
Dear Most Useless Advice Columnist in Technology
(or Anywhere),

In all of open source, kernel developers are the
elite. They get to implement the really cool stuff and
invent nifty new features, like ZFS and buffer caches
and memory protections. Any advice on how I could
become one of them?

I’ve read your column several times, and honesty
demands that I inform you that I’m going to maximize
my chances of success by listening carefully to
everything you suggest, then doing the exact opposite.

 — Novice But Not Naïve

Dear NBNN̈,
“Working in computing isn’t enough for me. I want my failures to be truly inexplicable!”
Very well.
Many people fantasize that kernel developers are programming elite. John Baldwin, of

repeated FreeBSD Core Team fame as well as the editorial board chair of this very Journal,
went from writing documentation straight into kernel development. John has been unfor-
tunate enough to know me for decades so I
can confidently assure you that not only is he
not an elite but the remarkable, incriminat-
ing, and noteworthy things about him have
absolutely nothing to do with programming.
Kernel developers must achieve a minimum
competence, yes, but beyond a couple rules,
there’s nothing special about kernel code.
Imagining that kernel programmers are an
elite will sabotage you before you start, so I
strongly encourage it.

If you insist on proceeding, though, if you
demand you be allowed to weave yourself a chrysalis and transform into a kernel develop-
er like a panic-prone memory-dumping file-corrupting butterfly, immediately separate your
dreams from your goals. A goal is something actionable that is completely within your con-

1 of 3

Many people fantasize
that kernel developers are
programming elite.

5FreeBSD Journal • September/October 2024

by Michael W Lucas

trol to achieve. Accomplishing a dream requires other people to intervene on your behalf.
Going out for a dinner date with that attractive person? Totally a dream. Asking that attrac-
tive person out for a dinner date, and when they remind you that you are inherently unlov-
able and should leave them the heck alone instead of stalking them like the creepy hero of a
so-called “romance?” An absolutely achievable goal!

You cannot control other people. Work on goals. Never on dreams.
What goals can you set that would guide you become a kernel developer?
Start by reading the documentation.

There are books like The Design and Imple-
mentation of the FreeBSD Operating Sys-
tem, FreeBSD Device Drivers, and Design-
ing BSD Rootkits, which add an interesting
twist to learning how the kernel works. The
FreeBSD Developers Handbook is freely
available. Fill your brain. Do the exercises. If
something is beyond you, well, people have
written articles and books discussing it.

Note that I didn’t say “ask other people
how to start learning about the kernel.” If
you haunt the mailing lists, the forums, or
the Internet’s sketchier discussion boards
you’ll occasionally see people asking for help
in learning to program the kernel. You might think that these people are looking for the list
above, but the answer I give here appears on the most cursory search and comes across as
please hold my hand. Do caterpillars ask for help weaving their chrysalis? No! They sweat
and struggle so they can slither into their cramped cocoons and simmer into transcen-
dence. You must do the work. Most transformations end hard right here because humans
cherish cozy comfy non-actionable dreams and aren’t as fond of ugly hard goals.

As with any other part of contributing to an open source project, you need to find a tiny
piece to work on. Start with bugs. Problem reports are a gold mine for the aspiring ker-
nel developer. As you look through possible projects, you must again separate goals from
dreams. “Solve several panic bugs and get my fixes committed” is a dream. It requires that
established kernel developers notice your fixes and choose to incorporate them. “Solve one
reported kernel panic this month” isn’t exactly a goal, because you can’t guarantee that you
will be able to solve it. “Spend ten hours this month working on a reported kernel panic,
without taking breaks every three minutes to gripe on social media, in the work chat, or to
my pet who has to put up with me even though I’m inherently unlovable.” There—that’s a
goal! Complete enough of those goals and you’ll develop the skill of kernel programming.

The hard part of working in the kernel, though?
Other people.
Suppose you develop patches to fix reported problems and attach them to the bug. You

can’t make a project member notice your work. If they notice your work, you can’t make
them take your patch as-is. A project member might use your patch as inspiration or a
proof-of-concept and create a wholly different patch for reasons you hadn’t even thought
of. Making people notice you is a dream. Making yourself dang hard to ignore by submitting
a whole series of quality patches is absolutely a goal.

2 of 3

Most transformations end
hard right here because
humans cherish cozy comfy
non-actionable dreams
and aren’t as fond of
ugly hard goals.

6FreeBSD Journal • September/October 2024

An interesting thing about how caterpillars become butterflies. They don’t. We see the
caterpillar crawl into its cocoon and the butterfly emerge, so we assume that there’s been
a transformation when the harsh reality is, the caterpillar’s chrysalis? It’s a coffin. The cat-
erpillar crawls in and melts to goo surrounding a tiny lump that’s basically a self-assembling
butterfly kit. The butterfly’s first meal is 100% Grade A caterpillar sludge. When you submit
your twentieth patch and still it feels like nobody cares, be grateful that you haven’t trans-
formed yourself into literal physical muck. Mental muck is less noticeable.

Suppose your patches get picked up? What then?
Again, it’s people.
In that glorious aeon when the Sacred

and Penultimately Blessed Computer Sci-
ence Research Group distributed primordial
BSD, a single person could achieve a good
understanding of Unix. A complete install
took only a few megabytes. And yes, that in-
cluded the compiler and source code, what
part of “complete install” was unclear? Col-
lege students were expected to read and
understand the code.

Today? By the time you finish reading the
base system source code, it’s changed and
you get to start over. Becoming a “kernel de-
veloper” is almost impossible. You might, at
best, become a trusted developer respon-
sible for one tiny slice of the kernel. Performing maintenance will require interacting with
other parts of the kernel, which means discussing your changes with the people responsible
for those parts. Working in the kernel is no different than programming in userland, except
people believe you’ve achieved a certain minimal competence.

If you achieve your dream and become a full-on kernel developer, you’ll discover that
people are not a problem. They are the problem. Every change you make will upset some-
one. Users and non-kernel programmers will have this weird idea that you’re the elite, that
you know what you’re doing, that you are less baffled than them.

As you’ve declared an intent to not merely ignore but reverse my thoughts, let me sum-
marize: becoming a kernel programmer is the one true path to happiness and I wish you
well. Dream on!

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS Unlike esteemed FreeBSD Journal Editorial Chair and elite kernel
developer John Baldwin, Michael W. Lucas remained in documentation. His latest book is
Run Your Own Mail Server, which uses FreeBSD as a reference platform. Learn more at
https://mwl.io.

3 of 3

If you achieve your dream
and become a full-on kernel
developer, you’ll discover
that people are not a problem.

7FreeBSD Journal • September/October 2024

mailto:letters@freebsdjournal.org
https://mwl.io

