
JOURNAL

HOW TO
BUILD A PORT

SH INGLE D
MA G NE T I C
RECOR D ING

ZFS BE
PRACTICES

TM

What’s New
in FreeNAS 9.3

What’s New
in FreeNAS 9.3

March/April 2015

3 Foundation Letter
Pleased to present the eighth issue of FreeBSD Journal!

32 Ports Report In the first two months of
2015, 4,046 commits were applied to the ports tree,
1,182 PR were closed, and 1,002 emails were received
by portmgr@ (without counting the spam...). And all
this handled by an average of only 130 active ports
developers! By Frederic Culot

34 This Month in FreeBSD
The FreeBSD Project has the distinction of being a men-
toring organization for every Google Summer of Code
since the program's inception in 2005. By Dru Lavigne

36 Book Review If you understand DNS and
want to learn how to secure it, DNSSEC Mastery is for
you. It’s a clear and concise guide with a ton of hand-
holding and plenty of examples. By Joseph Kong

38 Events Calendar
By Dru Lavigne

FreeBSD Journal
Vol. 2, Issue No. 2

TM March/April 2015

BEST PRACTICES

18

March/April 2015 1

INTERACTING
with the FreeBSD Project

BEST PRACTICES
Hopefully the tips and best practices in
this article will help you avoid some of the

common mistakes made by those new to ZFS.
By Al lan Jude

What’s New in FreeNAS 9.3
Recently released FreeNAS 9.3 adds several
new features, many of which take advantage

of OpenZFS and recent FreeBSD optimizations.
By Dru Lav igne

24 How to Build a Port A brief overview of
how the ports system is structured and an introduction on
how to build a simple port. By Erwin Lansing

30 The FreeBSD Foundation at 15 We
were not always so capable, but during our 15 years the
vision to get us here has not changed. By Justin Gibbs

Shingled Magnetic
Recording [SMR]

While alternatives to PMR (perpendicular
magnetic recording) are being developed,

manufacturers are adopting a more compact track
layout, termed shingled magnetic recording (SMR),
to increase capacity. By Just in G ibbs

12

44

Table of Contents

12

18

FreeBSD Journal (ISBN: 978-0-615-88479-0)
is published 6 times a year (January/February,
March/April, May/June, July/August,
September/October, November/December).

Published by the FreeBSD Foundation,
PO Box 20247, Boulder, CO 80308
ph: 720/207-5142 • fax: 720/222-2350
email: board@freebsdfoundation.org
Copyright © 2015 by FreeBSD Foundation.
All rights reserved.

This magazine may not be reproduced in whole or in
part without written permission from the publisher.

LETTER
from the Board

John Baldwin •

Justin Gibbs •

Daichi Goto •

Joseph Kong •

Dru Lavigne •

Michael W. Lucas •

Kirk McKusick •

George Neville-Neil •

Hiroki Sato •

Robert Watson •

J O U R N A L

•

March/April 2015 3

e’re pleased to present you with the eighth issue
of FreeBSD Journal. Subscription rolls continue to

grow and subscriber retention remains high. Taken
together, these are clear signs that the contributors, edito-
rial board, and staff who spend so much of their time
working on the Journal are doing a great job. Thank you!

Yet another cause for celebration is the 15-year
anniversary of the FreeBSD Foundation, the good folks
who help fund the Journal and who do a great many
other things to keep the FreeBSD Project
going strong. Justin Gibbs, the founder and
current president of the Foundation, has writ-
ten an article for this issue that lays out the
history and future of the Foundation and also
includes a mention of some exciting work
coming out this year.

The editorial board decided to focus the
technical articles in this issue on the topic of storage, one
of the areas in which FreeBSD continues to excel. The
adoption of ZFS from OpenSolaris has opened up huge
new vistas for storage applications, all built around an
open-source solution. Getting the most from a ZFS instal-
lation requires some tuning, and that’s just what Allan
Jude shows us in his article on ZFS Best Practices.

On an educational note, the FreeBSD Project is once
again a mentoring organization for Google’s Summer of
Code (GSoC), and mentors and students are currently
being matched up. You can find more on FreeBSD’s
involvement in GSoC at http://www.google-
melange.com/gsoc/homepage/google/gsoc2015 and in
this issue in Dru Lavigne’s This Month in FreeBSD column.

In closing we want to thank everyone who’s reading
this, those who have recently subscribed and those read-
ers who have re-upped their subscriptions. We’ve got a
lot of topics to cover in the Journal this year, including a
few articles on how you can interact with the FreeBSD
Project (see Erwin Lansing’s article in this issue on How to
Write a Port) as well as themed issues on networking,
FreeBSD in the Cloud, performance tuning, and much
more. Please stay tuned!

Sincerely,
FreeBSD Journal Editorial Board

Member of the
FreeBSD Core Team

Founder and President of the
FreeBSD Foundation and a
senior software architect at
Spectra Logic Corporation

Director at BSD Consulting Inc.
(Tokyo)

Author of FreeBSD Device
Drivers

Director of the FreeBSD
Foundation and Chair of the
BSD Certification Group

Author of Absolute FreeBSD

Director of the FreeBSD
Foundation and lead author of
The Design and Implementation
book series

Director of the FreeBSD
Foundation and co-author of
The Design and Implementation
of the FreeBSD Operating System

Director of the FreeBSD
Foundation, Chair of
AsiaBSDCon, member of the
FreeBSD Core Team and
Assistant Professor at Tokyo
Institute of Technology

Director of the FreeBSD
Foundation, Founder of the
TrustedBSD Project and
Lecturer at the University of
Cambridge

Publisher •

Editor-at-Large •

Art Director •

Office Administrator •

Advertising Sales •

Walter Andrzejewski
walter@freebsdjournal.com

James Maurer
jmaurer@freebsdjournal.com

Dianne M. Kischitz
dianne@freebsdjournal.com

Michael Davis
davism@freebsdjournal.com

Walter Andrzejewski
walter@freebsdjournal.com
Call 888/290-9469

S&W PUBLISHING LLC
P O B O X 4 0 8 , B E L F A S T , M A I N E 0 4 9 1 5

TM

E d i t o r i a l B o a r d

W

4 FreeBSD Journal

March/April 2015 5

ZFS is known for its reliability and for protecting data
from the dreaded bitrot. However, a concerning number
of users have run into trouble because they did not
understand just how different ZFS is from every previous
file system they have ever used. The goal of this article
is to set out a number of the best practices for using
ZFS to help you avoid running into these common mis-
conceptions. This article covers hardware, configuration,
tuning, and features, as well as a few other tips.

