _IOWR macro. The _IOR macro defines a command that returns a value
from the driver to the userspace application (the command “reads” the argument from the
driver). The _IOW macro defines a command that passes a value to the driver (the command
“writes” the argument to the driver). The _IOWR macro defines a command that is both read
and written by the driver. The size of the argument is encoded in the command constant.
This means that commands with the same group and number, but a different sized argu-
ment, will have different command constants. This is useful when implementing support for
alternate userspace ABIs (for example, supporting a 32-bit userspace application on a 64-bit

5 of 11

https://man.freebsd.org/ioctl/2

6FreeBSD Journal • September/October 2024

kernel) as the alternate ABIs will use a different command constant.
BSD kernels such as FreeBSD manage the copying of the I/O control command argu-

ment in the generic system call layer. This differs from Linux where the kernel passes the
raw userspace pointer to the device driver, requiring the device driver to copy data to and
from userspace. Instead, BSD kernels use the size argument encoded in the command con-
stant to allocate an in-kernel buffer of the requested size. If the command was defined with
_IOW or _IOWR, the buffer is initialized by copying the argument value in from the userspace
application. If the command was defined with _IOR, the buffer is cleared with zeroes. After
the device driver’s ioctl routine completes, if the command was defined with _IOR or _IOWR,
the buffer’s contents are copied out to the userspace application.

For the echo driver, let’s define three new control commands. The first command returns
the current size of the global buffer. The second command permits setting a new size of the
global buffer. The third command clears the contents of the buffer by resetting all the bytes
to zero.

These commands are defined in a new echodev.h header shown in Listing 3. A header
is used so that the constants can be shared with userspace applications as well as the driv-
er. Note that the first command reads the buffer size into a size_t argument in userspace,
the second command writes a new buffer size from a size_t argument in userspace, and the
third command does not accept an argument. All three commands use the ‘E’ group and
are assigned unique command numbers.

Listing 3: I/O Control Command Constants

#define ECHODEV_GBUFSIZE _IOR('E', 100, size_t) /* get buffer size */
#define ECHODEV_SBUFSIZE _IOW('E', 101, size_t) /* set buffer size */
#define ECHODEV_CLEAR _IO('E', 102) /* clear buffer */

Supporting a dynamically sized buffer requires several driver changes. The global buffer
is replaced with a global pointer to a dynamically allocated buffer, and a new global variable
contains the buffer’s current size. The pointer and length are initialized during module load,
and the current buffer is freed during module unload. Since the buffer’s size is no longer a
constant, the checks for out-of-bounds reads and writes must now be done while holding
the lock.

The in-kernel malloc(9) for FreeBSD requires an additional malloc type argument for
both the allocation and free routines. Malloc types track allocation requests providing fine-
grained statistics. These statistics are available via the -m flag to the vmstat(8) command
which displays a separate line for each type. The kernel does include a general device buffer
malloc type (M_DEVBUF) that drivers can use. However, it is best practice for drivers to define
a dedicated malloc type. This is especially true for drivers in kernel modules. When a mod-
ule is unloaded, malloc types defined in a kernel module are destroyed. If any allocations still
reference those malloc types, the kernel emits a warning about the leaked allocations. The
finer-grained statistics are also useful for debugging and performance analysis. New mal-
loc types are defined via the MALLOC_DEFINE macro. The first argument provides the vari-
able name of the new type. By convention, types are named in all uppercase and use a lead-
ing prefix of “M_”. For this driver, we will use the name M_ECHODEV. The second argument
is a short string name displayed by utilities such as vmstat(8). It is best practice to avoid
whitespace characters in the short name. The third argument is a string description of
the type.

