PRACTICAL
PORTS

(30 Paperless

BY BENEDICT REUSCHLING

uring the height of the Pandemic, | was staying home and the days were basically
D like any other. Time passed slowly, and looking around my room, | became painful-
ly aware of how untidy it had become. Especially around my work desk, where piles
of books, notes, letters and other pieces of paper had started a race to the top. | decided to
do something about it. | put on a podcast and started picking up, ordering, throwing away,
and cleaning my way toward a clean desk top. This was a great feeling of accomplishment in
times of a global crisis. Motivated by that, | decided to start scanning those papers to reduce
the pile.
| had purchased a mobile scanner a while ago,
which connects via USB and uses some propri-
etary, yet efficient, scanning software. The scan- Thls Software re-scans

ner was not smaller than a rolling pin, and a single
viece of paper would fit. Since | had time, | con- PDFs and makes the text

tinued scanning each paper, giving the resulting : .
PDF a description and date, moving on to the INto somethlng that one

next one. This was tedious, but | got through itin - ~31 extract and search
the end. Ordering them afterwards was anoth-

er long task: taxes, insurance, contracts, receipts, individual words.
bills (both sent and received), records, certificates,
and more needed to end up in the proper direc-
tories.

The scanning software was only 32-bit, and the entire scanning unit stopped working
a couple of years later — just when another pile of papers was dangerously close to tum-
bling over. It was time to look for alternatives. | had found textproc/py-ocrmypdf a few
months earlier. Essentially, this software re-scans PDFs and makes the text, which is some-
times a big picture, into something that one can extract and search individual words. It uses
pattern recognition to figure out the words and language and the results are surprisingly
good. | ran this over my existing scans and now | can do a full-text search over a document
and find how expensive my flight to BSDCan 2014 had been, for example.

Introducing Paperless-ngx

Then | found paperless-ngx, which ocrmypdf is a part of, but a comparably small part
of a greater whole. It is a document management system that you can pass documents
into and it creates an archive that is fully searchable, automatically detects the content (Al
is everywhere) and files it away according to rules you define. Basically, | can feed it a letter,

Tof 5

FreeBSD Journal - September/October 2024 |56

20of 5

and it figures out that it comes from my bank, files it away based on the date it detected,
while ocrmypdf-ing it makes it searchable and adds useful metadata as well. The file ends
up in a directory that can either be subject related (everything | ever got from that particu-
lar bank), or by year-month-date-description, or something completely up to you. You can
also feed entire directories into paperless-ngx, and it figures out which documents it has al-
ready scanned and skips those, while the rest run through a processing pipeline. With each
document, the chances grow that future documents like it get properly categorized. Plus, it
comes with a nice web Ul into which you can drag and drop files for scanning and find ex-
isting documents with ease. Another way to feed

documents into it is via an “incoming” folder that

you can share among colleagues in an office or

by sending documents as attachments (remem- :
er emaile?) to it With each document,

The software stack itself is impressive and the chances grow that
may be too intimidating, even with the excel-

lent documentation that the paperless-ngx web- future documents like it
site provides. Plenty of software and services

have to work together to get a smooth scan- get proper\y categorlzed.
ning experience. Luckily, there is a port for it

under deskutils/py-paperless—-ngx. Even

better, the port maintainer created a post-install

man page detailing all the steps to get a working paperless-ngx stack going. Did | mention
that | love ports maintainers? With these instructions, | was able to set up my own paper-
less-ngx in no time. First on a Raspberry Pi 3 and then on a Pi 4. It works, even though the Pi
3 stretches your patience because of the required processing power to get the final result.
With the Pi4 though, I've had good experiences and the scanning time is decent enough.
You could run this in the office or at home with a negligible footprint on your electricity
bill, while allowing other people to scan their docs without seeing those of others. If you're
dealing with a lot of documents and want to have them digitized, take a look at the paper-
less-ngx setup we're doing here. You can thank me later...

Paperless-ngx Setup

Whether you are using a Raspberry Pi, a different embedded device, or a full-blown serv-
er does not really matter. As long as it runs FreeBSD, you can follow along. I'm not spending
any time on the base installation or hardening the system, as there are plenty of other good
articles available that cover that. Just make sure to do exactly that when you connect your
paperless-ngx service to the network for other people to use.

Start by installing the paperless-ngx port:

pkg install deskutils/py-paperless—-ngx

You'll be greeted by the pkg-message after installation, advising you to take a look at
the man page for further instructions. Without them, you have only the basic service, which
does not do too much at this point.

Most files end up in /var/db/paperless, which you can probably put on a separate ZFS
dataset, but in my experience, the compression savings are not worth it. But your mileage
may vary and ZFS is generally a good idea for storing those precious documents.

FreeBSD Journal - September/October 2024 |57

https://docs.paperless-ngx.com/
https://docs.paperless-ngx.com/

Paperless-ngx wants to have access to a Redis instance, which is what we're installing
next:

pkg install redis
service redis enable
service redis start

Fasy enough, having it both installed and started at boot time, as well as the current ses-
sion with these three commands. It you have Redis running somewhere else in your net-
work, you need to modify and add its credentials to /usr/local/etc/paperless.conf.
When running on localhost, it's fine to run it without any special privileges since it won't be
reachable from other hosts this way.

The configuration file is well documented with comments. Some items like THREADS _
PER_WORKER (mine is at 1 on the RPI 4), PAPERLESS URL (IP address or DNS name), and
PAPERLESS TIME_ZONE (Il use UTF) should be modified to fit your system and network.
Many other settings are fine in their defaults for your first couple of scans. You can always
revisit this file and make modifications later.