Beware Hardware RAID
The most costly mistake people make is not
giving ZFS control over their redundancy. It is
preferable for ZFS to provide the redundancy
(using ZFS mirroring or RAID-Z), rather than
using a hardware RAID controller. Important
data in ZFS is stored multiple times, in what
are called ditto blocks. Pool-wide data has
three ditto blocks (so is stored three times),
and file system metadata has two ditto
blocks. In addition, ZFS purposely stores the
ditto blocks on different disks, so that the
failure of any one disk cannot lead to the
loss of all copies of the metadata. This gives
ZFS better visibility into what’s actually going
on with the hardware, allowing more types
of errors to be corrected.

When a ZFS pool is created on top of
hardware RAID, the RAID controller presents
a single logical volume to the operating sys-
tem (and therefore to ZFS). When ZFS has
only one disk to work with, it doesn’t have
anywhere to store the parity information
required to rebuild the array in the event of
a failure, and no way to ensure the ditto
blocks end up on separate disks. While this
doesn’t seem like a very large issue because
the underlying RAID controller can rebuild
the missing disk from parity that exists at the
hardware RAID level, using hardware RAID

means you do not get the benefit of ZFS’
block level resilvering process. The hardware
has to resilver every byte on the entire disk,
rather than only the blocks that contain
active data. Hardware RAID also doesn’t help
in the situations where ZFS excels: detecting
and repairing flipped bits and other types of
otherwise undetectable errors in your data
or the file system itself. ZFS’ checksumming
is one of its most powerful features, but if
there is no ZFS redundancy, it can only
detect, not repair, the errors.

Hardware RAID controllers can also cause
countless other issues, and you are much
better off with a less expensive simple HBA
controller instead. Hardware RAID controllers
will sometimes mask certain errors and
silently retry commands, hiding this informa-
tion from ZFS. This is mostly a holdover from
the era where the operating system could
not be trusted to gracefully deal with the
error. Without this information, ZFS cannot
make informed decisions, nor can it self-heal
a failing drive by reading the data from the
parity location(s).

Even when trying to use a RAID controller
as a simple HBA (in “IT”, or “JBOD” mode),
many controllers will require that you create
a single disk RAID 0 (or a JBOD) out of each
disk before you can use it. In these cases,

�ZFS BEST PRACTICES�•
BY ALLAN JUDE

6 FreeBSD Journal

when it comes time to replace a failed disk,
one cannot simply just swap the disk out of the
chassis, but an operator must use software pro-
vided by the adapter manufacturer to create
the new volume with the replaced disk. Such a
tool may not exist, or may not be supported on
FreeBSD, requiring a reboot to access the BIOS
level tools provided by the adapter. Suddenly
your hot-swap drives still require a reboot and
are not providing the high availability you
expect. One of the other advantages to ZFS is
pool portability. All of the disks in a pool can be
moved to another server, easily imported, and
brought back into operation in short order.
However, if the disks are labeled by manufac-
turer A’s RAID utility, they won’t be accessible
by manufacturer B’s RAID controller. This might
make it impossible to read the disks if the con-
troller fails, and cannot be replaced with an
identical controller.

If some outside factor absolutely requires that
you use hardware RAID, always present a pair of
logical volumes to be mirrored in ZFS, or 3 or
more volumes for RAID-Z. The added redundan-
cy provided by the hardware RAID will cost
capacity and performance, but not taking
advantage of ZFS’ better redundancy will even-
tually make you wish you had. Also be sure to
disable “write back” mode on the controller. If
write back is not disabled, the cache flush com-
mands ZFS relies upon to ensure all the pending
data is actually written to the disk are ignored,
possibly causing data loss. Ultimately, ZFS on top
of hardware RAID decreases performance while
adding complexity, and that increases risk.

ECC Ram
Many articles and posts will emphatically state
that in order to use ZFS, you must have ECC
RAM. To quote Matt Ahrens, cocreator of ZFS:
“ZFS on a system without ECC is no more dan-
gerous than any other file system on a system
with ECC.” The features of ZFS are extremely
compelling and extraordinarily useful, no mat-
ter what role the machine is playing. The data
protections provided by ZFS outclass that of
every other file system, even without the bene-
fit of ECC RAM. Don’t let the FUD scare you
away from running ZFS, even on a single disk
on your laptop. Just be sure to take careful
backups.

If your goal is high availability, the extra cost
of ECC is easily justifiable. Server grade hard-
ware uses ECC RAM, because it mitigates the

risk of memory errors, and the application
crashes those errors can cause. Using ECC RAM
reduces (but does not entirely eliminate) the
risk of corruption on in-flight data, after it
leaves the application, but before ZFS has cal-
culated the checksum and written it to stable
storage. If you care about the reliability and
availability of your system, you should use ECC
RAM, regardless of what file system you use.

Backups Are Still Required
While the reliability and durability of ZFS make
us feel much safer about our data, too few
people still maintain proper backups of the
data they store on their ZFS pools. No amount
of RAID redundancy is as good as a backup.
Accidentally destroy the wrong pool? Where is
your backup? Pull the wrong disk while replac-
ing a failed one? Where is your backup? Add
an extra disk as a new vdev instead of attach-
ing it to the existing mirror? Where is your
backup?

ZFS provides a number of features that make
taking backups much easier and safer. The first
is instantaneous snapshots. Instead of backing
up a live system, where files can be changing
constantly, take a backup of a recursive snap-
shot of the system. This way, everything con-
tained in the backup is saved as it was at an
exact moment in time, even if the backup takes
multiple days to complete. The other powerful
backup feature is the built-in incremental repli-
cation system. The first advantage to this
method is that, compared to walking the file
system with Bacula or rsync, ZFS walks its inter-
nal representation of the data, resulting in a
fast contiguous read of the blocks. The output
of “zfs send” can be incremental or full. In
incremental mode, the output maintains the
copy-on-write aspects of the data stream,
including all the snapshots. This output can
either be stored as massive binary block (a ZFS
data stream), or piped to “zfs receive”, where a
replica of the dataset can be recreated on
another machine, effectively creating a “warm
spare” of the dataset. ZFS also has another fea-
ture that is great for taking live backups: pool
splitting. When your pool consists of mirror
vdevs, with ideally at least 3 devices in each
mirror set so that the pool is not at risk from a
single device failure during this operation, one
device from each mirror vdev can be detached
by the “zpool split” command, creating a new
pool. This new pool contains one drive from

�

March/April 2015 7

each vdev and all of the data from the current
pool. These disks can then be ejected and
moved to an off-site location, similar to a tape
backup. New disks are then swapped in, and
rejoin the mirror set and resilver. Repeated on an
ongoing basis, this process provides a complete
offsite backup that takes only a few seconds to
create. Drives can be reused once they have
exceeded your backup retention threshold.
Compared to a regular backup, the pool split
method can be less performance impacting
because the backup time is amortized over the
period after the new drives are added to the
pool. As new data is written to the pool, it is
mirrored to the regular mirror devices, but also
to the device that will be split off when the next
backup is taken. In this setup, it may be wise to
adjust the resilver throttling
(vfs.zfs.resilver_delay), to avoid unduly impacting
performance when the new drives are added
after the split.