6 of 11

https://man.freebsd.org/malloc/9
https://man.freebsd.org/vmstat/8

7FreeBSD Journal • September/October 2024

Driver support for the custom control commands is implemented in the new function in
Listing 4. The cmd argument contains the command constant for the requested command
and the data argument points to the in-kernel buffer containing the optional command ar-
gument. The overall structure of the function is a switch statement on the cmd argument.
The default error value for unknown commands is ENOTTY, even for non-tty devices. The
two commands which accept a size argument cast data to the correct pointer type before
dereferencing. The ECHODEV_GBUFSIZE command writes the current size to *data, while
ECHODEV_SBUFSIZE reads the desired new size from *data.

For commands which alter the device state, the driver requires a writable file descriptor
(that is, a file descriptor opened with O_RDWR or O_WRONLY). To enforce this, the ECHODEF_
SBUFSIZE and ECHODEV_CLEAR commands require the FWRITE flag to be set in fflag. The
fflag argument contains the file descriptor status flags defined in <sys/fcntl.h>. These flags
map O_RDONLY, O_WRONLY, and O_RDWR to a combination of the FREAD and FWRITE flags. All
other flags from open(2) are included directly in the file descriptor status flags. Note that a
subset of these flags can be changed on an open file descriptor by fcntl(2).

Listing 4: I/O Control Handler

static int
echo_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag,
 struct thread *td)
{
 int error;

 switch (cmd) {
 case ECHODEV_GBUFSIZE:
 sx_slock(&echolock);
 *(size_t *)data = echolen;
 sx_sunlock(&echolock);
 error = 0;
 break;
 case ECHODEV_SBUFSIZE:
 {
 size_t new_len;

 if ((fflag & FWRITE) == 0) {
 error = EPERM;
 break;
 }

 new_len = *(size_t *)data;
 sx_xlock(&echolock);
 if (new_len == echolen) {
 /* Nothing to do. */
 } else if (new_len < echolen) {
 echolen = new_len;
 } else {
 echobuf = reallocf(echobuf, new_len, M_ECHODEV,

7 of 11

https://man.freebsd.org/open/2
https://man.freebsd.org/fcntl/2

8FreeBSD Journal • September/October 2024

 M_WAITOK | M_ZERO);
 echolen = new_len;
 }
 sx_xunlock(&echolock);
 error = 0;
 break;
 }
 case ECHODEV_CLEAR:
 if ((fflag & FWRITE) == 0) {
 error = EPERM;
 break;
 }

 sx_xlock(&echolock);
 memset(echobuf, 0, echolen);
 sx_xunlock(&echolock);
 error = 0;
 break;
 default:
 error = ENOTTY;
 break;
 }
 return (error);
}

To invoke these commands from userspace, we need a new user application. The repos-
itory contains an echoctl program used in Example 3. The size command outputs the cur-
rent size of the buffer, the resize command sets a new buffer size, and the clear command
clears the buffer contents. Note that in this example, the output from jot is no longer trun-
cated. The last command in this example displays the dynamic allocation statistics for the
driver’s allocations using M_ECHODEV.

Example 3: Resizing the Global Buffer

echoctl size
64
echo foo > /dev/echo
echoctl clear
cat /dev/echo
echoctl resize 80
jot -c -s “” 70 48 > /dev/echo
cat /dev/echo
0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstu
vmstat -m | egrep 'Type|echo'
 Type Use Memory Req Size(s)
 echodev 1 128 2 64,128

8 of 11

9FreeBSD Journal • September/October 2024

Per-Instance Data
So far, our device driver has used global variables to hold its state. For a simple demon-

stration driver with a single device instance this is ok. However, most character devices are
part of a hardware device driver and need to support multiple instances of a device within
a single system. To support this, drivers define a structure containing the software context
for a single device instance. In BSD kernels, this software context is named a “softc”. Driv-
ers typically define a structure type whose name uses
a “_softc” suffix, and variables holding pointers to softc
structures are usually named “sc”.

