
12 FreeBSD Journal

Existing hard disk products are nearing the estimated 1Tb/in2 limit
in areal density achievable using current perpendicular magnetic
recording (PMR) technology. While alternatives to PMR are being
developed, manufacturers are adopting a more compact track lay-
out, termed shingled magnetic recording (SMR), to increase capacity.
SMR currently provides a 20% improvement in density, but removes
the ability to independently update sectors on the media. In this
article we explore the characteristics of SMR and its impact on
traditional storage software.

Shingled
Magnetic

Recording
[SMR]

[This Is Not Your Father ’s D isk Dr ive]

March/April 2015 13

Since the introduction of the hard drive
by IBM in 1956, the disk industry has been
tracking Moore’s Law, doubling storage density
every two years. But that trend may now be in
jeopardy. Disk platters are nearing the 1Tb/in2

areal density limit of the currently used tech-
nology, perpendicular magnetic recording
(PMR), and higher density schemes such as
heat-assisted magnetic recording (HAMR) and
bit patterned media (BPM) are still two years or
more away.

To fill this roadmap gap, manufacturers are
turning to shingled magnetic recording (SMR).
SMR achieves a higher density by shrinking the
effective track size. Doing this without any
changes to the media or head design takes
advantage of the existing PMR technology’s
ability to read smaller tracks than it can write.
Instead of leaving a gap between two adjoin-
ing tracks to ensure there is no interference
(Figures 1 and 2), SMR purposely overwrites a
portion of the previously written, neighboring
track when laying down a new stripe of data.

The old track remains, but is trimmed to a
narrower width. The new track is the same
width as on a non-SMR drive. Writing in this
way across a platter, with an occasional gap
band so writes don’t have to be continuous
across the entire media, currently yields a 20%
increase in capacity. (Figure 3) This advantage
may increase in the future.

SMR is so called because writes are per-
formed in a pattern similar to the shingles on a
roof. Just as it is impossible on a roof to
replace a single shingle without perturbing
those surrounding it, SMR drives do not allow
operations that replace the contents of individ-
ual sectors. Write operations must start at a
gap band on the media and proceed sequen-
tially to the next gap band in order to not lose
previously written data.

Since this model is so different from the
behavior of disk drives recorded with inde-
pendent tracks, drive manufacturers are
adding firmware features to ease the transition
for file systems and applications. In products
shipping today, the drive manages all the com-
plexity of shingling and emulates a standard
direct access device. Models available within
the next year will provide additional com-
mands to expose the SMR traits of the drive.

SMR-aware software can use this information
to avoid operations that must be emulated,
but the drive will still accept any direct access
command. For environments where the whole
software stack is SMR aware, models will even-
tually be offered with no emulation at all. With
the extra CPU, memory, and media over-provi-
sioning required for emulation removed, these
drive models should provide the best price per
terabyte.

The emulation provided by current SMR
models allows all existing software to function,
but often at a significant performance penalty.
Writing randomly to a shingled device will
force the firmware to perform garbage collec-

by Justin Gibbs

Gap Band

F i g . 1 Conventional Track/Sector Layout

F i g . 2 Conventional Media Layout

F i g . 3 Shingled Zone/Track/Sector Layout

Track Sector

Disk Platter

Track

Sector

Shingled
Zone: N+1

Shingled
Zone: N

Sector

Gap
Band

14 FreeBSD Journal

tion, and in most cases, a single write operation
from the host will be converted into two or
more write operations to the media. Given
enough media over-provisioning, RAM, or flash,
it should be possible to provide performance
that meets or exceeds that of a traditionally for-
matted hard drive. But along with increasing
density, the market expects decreasing per-ter-
abyte cost.

The additional component cost would break
this trend. So while emulation will improve over
time, the storage systems looking to achieve
optimal performance will need to become SMR
aware.

Adapting existing storage stacks to SMR will
not be easy—the ability to overwrite any LBA is
an inherent assumption of most implementa-
tions. Given this difficulty, many have hoped
that SMR will be phased out once new technol-
ogy like HAMR and BPR are available. Currently,
the chance that this will occur seems remote.
The roadmaps of the major players in the spin-
ning drive market show SMR as a contributing
technology far into the future for their march to
achieve Moore’s Law.