Disk Labeling
There are a number of ways to handle labeling
disks and creating the logical connection
between the device exposed by the operating
system and the physical disk in its physical loca-
tion in the chassis. The one that has worked
best for me in production has been the physical
slot number followed by the disk’s serial num-
ber. For example, our one chas-
sis has 24 drives in the front,
and 12 more in the rear. The
drive in slot 6 in the front is f06-
WMC1F125320, and a drive in
the rear might be r02-9WM7HATN. There are a
number of reasons to use the serial number,
mainly inventory and warranty management;
the serial number is required to check if the
drive is still under warranty and to get it
replaced. It is a convenient unique identifier,
although depending on the model and drive
manufacturer, it can be a bit unwieldy. The serial
number for one of my Intel SSDs is
CVDA333604282403GN, which one would
struggle to fit on a label on the front of a 2.5
inch drive carrier, and doesn’t fit within the 15
character GPT label. It is best to truncate and
keep the most significant digits, so if the serial
numbers share a common beginning, use the
last characters of the serial number. Adding the
slot number as a prefix helps operators and data
center technicians more quickly identify the cor-
rect physical drive, without having to compare
the entire serial number, especially when a series

of drives may have a common prefix in the serial
number. The next step is to change the operat-
ing system’s representation of the drive to
match. The recommended approach is to use
GPT partition labels, like so:

This will create an alias for da0 called
/dev/gpt/f01-9WM6T60L

Note: The maximum length of the label is 15
characters.

This way, even if the order in which the oper-
ating system recognizes the devices changes,
the name of the device stays the same. It also
means that the output of “zpool status” will
show each disk, with its location and serial num-
ber. With this technique, a missing disk will be
obvious, and it will be easy to communicate to
the operator or data center technician which
disk needs to be replaced.

FreeBSD offers a number of different ways to
label disks, and it may be helpful to disable the
unused ones, to avoid ZFS picking up those
device names instead:

/boot/loader.conf:

Disk Ident example:

GPT ID example:

Notice how at first glance, the two appear to
be identical. The difference is at the beginning
of the string, rather than the end.

Another disadvantage to Disk Ident and
GPTID is that the partition identifiers get tacked
on the end, so the 2nd partition on the disk is

which blends into the unique ID of the disk
In more advanced setups with SAS expanders,

dual ported disks, and multiple controllers, each
disk may be presented to the operating system
multiple times, once for each unique path.

�

gpart modify -i 2 -l f01-9WM6T60L da0

kern.geom.label.disk_ident.enable=1
kern.geom.label.gptid.enable=0

/dev/diskid/DISK-07013121E6B2FA14
/dev/diskid/DISK-%20%20%20%20%20WD-WCC131365642
/dev/diskid/diskid/DISK-%20%20%20%20%20%20%20%20%20%20%20%20Z300HTCE

/dev/gptid/b829bf8c-46ad-11e3-ae0f-002590721162
/dev/gptid/b88eeff5-46ad-11e3-ae0f-002590721162

/dev/diskid/DISK-07013121E6B2FA14p2,

8 FreeBSD Journal

FreeBSD’s GEOM storage management layer has
a system for this, gmultipath. This writes a
unique label to the disk, and then when 2 or
more devices appear with the same label, they
are classified as multiple paths to the same
physical disk.

In the end, it looks something like this:

Setting Up the Disks
Before creating the pool, the disks need to be
prepared. There are a number of guides, blogs,
and other resources that state that ZFS should
always be used on an entire disk, not a partition.
While this is true in Solaris, because of the way
the disk cache works, it is not true under
FreeBSD. There are a few considerations at this
point. If the system will boot from the pool, then
all of the disks should contain the ZFS boot code.
In case of a failure, it may not be possible to pre-
dict which disk the system will try to boot from.
The freebsd-boot partition should be 512kb; this
is just shy of the maximum imposed by the
FreeBSD ZFS boot blocks. The purpose behind
using the maximum size is to ensure that there
will be enough room for the boot blocks to grow
over time. All of the partitions created on the disk
should be aligned to 4k boundaries, to keep the
partition layout consistent across all the disks. This
can be accomplished by using “-a 4k” with each
gpart command when creating the partitions.

Even if the current disks use 512 byte sectors,
in the future it may not be easy to obtain 512
byte sector disks to replace these, so setting up
the entire pool based on 4k sectors ensures that
complications will not arise when a disk needs to
be replaced in the future. With that same goal in
mind, the partition that will hold the ZFS data
should be created slightly smaller than the avail-
able size of the disk. This extra space can be used
as a swap partition. This slack will offer some wig-
gle room in the case where the replacement disk
does not have the exact same sector count as the
original disk. Lastly, the ZFS pool itself should use
4k sectors. Again, even if your drives are 512 byte
sectors, their future replacements may not be,
and it is not possible to mix sector sizes, nor to
change the ZFS sector size after the pool is creat-
ed. To force ZFS to use a 4k sector size, set the
sysctl vfs.zfs.min_auto_ashift=12 (2^12 = 4k)
before creating the pool. The downside to 4k
sectors is slightly worse space efficiency and pos-
sibly worse performance for very small reads or
writes (less than 4k). In the case of a database
type workload and sub 1 TB disks, 512 byte sec-
tors may be desirable.

Some disk models include an “XP Jumper,”
which offsets each LBA address by 1, so that the
default starting location of the first MBR partition
(63rd sector) becomes the 64th 512 byte sector
and is therefore 4k aligned. However, if this
jumper is set and we ask the partitioning tool to
align the partitions to 4k, they will all be off by 1
sector, and will cause the performance penalties
we were trying to avoid in the first place.

Pool Layout
Determining the best way to lay out the disks
and vdevs in your pool is one of the hardest
questions facing a user creating a new pool.

There are many factors to consider, and
once the decision is made, it generally
cannot be changed. The biggest factors
are random I/O performance, streaming
performance, space efficiency, and fault
tolerance. Each different configuration
provides different benefits. For the best
IOPS performance for random reads, the
best solution is always more vdevs. Sets of
mirrors (equivalent to RAID 10) provide
the best performance because the IOPS of
each vdev is effectively limited to that of
the slowest device, so 12 disks in 6 mirror
sets provides 6x the IOPS of a single disk,

whereas all 12 disks in a single RAID-Z (1, 2, or
3) provides only 1x the IOPS of a single disk.