Character devices provide straightforward support
for per-instance data. struct cdev contains three
members available for storing driver-specific data.
si_drv0 contains an integer value while si_drv1 and
si_drv2 store arbitrary pointers. Device drivers are
free to set these variables while creating character
devices using the mda_unit, mda_si_drv1, and
mda_si_drv2 fields of struct make_dev_args.
These values can then be accessed as members of the
struct cdev argument to character device switch
methods. Historically, device drivers used a unit num-
ber to track per-instance data. Modern device drivers in
FreeBSD store a softc pointer in the si_drv1 field and rarely use the other two fields.

For our echo device driver, we define a struct echodev_softc type containing all of the
state needed for an instance of the echo device. The device driver still stores a single global
holding the softc of the single instance for use during module load and unload, but the rest
of the driver accesses state via the softc pointer. These changes do not change any of the
driver’s functionality but do require refactoring various parts of the driver. Listing 5 shows
the new softc structure type. Listing 6 demonstrates the type of refactoring needed for
each character device switch method by showing the updated read method. Lastly, Listing 7
shows the updated routines used during module load and unload.

Listing 5: softc Structure

struct echodev_softc {
 struct cdev *dev;
 char *buf;
 size_t len;
 struct sx lock;
};

Listing 6: Driver Method Using softc Structure

static int
echo_read(struct cdev *dev, struct uio *uio, int ioflag)
{
 struct echodev_softc *sc = dev->si_drv1;
 size_t todo;
 int error;

Most character devices
are part of a hardware
device driver and need
to support multiple
instances of a device within
a single system.

9 of 11

10FreeBSD Journal • September/October 2024

 sx_slock(&sc->lock);
 if (uio->uio_offset >= sc->len) {
 error = 0;
 } else {
 todo = MIN(uio->uio_resid, sc->len - uio->uio_offset);
 error = uiomove(sc->buf + uio->uio_offset, todo, uio);
 }
 sx_sunlock(&sc->lock);
 return (error);
}

Listing 7: Module Load and Unload Using softc Structure

static int
echodev_create(struct echodev_softc **scp, size_t len)
{
 struct make_dev_args args;
 struct echodev_softc *sc;
 int error;

 sc = malloc(sizeof(*sc), M_ECHODEV, M_WAITOK | M_ZERO);
 sx_init(&sc->lock, “echo”);
 sc->buf = malloc(len, M_ECHODEV, M_WAITOK | M_ZERO);
 sc->len = len;
 make_dev_args_init(&args);
 args.mda_flags = MAKEDEV_WAITOK | MAKEDEV_CHECKNAME;
 args.mda_devsw = &echo_cdevsw;
 args.mda_uid = UID_ROOT;
 args.mda_gid = GID_WHEEL;
 args.mda_mode = 0600;
 args.mda_si_drv1 = sc;
 error = make_dev_s(&args, &sc->dev, “echo”);
 if (error != 0) {
 free(sc->buf, M_ECHODEV);
 sx_destroy(&sc->lock);
 free(sc, M_ECHODEV);
 }
 return (error);
}

static void
echodev_destroy(struct echodev_softc *sc)
{
 if (sc->dev != NULL)
 destroy_dev(sc->dev);
 free(sc->buf, M_ECHODEV);

10 of 11

11FreeBSD Journal • September/October 2024

 sx_destroy(&sc->lock);
 free(sc, M_ECHODEV);
}

static int
echodev_modevent(module_t mod, int type, void *data)
{
 static struct echodev_softc *echo_softc;

 switch (type) {
 case MOD_LOAD:
 return (echodev_create(&echo_softc, 64));
 case MOD_UNLOAD:
 if (echo_softc != NULL)
 echodev_destroy(echo_softc);
 return (0);
 default:
 return (EOPNOTSUPP);
 }
}

Conclusion
Thanks for reading this far. The next article in this series will extend this driver to imple-

ment a FIFO buffer including support for non-blocking I/O and I/O event reporting via
poll(2) and kevent(2).

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Ashland, Virginia with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

11 of 11

https://man.freebsd.org/poll/2
https://man.freebsd.org/kevent/2