SMR Devices
Current industry roadmaps show three distinct
types of SMR devices: drive managed, host
aware, and host managed. Drive-managed
devices provide the full direct access command
set of a standard drive and use internal map-
ping techniques to give the illusion that individ-
ual sectors can be updated randomly. Host-
aware devices include all the emulation support
of a drive-managed device, but also support
commands that SMR-aware software can use to
write optimally and avoid emulation penalties.
Host-managed devices remove all emulation
support, forcing the host to manage tasks like

garbage collection directly. In all cases, the
physical characteristics of an SMR drive are
the same.

An SMR hard drive is divided up into zones,
collections of sequentially addressed sectors.
Zones can be managed independently since
they are separated from each other by unwrit-
ten space. These “gap bands” ensure that write
activity from one zone cannot impact another.
Zones can be either conventionally formatted or
shingled. A conventional zone allows updates
to individual sectors, just like on a conventional,
non-SMR, disk drive. A shingled zone must be
written sequentially from lowest to highest logi-
cal block address (LBA-sector address) so that
already in-place data isn’t corrupted by subse-
quent writes. In order to achieve the density
improvements SMR promises, SMR zones are
large—tens if not hundreds of megabytes—and
the majority of zones in a device must be shin-
gled. Typical configurations may also include a
small number of conventional zones for storing
rapidly changing blocks and/or metadata for
managing the SMR zones, but this is not
required (Figure 4).

Drive-Managed Devices
Providing conventional hard drive semantics
while using SMR media adds tremendously to
the complexity of the device’s firmware. One
possible strategy for performing this emulation is
to completely decouple the LBA presented to the
host from the physical location of data on the
media. This technique is used to great effect on
solid state drives, and SMR zones have many of
the same traits as the flash memory used in
SSDs: a shingled zone is effectively the erase
block size, and writing in ascending address
order is highly preferred. However, the econom-
ics do not support this approach. The market

F i g . 4 SMR Media Layout F i g . 5 Layout with “Media Cache”
Zone Gap

Band
Conventional Zone

Shingled Zone

Main Store

Media Cache

Disk Platter

March/April 2015 15

expects spinning drives to be significantly cheaper
than flash storage. Currently an 8-TB SMR drive
retails for under $.04 per GB, compared to almost
$.40 per GB for the lowest performance 1-TB
flash drive. There isn’t enough price margin to
allow manufacturers to add the large RAM, flash,
or CPU resources needed to manage a fully
dynamic LBA map on an SMR device. Even if the
market supported higher prices, the latency cost
for random-access reads on spinning media gives
good incentive to make most requests that are
sequential to the host (sequential in LBA space)
also sequential on the media.

Instead, current generation drives use a
“cache and clean” approach. Writes that would
violate the sequential write requirements of an
SMR zone are directed to a media cache. This
media cache is composed of zones reserved for
use by the firmware. These zones typically occu-
py space at the outer diameter of the platters
where transfer rates are the greatest (Figure 5).
An implementation may also reserve zones
throughout the media in order to avoid large
seek penalties for diverting to the media cache
when the head is already positioned at the inner
diameter. The media cache may utilize either
conventionally formatted zones, shingled zones,
or a combination of both.

Using shingled zones to manage other shin-
gled zones may seem counterproductive, but
doing so increases the density of the cache,
resulting in less raw capacity being lost to emula-
tion. Drives that chose this approach apply the
same log-structured, journaling techniques used
in databases, flash devices, and even some con-
ventional file systems to always write sequentially
to the cache.

The steps taken to service a read request help
to illustrate how the media cache and the
remaining SMR zones interact in this emulated
environment. The LBAs requested by the read fall
into two categories: those residing in the main
SMR store and those that were redirected to the
media cache and may be migrated back to the
main store sometime in the future. To make this
classification, the firmware maintains enough
information in RAM to quickly determine if an
LBA has been redirected to the media cache. If
that lookup succeeds, the physical location in the
media cache is known. If the lookup fails, the
physical location is also known. Bad block remap-
ping aside, there is a linear mapping from LBA to
physical address in the main store, allowing the
zone and zone offset to be quickly derived from
the LBA. Once all physical locations are known,

the disk drive can perform seek optimization,
read the blocks, and stitch them together for
transmission to the host.

By maintaining a map of only those sectors
that reside in the media cache, the RAM and
CPU resources required for emulation can be
greatly reduced. The media cache is a small frac-
tion of the device’s total capacity and so is the
map. But this also means that it is possible to
exhaust the media cache. This is where the clean
step of “cache and clean” comes into play. In
parallel with servicing host activity that causes
reads and writes to the media cache, the drive
must also promote data from the media cache to
the main store, freeing space to service future
write activity.