�

gmultipath status
multipath/f01-WMC1F125320 OPTIMAL da0 (ACTIVE)

da36 (PASSIVE)
multipath/f02-WMC1F125298 OPTIMAL da1 (ACTIVE)

da37 (PASSIVE)
multipath/f03-WMC1F125506 OPTIMAL da2 (ACTIVE)

da38 (PASSIVE)

gpart create -s gpt ada0
gpart add -t freebsd-boot -l bootfs0 -s 512k -a 4k ada0
gpart add -t freebsd-swap -l swap0 -s 2g -a 4k ada0
gpart add -t freebsd-zfs -l f01-9WM6T60L -a 4k ada0
gpart show -l ada0
=> 34 7814037100 ada0 GPT (3.7T)

34 6 - free - (3.0k)
40 1024 1 bootfs0 (512k)
1064 984 - free - (492k)
2048 4194304 2 swap0 (2.0G)
4196352 7809839104 3 f01-9WM6T60L (3.7T)

7814035456 1678 - free - (839k)

More performance can be gained by running the
12 disks as 2 RAID-Z2 vdevs, or even 3 or 4 RAID-
Z1 vdevs, at the cost of less usable space, but the
performance never reaches that of the mirror
sets. In the case of streaming performance,
where IOPS make much less of a difference, spin-
dle count is all that matters.

Assume a modest set of commodity spinning
disks, 1 TB in size and capable of 250 IOPS and
streaming read/writes at 100 MB/s:

Using a larger number of smaller groups of
disks increases performance at the cost of
reduced usable space (more parity). Streaming
read and write performance is constrained by the
number of non-parity spindles. This leads to
another consideration for both random and
streaming performance: spindle count. An array
of 12x 1 TB drives will usually outperform 6x 2 TB
drives, because the greater spindle count increas-
es both IOPS and streaming performance.

Avoiding Single Points of Failure
Avoiding single points of failure will increase the
availability of your pool. With some planning and
informed design decisions, the same hardware
can be organized in a more fault-tolerant config-
uration. In larger installations, where all the disks
may not reside in the same physical chassis, con-
sideration should be given to which disks belong
head with 3 external JBOD chassis with 36 disks

each should be configured such that each RAID-
Z2 vdev consists of 2 disks from each JBOD (18
vdevs of 6 disks each). In this configuration, even
if one JBOD’s power supply, HBA, or cabling fails,
each vdev is still functional. Whereas if the con-
figuration consisted of vdevs made up of disks all
in the same JBOD, a number of vdevs would be
faulted, and the system would not be able to
continue. The same approach can be taken in
smaller systems that might not have multipath to
tolerate an HBA failure. If constructing mirror

March/April 2015 9

�

Disks Configuration Read IOPS Write IOPS Read MB/s Write MB/s Usable Space Fault Tolerance

2 1x 2 disk Mirror 500 250 200 100 1 TB 1

3 1x 3 disk Mirror 750 250 300 100 1 TB 2

1x 3 disk RAID-Z1 250 250 200 200 2 TB 1

4 2x 2 disk Mirror 1000 500 400 200 2 TB 1 (2*)

1x 4 disk RAID-Z1 250 250 300 300 3 TB 1

5 1x 5 disk RAID-Z1 250 250 400 400 4 TB 1

1x 5 disk RAID-Z2 250 250 300 300 3 TB 2

6 3x 2 disk Mirror 1500 750 600 300 3 TB 1 (3*)

2x 3 disk Mirror 1500 500 600 200 2 TB 2 (4**)

1x 6 disk RAID-Z1 250 250 500 500 5 TB 1

1x 6 disk RAID-Z2 250 250 400 400 4 TB 2

12 6x 2 disk Mirror 3000 1500 1200 600 6 TB 1 (6*)

4x 3 disk Mirror 3000 1000 1200 400 4 TB 2 (8**)

2x 6 disk RAID-Z1 500 500 1000 1000 10 TB 1 (2*)

2x 6 disk RAID-Z2 500 500 800 800 8 TB 2 (4**)

36 18x 2 disk Mirror 9000 4500 3600 1800 18 TB 1 (18*)

12x 3 disk Mirror 9000 3000 3600 1200 12 TB 2 (24**)

1x 36 disk RAID-Z2 250 250 3400 3400 34 TB 2

2x 18 disk RAID-Z2 500 500 3200 3200 32 TB 2 (4**)

4x 9 disk RAID-Z2 1000 1000 2800 2800 28 TB 2 (8**)

6x 6 disk RAID-Z2 1500 1500 2400 2400 24 TB 2 (12**)

* Provided that the failures are limited to 1 per vdev
** Provided that the failures are limited to 2 per vdev

10 FreeBSDJournal

pairs, ensure that each disk is paired with anoth-
er disk that is not on the same controller, so the
failure of one controller only degrades, rather
than faults, each affected vdev.

Compression
ZFS supports transparent compression where data
is compressed as it is written to the disk and
decompressed as it is read back, without the user
or application needing to be aware. In addition to
the obvious decrease in storage utilization this
provides, it also increases performance. Even with
the small CPU usage penalty, compressed data can
be read from the disks at the same speed as
uncompressed data, but once decompressed, pro-
vides a much higher effective throughput. If a disk
can read 100 MB/s, and data is compressed 50%,
then that data can now be read at effectively 150
MB/s. The same applies to writes, where there is
increased throughput and decreased latency
because a smaller amount of data takes less time
to write. This makes compressed datasets very
useful for databases, which often contain highly
compressible text and always benefit from higher
throughput and lower latency. The newer LZ4
compression algorithm used in ZFS also has an
“early abort” feature, which will store a block
uncompressed if the compression ratio on the first
bit of the block is less than 12.5%. This further
reduces the performance impact of using com-
pression, since incompressible files are quickly
skipped. With this in mind, you can consider using
LZ4 compression on the entire pool.

Deduplication
ZFS supports online deduplication, meaning data
is deduplicated as it is written. While this feature
appears attractive, you will see it is quite expen-
sive. Here is why. In order to deduplicate the data
as it is written, ZFS builds a hash table of the
SHA256 checksum of each block (called the
deduplication table, or DDT). The DDT is stored in
main memory as part of the ARC (Adaptive
Replacement Cache). As new blocks are queued
to be written, they are first compared to the DDT,
and if a match is found, the ref count of the
existing block just needs to be increased, instead
of writing out the block. If no match is found,
the new data is written and the new checksum is
added to the DDT. Each entry in the DDT takes
320 bytes of memory or more. If there is not
enough room in the metadata portion of the
ARC, the DDT entries are written to the L2ARC
(usually an SSD or other fast storage device used
as a second level cache) where they take even

more space. In the typical case of a zvol backed
iSCSI target, the block size is 8 KB, meaning 1 TB
of unique data would generate nearly 48 GB of
DDT. If that won’t fit in ram, it is instead stored in
the L2ARC, but that has a memory cost of its
own. In addition, DDT entries take more space on
disk than they do in memory, and have worse
performance. In the event of a problem with the
pool, the DDT needs to be able to fit in memory
when the pool is imported, and if it cannot, the
pool may not be able to be imported. DDT and
L2ARC mappings also count as metadata, which
by default is restricted to only 1/4 of the available
ARC memory. If you are going to use deduplica-
tion, the metadata limit will need to be adjusted.
The benefit of deduplication has a very high
cost—if your dataset is only going to get a mod-
erate deduplication ratio, you are most likely
much better off just using LZ4 compression. If I
still have not dissuaded you from using dedupli-
cation, you should conduct some tests on your
data to ensure you are getting a very good
deduplication ratio, and calculate how much ram
will be required to store the DDT for all of your
data. Be sure to leave room in the ARC for
actual metadata, in addition to the DDT and
L2ARC index, and, of course, the cache of your
actual data. You will need a lot of ram.