Paperless-ngx is backed by a database to store various information. It's as easy to initialize
as you can imagine using the following command:

service paperless-migrate onestart

It you want to run this every time the system starts, you can execute this service com-
mand as well.

service paperless-migrate enable

After that is done, we will start the backend services that paperless uses in order:

service paperless—beat enable
service paperless—-consumer enable
service paperless—-webul enable
service paperless-worker enable

H H H H

You can find individual descriptions of these on the paperless-ngx website. Since we want
to use paperless-ngx without restarting the system, we start all these services next:

service paperless—beat start
service paperless—-consumer start
service paperless-webul start
service paperless-worker start

H H H H=

Machine learning is all the rage behind the Al hype. Paperless-ngx uses it as well, but
mostly to aid in the character recognition to figure out the language of the document at
hand. To do that, it uses the Natural Language Toolkit (NLTK). To download the necessary
files, the following one-liner does the trick (replace the python version it necessary):

su -1 paperless -c '/usr/local/bin/python3.11 -m nltk.downloader \
stopwords snowball_data punkt -d /var/db/paperless/nltkdata’

Documents are classified in different ways, which is the responsibility of the Celery com-
ponent. This classification is done automatically upon scanning, but you can trigger it manu-
ally with this invocation:

3of 5

FreeBSD Journal - September/October 2024 |58

su -1 paperless -c '/usr/local/bin/paperless document_create_classifier'

Celery also runs an optional component called Flower. It monitors a cluster of workers
that Celery controls. This is an optional component and | run my instance without it. But for
those who want all the bells and whistles, here is how to start it:

=

service paperless—-flower enable
service paperless-flower start

Setting up the Web UI
To protect your Django-based Web Ul holding all your documents scanned so far, you
can set a superuser password like this:

su -1 paperless -c '/usr/local/bin/paperless createsuperuser'

| run an nginx webserver already (SSL proxy), so | can re-use that to point to my paper-
ess-ngx website. If you don't have one already, the port also provides a ready-to-use con-
figuration file in /usr/local/share/examples/paperless—ngx/nginx.conf that you
just have to copy into your /usr/local/etc/nginx/ directory. This includes an SSL con-
figuration as well to not let people sniffing traffic figure out the login and doing other nasty
things. To create a key that's valid for a whole year, run this lengthy openssl incantation (or
get a key via lets—encrypt).

openssl req -x509 -nodes -days 365 -newkey rsa:4096 \
-keyout /usr/local/etc/nginx/selfsigned.key \
—out /usr/local/etc/nginx/selfsigned.crt

Of course, you can make your own adjustments to the nginx.conf when necessary.
When finished, enable it to start at boot time and for the current session:

service nginx enable
service nginx start

Voilal Now point your browser to the web URL defined in the paperless.conf and log
into the application.

Basic configuration in the web Ul

Before scanning your first document, | would recommend setting up a couple of items
in the "Manage” section on the left, first. To begin, Correspondents are people or organi-
zations that have sent you the paper. Think of banks, insurance companies, but also indi-
viduals. You can give them a descriptive name and configure paperless-ngx as to whether
it should file a document with this correspondent if it detects certain keywords or other
Ccriteria.

Next, define document types. A contract is different from a love letter, which differs
from a bill, which is not the same as certificate, and so on. This way, you can let paper-
less-ngx distinguish whether someone has sent you a bill or if that same person gave you a
contract. Both can happen, and especially government agencies have a tendency (at least
where | live) to correspond with you in different contexts, which you want to keep separate
from each other. That's where paperless-ngx shines: once you defined your most active
Correspondents and their typical documents, you don't need to worry about the proper
classification anymore. Simply add documents and let paperless-ngx do it's work. With a bit

4 of 5

FreeBSD Journal - September/October 2024 | 59

of tweaking, you can scan a whole bunch of documents. But how do you order them? That's
where storage paths come in.

These paths define where in your filesystem the documents should end up and under
which directory hierarchy. | personally use
{created_year}/{correspondent}/{title},
which means | have directories like 2024/insur-
anceXZY/YearlyReport.pdf I you want to file all But how do you
tax-related documents in a separate directory,
define that under the storage paths sectionand order them?
define a rule to match when a document fits that
criteria. The best part is if you change your mind I hat's where storage
about the ordering, changing the storage paths .
will automatically move and rename your already Paths come:.n.
scanned documents within the file system with-
out you doing a lengthy mkdir, cp, mv, rm dance.

Ready, set, scan

That's all for now. Drag a PDF document that you have lying around onto the web Ul and
see paperless-ngx start processing it. The Logs section on the left has details on how paper-
less-ngx choses to match correspondents and other details, which help you fine-tune your
match rules. After processing is done, you can find the final result on the Dashboard or in
the Documents folder. Continue scanning some more documents. They'll all end up in the
/var/db/paperless/media/documents/archive directory (if you have not changed it
in the paperless.conf), followed by the storage paths definition. | hope you'll find paper-
less-ngx as useful for your documents as | do. I'm always looking forward to the next letter |
receive just to scan it with paperless-ngx. Thanks to the people creating paperless-ngx and
those who made the FreeBSD port such a great installation experience.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project

and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He's also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

50f 5

FreeBSD Journal - September/October 2024 {60

https://www.bsdnow.tv/