In its most basic form, cleaning entails preserv-
ing any data to be retained from a main SMR
zone in the media cache, overwriting the SMR
zone with both new and retained data, and then
marking portions of the media cache as free for
reuse. There are, however, strategies the
firmware can employ to make the process less
expensive. To reduce the impact of cleaning
operations on host command latency, the clean-
ing can be done in stages. If host I/O arrives,
those LBAs that have been transferred to the
main store can be marked as free, and the clean-
ing operation suspended. After servicing higher-
priority operations, cleaning can resume where it
left off. Another savings is possible given that
writes to an LBA in the middle of a zone can
impact LBAs at higher addresses, but not at
lower addresses. The firmware can thus avoid
preserving data at LBAs below the first LBA of
data being promoted from the media cache.
Additionally, the range of LBAs disturbed by a
mid-zone write is relatively small (a track or two)
and well known to the firmware. Rather than
clean all the way to the end of the zone, the
firmware may stop early and just leave the LBAs
for the invalidated sectors in the media cache
(Figure 6). You can think of this approach as

F i g . 6 Mid-Zone Overwrite

KEY

Writing Head

� Existing Data

� New Data

� Invalidated Data

� Free Space

16 FreeBSD Journal

“hole filling.” If the range of contiguous LBAs to
be promoted to the media cache is greater than
the number of LBAs invalidated by a write, hole
filling results in a net reduction in the amount of
media cache in use.

There are workloads where having a media
cache increases performance. If, for example, the
host is rapidly issuing random writes to a small
number of LBAs, these sectors can simply reside in
the media cache without ever being promoted.
Since most media cache implementations are jour-
naled, the LBAs from these writes are written
sequentially to the media. The net result is near
sequential I/O performance for bursts of random
writes. Even when promotion must eventually
occur, if the total load on the device is low
enough, the drive may have sufficient idle time to
do promotion without any host-visible penalty.
However, random write workloads are migrating
to solid-state devices. For the more common spin-
ning-disk workload of storing larger objects that
are rarely overwritten, the goal should be to avoid
the media cache entirely and eliminate the multi-

ple-write penalty incurred due to promotion.
To avoid the media cache on a drive-man-

aged device, the host must issue write opera-
tions so it is easy for the drive firmware to
compute the benefit of writing directly to the
main store. The first step is to ensure that
operations that are sequential in LBA space are

presented to the drive that way. Write commands
to adjoining LBA regions should be issued from
lowest to highest LBA without any interleaved
commands. The native queue depth varies
depending on the command protocol being used,
but in general, a spinning drive can only process a
handful of commands concurrently. It may fail to
reorder out-of-order commands and detect that
they are sequential. Similarly, any delay between

sequential commands may cause the firmware to
timeout and assume that the stream has ended.

Issuing commands in the right order is required,
but not sufficient to bypass the media cache. The
goal of the firmware is to retire a write without
having to read any data. It can only do that and
also bypass the media cache if the write operation
is large. At today’s media densities, a track holds
on the order of 4MB, and at least a track is invali-
dated by a mid-zone write. Any write operation
(or group of sequential write operations) that con-
sumes less than two tracks of space will go to the
media cache. For writes larger than this, the drive
will write the first portion directly to the main
store and direct the last track’s worth of data to
the media cache (Figure 7). In this way, the drive
can fulfill the write without having to read any
data—the write to the main store is stopped
before invalidating any of the sectors that need to
be retained.

The need to meet data integrity guarantees
can also prevent writing directly to the main
store. It is possible for the host to disable a drive’s
write cache, forcing all write commands to be
reported as complete only after the data is com-
mitted to stable storage (persists across power
loss). Given the limited queue depth and RAM
resources of the drive, this will almost certainly
cause the firmware to prematurely terminate a
direct media write so that it can finalize com-
mands and return them to the host. Selectively
issuing write commands that bypass the cache
(e.g., setting the “force unit access” bit in a SCSI
write) or a command to flush the full cache will
also force the drive to end any current optimiza-
tion. For these reasons, the write cache should
always be enabled on drive-managed SMR
devices and the frequency of synchronizing com-
mands heavily limited.