Reservations
The pooled nature of storage in ZFS means that
all the available free space is available to every
dataset. Compared to the traditional way of
doing things, partitioning a RAID volume or cre-
ating separate volumes, the free space does not
become fragmented. The downside to this is that
one workload or user can consume all the avail-
able space. While this can be addressed with
quotas, that doesn’t always solve the problem.
ZFS also offers a reservation system where a spe-
cific dataset for a critical database or for security
logs can be guaranteed a minimum amount of
space unavailable to any other dataset. To ensure
that the e-commerce database never runs out of
room because of HTTP logs, give its dataset a
reservation.

Although recent improvements to ZFS have
improved the situation greatly, a ZFS pool that is
nearly full will perform badly. If the pool becomes
completely full, the administrative commands to
resolve the situation can take an exceedingly long
time. One way around this is to create a new
dataset, called “reserved,” with a reservation of
20% to 25% of the total capacity of the pool.
This will prevent that critical last bit of space from
being used up. The reservation can be relaxed to

�

March/April 2015 11

allow the administrator to perform needed oper-
ations or to tide the system over until the pool
can be expanded.

Tuning
The biggest variable in ZFS is the size of the ARC.
The ARC is where ZFS stores recently-used and
frequently-used data as well as its metadata. The
ARC provides most of the amazing performance
that comes with ZFS. The maximum size of the
ARC defaults to 1 GB less than all memory in the
system (or 1/2 of all memory in machines with lit-
tle memory). For a dedicated file server, this
makes sense; however, if there are going to be
other applications that require memory, you
might want to tune this to something more mod-
est, leaving room for other applications like a
web server or database server. The limit is set
with a tunable in /boot/loader.conf:
vfs.zfs.arc_max. Generally it is best to leave at
least a few gigabytes of memory for the OS and
for applications, but maximizing the memory
available to the ARC will increase performance.
The ARC will release memory back to the OS
when it detects memory pressure, but this is not
instant and may cause heavy swapping. As dis-

cussed earlier, the default limit on metadata is 1/4
of the ARC. If your dataset contains a very large
number of small files, it might be advantageous to
increase this value.

Hopefully these tips and best practices guide
you well and help you avoid some of the common
mistakes made by those new to ZFS. We hope to
see you join the thriving community of OpenZFS
users and developers. Special thanks to Dan
Langille, the backup guru, and Michael Dexter,
who has dressed many self-inflicted foot wounds
for various clients and shared what he learned. •

Allan Jude is VP of operations at ScaleEngine
Inc., a global HTTP and Video Streaming CDN
(Content Distribution Network), where he
makes extensive use of ZFS on FreeBSD. He is
also the host of the video podcasts BSD Now
(with Kris Moore) and TechSNAP on
JupiterBroadcasting.com. Allan is a FreeBSD
doc committer, focused on improving the
handbook and documenting ZFS. He taught
FreeBSD and NetBSD at Mohawk College in
Hamilton, Canada, from 2007 to 2010 and has
12 years of BSD UNIX sysadmin experience.

�

I S I L O N The industry leader in Scale-Out Network Attached Storage (NAS)

With offices around the world,
we likely have a job for you!
Please visit our website at
http://www.emc.com/careers
or send direct inquiries to
karl.augustine@isilon.com.

We’re Hiring!
We’re Hiring!

Isilon is deeply invested in advancing FreeBSD
performance and scalability. We are looking
to hire and develop FreeBSD committers for
kernel product development and to improve
the Open Source Community.

12 FreeBSD Journal

Existing hard disk products are nearing the estimated 1Tb/in2 limit
in areal density achievable using current perpendicular magnetic
recording (PMR) technology. While alternatives to PMR are being
developed, manufacturers are adopting a more compact track lay-
out, termed shingled magnetic recording (SMR), to increase capacity.
SMR currently provides a 20% improvement in density, but removes
the ability to independently update sectors on the media. In this
article we explore the characteristics of SMR and its impact on
traditional storage software.

Shingled
Magnetic

Recording
[SMR]

[This Is Not Your Father ’s D isk Dr ive]

March/April 2015 13

Since the introduction of the hard drive
by IBM in 1956, the disk industry has been
tracking Moore’s Law, doubling storage density
every two years. But that trend may now be in
jeopardy. Disk platters are nearing the 1Tb/in2

areal density limit of the currently used tech-
nology, perpendicular magnetic recording
(PMR), and higher density schemes such as
heat-assisted magnetic recording (HAMR) and
bit patterned media (BPM) are still two years or
more away.

To fill this roadmap gap, manufacturers are
turning to shingled magnetic recording (SMR).
SMR achieves a higher density by shrinking the
effective track size. Doing this without any
changes to the media or head design takes
advantage of the existing PMR technology’s
ability to read smaller tracks than it can write.
Instead of leaving a gap between two adjoin-
ing tracks to ensure there is no interference
(Figures 1 and 2), SMR purposely overwrites a
portion of the previously written, neighboring
track when laying down a new stripe of data.

The old track remains, but is trimmed to a
narrower width. The new track is the same
width as on a non-SMR drive. Writing in this
way across a platter, with an occasional gap
band so writes don’t have to be continuous
across the entire media, currently yields a 20%
increase in capacity. (Figure 3) This advantage
may increase in the future.

SMR is so called because writes are per-
formed in a pattern similar to the shingles on a
roof. Just as it is impossible on a roof to
replace a single shingle without perturbing
those surrounding it, SMR drives do not allow
operations that replace the contents of individ-
ual sectors. Write operations must start at a
gap band on the media and proceed sequen-
tially to the next gap band in order to not lose
previously written data.

Since this model is so different from the
behavior of disk drives recorded with inde-
pendent tracks, drive manufacturers are
adding firmware features to ease the transition
for file systems and applications. In products
shipping today, the drive manages all the com-
plexity of shingling and emulates a standard
direct access device. Models available within
the next year will provide additional com-
mands to expose the SMR traits of the drive.

SMR-aware software can use this information
to avoid operations that must be emulated,
but the drive will still accept any direct access
command. For environments where the whole
software stack is SMR aware, models will even-
tually be offered with no emulation at all. With
the extra CPU, memory, and media over-provi-
sioning required for emulation removed, these
drive models should provide the best price per
terabyte.

The emulation provided by current SMR
models allows all existing software to function,
but often at a significant performance penalty.
Writing randomly to a shingled device will
force the firmware to perform garbage collec-

by Justin Gibbs

Gap Band

F i g . 1 Conventional Track/Sector Layout

F i g . 2 Conventional Media Layout

F i g . 3 Shingled Zone/Track/Sector Layout

Track Sector

Disk Platter

Track

Sector

Shingled
Zone: N+1

Shingled
Zone: N

Sector

Gap
Band

14 FreeBSD Journal

tion, and in most cases, a single write operation
from the host will be converted into two or
more write operations to the media. Given
enough media over-provisioning, RAM, or flash,
it should be possible to provide performance
that meets or exceeds that of a traditionally for-
matted hard drive. But along with increasing
density, the market expects decreasing per-ter-
abyte cost.

The additional component cost would break
this trend. So while emulation will improve over
time, the storage systems looking to achieve
optimal performance will need to become SMR
aware.

Adapting existing storage stacks to SMR will
not be easy—the ability to overwrite any LBA is
an inherent assumption of most implementa-
tions. Given this difficulty, many have hoped
that SMR will be phased out once new technol-
ogy like HAMR and BPR are available. Currently,
the chance that this will occur seems remote.
The roadmaps of the major players in the spin-
ning drive market show SMR as a contributing
technology far into the future for their march to
achieve Moore’s Law.

SMR Devices
Current industry roadmaps show three distinct
types of SMR devices: drive managed, host
aware, and host managed. Drive-managed
devices provide the full direct access command
set of a standard drive and use internal map-
ping techniques to give the illusion that individ-
ual sectors can be updated randomly. Host-
aware devices include all the emulation support
of a drive-managed device, but also support
commands that SMR-aware software can use to
write optimally and avoid emulation penalties.
Host-managed devices remove all emulation
support, forcing the host to manage tasks like

garbage collection directly. In all cases, the
physical characteristics of an SMR drive are
the same.

An SMR hard drive is divided up into zones,
collections of sequentially addressed sectors.
Zones can be managed independently since
they are separated from each other by unwrit-
ten space. These “gap bands” ensure that write
activity from one zone cannot impact another.
Zones can be either conventionally formatted or
shingled. A conventional zone allows updates
to individual sectors, just like on a conventional,
non-SMR, disk drive. A shingled zone must be
written sequentially from lowest to highest logi-
cal block address (LBA-sector address) so that
already in-place data isn’t corrupted by subse-
quent writes. In order to achieve the density
improvements SMR promises, SMR zones are
large—tens if not hundreds of megabytes—and
the majority of zones in a device must be shin-
gled. Typical configurations may also include a
small number of conventional zones for storing
rapidly changing blocks and/or metadata for
managing the SMR zones, but this is not
required (Figure 4).

Drive-Managed Devices
Providing conventional hard drive semantics
while using SMR media adds tremendously to
the complexity of the device’s firmware. One
possible strategy for performing this emulation is
to completely decouple the LBA presented to the
host from the physical location of data on the
media. This technique is used to great effect on
solid state drives, and SMR zones have many of
the same traits as the flash memory used in
SSDs: a shingled zone is effectively the erase
block size, and writing in ascending address
order is highly preferred. However, the econom-
ics do not support this approach. The market

F i g . 4 SMR Media Layout F i g . 5 Layout with “Media Cache”
Zone Gap

Band
Conventional Zone

Shingled Zone

Main Store

Media Cache

Disk Platter

March/April 2015 15

expects spinning drives to be significantly cheaper
than flash storage. Currently an 8-TB SMR drive
retails for under $.04 per GB, compared to almost
$.40 per GB for the lowest performance 1-TB
flash drive. There isn’t enough price margin to
allow manufacturers to add the large RAM, flash,
or CPU resources needed to manage a fully
dynamic LBA map on an SMR device. Even if the
market supported higher prices, the latency cost
for random-access reads on spinning media gives
good incentive to make most requests that are
sequential to the host (sequential in LBA space)
also sequential on the media.

Instead, current generation drives use a
“cache and clean” approach. Writes that would
violate the sequential write requirements of an
SMR zone are directed to a media cache. This
media cache is composed of zones reserved for
use by the firmware. These zones typically occu-
py space at the outer diameter of the platters
where transfer rates are the greatest (Figure 5).
An implementation may also reserve zones
throughout the media in order to avoid large
seek penalties for diverting to the media cache
when the head is already positioned at the inner
diameter. The media cache may utilize either
conventionally formatted zones, shingled zones,
or a combination of both.

Using shingled zones to manage other shin-
gled zones may seem counterproductive, but
doing so increases the density of the cache,
resulting in less raw capacity being lost to emula-
tion. Drives that chose this approach apply the
same log-structured, journaling techniques used
in databases, flash devices, and even some con-
ventional file systems to always write sequentially
to the cache.

The steps taken to service a read request help
to illustrate how the media cache and the
remaining SMR zones interact in this emulated
environment. The LBAs requested by the read fall
into two categories: those residing in the main
SMR store and those that were redirected to the
media cache and may be migrated back to the
main store sometime in the future. To make this
classification, the firmware maintains enough
information in RAM to quickly determine if an
LBA has been redirected to the media cache. If
that lookup succeeds, the physical location in the
media cache is known. If the lookup fails, the
physical location is also known. Bad block remap-
ping aside, there is a linear mapping from LBA to
physical address in the main store, allowing the
zone and zone offset to be quickly derived from
the LBA. Once all physical locations are known,

the disk drive can perform seek optimization,
read the blocks, and stitch them together for
transmission to the host.

By maintaining a map of only those sectors
that reside in the media cache, the RAM and
CPU resources required for emulation can be
greatly reduced. The media cache is a small frac-
tion of the device’s total capacity and so is the
map. But this also means that it is possible to
exhaust the media cache. This is where the clean
step of “cache and clean” comes into play. In
parallel with servicing host activity that causes
reads and writes to the media cache, the drive
must also promote data from the media cache to
the main store, freeing space to service future
write activity.