Host-Aware Devices
Even more strategies for avoiding the media
cache become available to the host when dealing
with a host-aware device. These drives support
two additional commands: REPORT ZONES, and
RESET WRITE POINTER. REPORT ZONES does
what the name implies. With it, the host can
determine the number, type, and size of all host
visible zones. REPORT ZONES also provides the
current position of the write pointer within shin-
gled zones. The write pointer marks the end of
valid data in a zone and is the location that
should next be written in order to avoid an emu-
lation penalty. The RESET WRITE POINTER com-

F i g . 7 Hole Filling/Redirection to Media Cache

10 9 8 7 6

10 9 8 7 6 5 4 3 2 1

Media Cache Main Store

User Data

KEY
� Existing

Data

� New Data

� Invalidated
Data

� Free Space

5 4 3 2 1

10 9 8 7 6 5 4 3 2 1

mand allows modification of the write pointer
in a zone. Currently, this command is specified
to only allow the write pointer to be set to the
beginning of a zone, effectively erasing a zone
in one shot. Based on the reserved byte space in
this command, it appears that future versions of
the ATA and SCSI specifications may allow the
write pointer offset to be explicitly set—for
example, to just erase then overwrite the tail
end of a zone.

With this geometry information in hand, the
host can intelligently assign LBAs to the data it
is writing. Data structures for tracking free and
allocated space can be aligned and sized to
match a drive’s native zone layout. Rapidly over-
written data such as a file system’s free space
maps can be directed to conventional zones.
Large writes of user data can be allocated from
contiguous space starting at the write pointer in
SMR zones. As LBAs are freed from SMR zones,
the free space fragmentation this causes can be
tracked so that this space is only reused when
the system is relatively idle or when there is a
high return when compared to the cost of
reclaiming a zone. When all the data in an SMR
zone is no longer needed, a RESET WRITE
POINTER will tell the drive it needn’t preserve
any sectors for subsequent writes to that zone.
These are just a few of the possible optimiza-
tions for avoiding nonsequential writes and the
penalties for having the drive emulate them.

Host-Managed Devices
With sufficient sophistication in the host soft-
ware, we can take these optimizations to their
logical conclusion: perform all zone manage-
ment within the host. This is where the host-
managed devices in the SMR roadmap come
into play. While host-aware devices report shin-
gled zones that are “sequential write pre-
ferred,” on a host-managed device, these are
“sequential-write mandatory.” All emulation
features are absent on this drive type and any
write that doesn’t start at the write pointer for
a zone is rejected.

There are a few unexpected complications
with host-managed devices. While the firmware
of a drive-managed or host-aware device is free
to invalidate LBAs in the middle of a shingled
zone so long as access to those LBAs is properly
redirected to the media cache, the current spec-
ification for host-managed devices is much
more restrictive. To ensure the drive can report
which LBAs are valid utilizing the least amount
of drive-maintained metadata, writes are only
allowed at the write pointer, and only those

LBAs below the write pointer are readable. Any
attempt to read outside the range from the
beginning of the zone to the write pointer will
fail, even if those sectors were written previous-
ly and are still valid on the media. For this rea-
son, host-aware software is somewhat more
constrained in the approaches it can take to
effectively utilize a host-managed device.

The specifications for host access to SMR
drives are in their infancy, and we can expect
some aspects of this restriction to eventually be
addressed. Already there is a proposal to allow a
circular zone type. In this type of zone, only
LBAs in the interference region just past the
write pointer are considered invalid. All other
sectors can be read. While still not providing the
freedom to implement some of the redirection
schemes of drive-managed and host-aware
devices, circular zones would naturally lend
themselves to journaling. And journaling may
be sufficient for getting optimum performance
from these devices.

Conclusion
After almost 60 years, the fundamental way
that software interacts with spinning magnetic
media is changing. Given the trajectory of the
main providers of hard disks, storage systems
developers have little choice but to adapt. Until
they do, consumers should expect reduced per-
formance from SMR drives when deployed in
traditional workloads.

The stage is now set to see how storage
appliances, operating systems, and file systems
tackle the challenge of SMR. With an under-
standing of how drive-managed devices per-
form their emulation, some basic optimization
for SMR drives is possible. Going beyond this
and taking full advantage of host-aware and
host-managed devices will take more time.
Storage stacks are complicated—often taking
tens to hundreds of man-years to develop.
Because of this, the impact of SMR will proceed
in slow motion through the storage industry.
Five years from now, there will be definite win-
ners and losers: those who have adapted to
SMR and those who have not. For now, it’s just
too early to predict who the casualties will be.•

Justin Gibbs is the founder and president of the
FreeBSD Foundation, and has been working on the
storage-related subsystems of FreeBSD since
1993. He currently works at Spectra Logic
Corporation building petabyte-scale, archive stor-
age systems using FreeBSD, flash, disk, and tape.

March/April 2015 17