In its most basic form, cleaning entails preserv-
ing any data to be retained from a main SMR
zone in the media cache, overwriting the SMR
zone with both new and retained data, and then
marking portions of the media cache as free for
reuse. There are, however, strategies the
firmware can employ to make the process less
expensive. To reduce the impact of cleaning
operations on host command latency, the clean-
ing can be done in stages. If host I/O arrives,
those LBAs that have been transferred to the
main store can be marked as free, and the clean-
ing operation suspended. After servicing higher-
priority operations, cleaning can resume where it
left off. Another savings is possible given that
writes to an LBA in the middle of a zone can
impact LBAs at higher addresses, but not at
lower addresses. The firmware can thus avoid
preserving data at LBAs below the first LBA of
data being promoted from the media cache.
Additionally, the range of LBAs disturbed by a
mid-zone write is relatively small (a track or two)
and well known to the firmware. Rather than
clean all the way to the end of the zone, the
firmware may stop early and just leave the LBAs
for the invalidated sectors in the media cache
(Figure 6). You can think of this approach as

F i g . 6 Mid-Zone Overwrite

KEY

Writing Head

� Existing Data

� New Data

� Invalidated Data

� Free Space

16 FreeBSD Journal

“hole filling.” If the range of contiguous LBAs to
be promoted to the media cache is greater than
the number of LBAs invalidated by a write, hole
filling results in a net reduction in the amount of
media cache in use.

There are workloads where having a media
cache increases performance. If, for example, the
host is rapidly issuing random writes to a small
number of LBAs, these sectors can simply reside in
the media cache without ever being promoted.
Since most media cache implementations are jour-
naled, the LBAs from these writes are written
sequentially to the media. The net result is near
sequential I/O performance for bursts of random
writes. Even when promotion must eventually
occur, if the total load on the device is low
enough, the drive may have sufficient idle time to
do promotion without any host-visible penalty.
However, random write workloads are migrating
to solid-state devices. For the more common spin-
ning-disk workload of storing larger objects that
are rarely overwritten, the goal should be to avoid
the media cache entirely and eliminate the multi-

ple-write penalty incurred due to promotion.
To avoid the media cache on a drive-man-

aged device, the host must issue write opera-
tions so it is easy for the drive firmware to
compute the benefit of writing directly to the
main store. The first step is to ensure that
operations that are sequential in LBA space are

presented to the drive that way. Write commands
to adjoining LBA regions should be issued from
lowest to highest LBA without any interleaved
commands. The native queue depth varies
depending on the command protocol being used,
but in general, a spinning drive can only process a
handful of commands concurrently. It may fail to
reorder out-of-order commands and detect that
they are sequential. Similarly, any delay between

sequential commands may cause the firmware to
timeout and assume that the stream has ended.

Issuing commands in the right order is required,
but not sufficient to bypass the media cache. The
goal of the firmware is to retire a write without
having to read any data. It can only do that and
also bypass the media cache if the write operation
is large. At today’s media densities, a track holds
on the order of 4MB, and at least a track is invali-
dated by a mid-zone write. Any write operation
(or group of sequential write operations) that con-
sumes less than two tracks of space will go to the
media cache. For writes larger than this, the drive
will write the first portion directly to the main
store and direct the last track’s worth of data to
the media cache (Figure 7). In this way, the drive
can fulfill the write without having to read any
data—the write to the main store is stopped
before invalidating any of the sectors that need to
be retained.

The need to meet data integrity guarantees
can also prevent writing directly to the main
store. It is possible for the host to disable a drive’s
write cache, forcing all write commands to be
reported as complete only after the data is com-
mitted to stable storage (persists across power
loss). Given the limited queue depth and RAM
resources of the drive, this will almost certainly
cause the firmware to prematurely terminate a
direct media write so that it can finalize com-
mands and return them to the host. Selectively
issuing write commands that bypass the cache
(e.g., setting the “force unit access” bit in a SCSI
write) or a command to flush the full cache will
also force the drive to end any current optimiza-
tion. For these reasons, the write cache should
always be enabled on drive-managed SMR
devices and the frequency of synchronizing com-
mands heavily limited.

Host-Aware Devices
Even more strategies for avoiding the media
cache become available to the host when dealing
with a host-aware device. These drives support
two additional commands: REPORT ZONES, and
RESET WRITE POINTER. REPORT ZONES does
what the name implies. With it, the host can
determine the number, type, and size of all host
visible zones. REPORT ZONES also provides the
current position of the write pointer within shin-
gled zones. The write pointer marks the end of
valid data in a zone and is the location that
should next be written in order to avoid an emu-
lation penalty. The RESET WRITE POINTER com-

F i g . 7 Hole Filling/Redirection to Media Cache

10 9 8 7 6

10 9 8 7 6 5 4 3 2 1

Media Cache Main Store

User Data

KEY
� Existing

Data

� New Data

� Invalidated
Data

� Free Space

5 4 3 2 1

10 9 8 7 6 5 4 3 2 1

mand allows modification of the write pointer
in a zone. Currently, this command is specified
to only allow the write pointer to be set to the
beginning of a zone, effectively erasing a zone
in one shot. Based on the reserved byte space in
this command, it appears that future versions of
the ATA and SCSI specifications may allow the
write pointer offset to be explicitly set—for
example, to just erase then overwrite the tail
end of a zone.

With this geometry information in hand, the
host can intelligently assign LBAs to the data it
is writing. Data structures for tracking free and
allocated space can be aligned and sized to
match a drive’s native zone layout. Rapidly over-
written data such as a file system’s free space
maps can be directed to conventional zones.
Large writes of user data can be allocated from
contiguous space starting at the write pointer in
SMR zones. As LBAs are freed from SMR zones,
the free space fragmentation this causes can be
tracked so that this space is only reused when
the system is relatively idle or when there is a
high return when compared to the cost of
reclaiming a zone. When all the data in an SMR
zone is no longer needed, a RESET WRITE
POINTER will tell the drive it needn’t preserve
any sectors for subsequent writes to that zone.
These are just a few of the possible optimiza-
tions for avoiding nonsequential writes and the
penalties for having the drive emulate them.

Host-Managed Devices
With sufficient sophistication in the host soft-
ware, we can take these optimizations to their
logical conclusion: perform all zone manage-
ment within the host. This is where the host-
managed devices in the SMR roadmap come
into play. While host-aware devices report shin-
gled zones that are “sequential write pre-
ferred,” on a host-managed device, these are
“sequential-write mandatory.” All emulation
features are absent on this drive type and any
write that doesn’t start at the write pointer for
a zone is rejected.

There are a few unexpected complications
with host-managed devices. While the firmware
of a drive-managed or host-aware device is free
to invalidate LBAs in the middle of a shingled
zone so long as access to those LBAs is properly
redirected to the media cache, the current spec-
ification for host-managed devices is much
more restrictive. To ensure the drive can report
which LBAs are valid utilizing the least amount
of drive-maintained metadata, writes are only
allowed at the write pointer, and only those

LBAs below the write pointer are readable. Any
attempt to read outside the range from the
beginning of the zone to the write pointer will
fail, even if those sectors were written previous-
ly and are still valid on the media. For this rea-
son, host-aware software is somewhat more
constrained in the approaches it can take to
effectively utilize a host-managed device.

The specifications for host access to SMR
drives are in their infancy, and we can expect
some aspects of this restriction to eventually be
addressed. Already there is a proposal to allow a
circular zone type. In this type of zone, only
LBAs in the interference region just past the
write pointer are considered invalid. All other
sectors can be read. While still not providing the
freedom to implement some of the redirection
schemes of drive-managed and host-aware
devices, circular zones would naturally lend
themselves to journaling. And journaling may
be sufficient for getting optimum performance
from these devices.

Conclusion
After almost 60 years, the fundamental way
that software interacts with spinning magnetic
media is changing. Given the trajectory of the
main providers of hard disks, storage systems
developers have little choice but to adapt. Until
they do, consumers should expect reduced per-
formance from SMR drives when deployed in
traditional workloads.

The stage is now set to see how storage
appliances, operating systems, and file systems
tackle the challenge of SMR. With an under-
standing of how drive-managed devices per-
form their emulation, some basic optimization
for SMR drives is possible. Going beyond this
and taking full advantage of host-aware and
host-managed devices will take more time.
Storage stacks are complicated—often taking
tens to hundreds of man-years to develop.
Because of this, the impact of SMR will proceed
in slow motion through the storage industry.
Five years from now, there will be definite win-
ners and losers: those who have adapted to
SMR and those who have not. For now, it’s just
too early to predict who the casualties will be.•

Justin Gibbs is the founder and president of the
FreeBSD Foundation, and has been working on the
storage-related subsystems of FreeBSD since
1993. He currently works at Spectra Logic
Corporation building petabyte-scale, archive stor-
age systems using FreeBSD, flash, disk, and tape.

March/April 2015 17

18 FreeBSD Journal

What’s
New?
in FreeNAS 9.3

March/April 2015 19

FreeNAS 9.3, which was released in
December 2014, adds several new features,
many of which take advantage of OpenZFS
and recent FreeBSD optimizations. This article
provides an overview of some of these fea-
tures. Refer to the FreeNAS 9.3 User Guide
(doc.freenas.org/9.3 <http://doc.freenas.org/
9.3> <http://doc.freenas.org/9.3>) for more
information about FreeNAS, its features, and
available configuration options.

ZFS on the Boot Device(s)
FreeNAS provides a separation between the
boot device, to which the operating system
is installed, and the disk(s) used for storage.
This means that a problem with the boot
device or the operating system itself does
not affect the data stored on the storage
disk(s), and that data becomes available once
the problem with the boot device or operat-
ing system is resolved. Traditionally, FreeNAS
formatted the boot device with UFS and did
not support mirroring of the boot device.
While it was easy to recover from a failed
boot device, the operation did result in some
downtime in order to realize the failure, pre-
pare a new boot device, and boot into it.

Beginning with version 9.3, FreeNAS for-
mats the boot device with ZFS and supports
mirrored boot devices, allowing for the sys-
tem to continue to operate if one of the
boot devices in a mirror fails. The current sta-

tus and number of boot device(s) can be
viewed in System -> Boot -> Status. Another
boot device can be added as a mirror at any
time by clicking the “Attach” button in the
same screen and selecting the device to add,
as seen in the example in Figure 1.

Figure 1 Adding Another Boot Device

The use of ZFS provides an additional fea-
ture: boot environments, or the ability to
take a snapshot of the operating system
itself and to boot into a previous version of
the operating system. This feature is inte-
grated into the new update mechanism,
described in the next section.

Managing Updates
Beginning with version 9.3, FreeNAS no
longer uses point releases to provide security
patches, bug fixes, new drivers, or other
types of updates. Instead, cryptographically

by Dru Lavigne

FreeNAS
FreeNAS is an open-source, BSD-

licensed, network-attached storage
(NAS) operating system based on FreeBSD.
It uses OpenZFS, the open-source version
of ZFS, a self-healing file system which
is particularly suited for storage and

for maintaining the integrity of
the data being stored.

signed updates are provided as they become
available, providing the administrator flexibility
in determining when to apply the available
updates. In addition, the update mechanism
allows the administrator to track different
“trains” or release/development branches. This
allows the administrator to “test drive” upcom-
ing releases or to apply a needed feature that is
not yet available in the current STABLE branch,
yet still roll back to the previous version of the
operating system as needed.

Figure 2 provides an example of the System
-> Update screen. In this example, the system is
currently running the STABLE version of 9.3 and
the following trains are available: FreeNAS-10-
Nightlies (tracks the upcoming, not-yet-released
10 alpha version), FreeNAS-9.3-Nightlies (tracks
nightly, possibly untested changes), and
FreeNAS-9.3-STABLE (tracks tested updates).

Once a train is selected, the administrator
can click the “Check Now” button to see if any
updates are available for that train. Figure 3
shows an example of the results of an update
check where several updates are available.

In this example, the numbers in the

Changelog that begin with a # represent the
bug report number from bugs.freenas.org.
Click the “ChangeLog” hyperlink to open the
log of changes in a web browser. Click the
“ReleaseNotes” hyperlink to open the 9.3
Release Notes in a web browser.

To download and apply the updates, click
the “OK” button. Alternately, most updates
require a reboot after they are applied.
Uncheck the box “Apply updates after down-
loading.” This will instruct the system to only
download the updates. The updates can then
be applied at a time that least impacts users by
clicking the “Apply Pending Updates” button
shown in Figure 2.

Whenever an update is applied, the system
automatically creates a boot environment of
the newly updated operating system and adds
it as the default entry in the boot menu. In the
example shown in Figure 4, the default version
of the operating system was installed on
November 21 and an update using the 9.3-
Nightlies train was applied on November 24.
Should an update fail, or the administrator wish
to return to a previous version of the operating
system, simply reboot and select the desired

boot environment to boot into.

Boot Manager
In addition to the automated boot
environments created by the system
updater, FreeNAS 9.3 includes a boot
manager for creating manual boot
environments and pruning old boot
environments. This configuration
screen, shown in Figure 5, can be
accessed from System -> Boot.

This screen displays the status of the
boot volume and the time and results

Figure 2 Selecting a Train from Update Manager

Figure 3 Reviewing Available Updates

Figure 4 Selecting a Boot Environment from Boot Menu

20 FreeBSD Journal

FreeNAS 9.3

March/April 2015 21

of the last ZFS scrub of the boot volume. By
default, the boot device is scrubbed every 35
days. Click the “Scrub Boot” button to initiate a
scrub of the boot volume now. To review the
number of devices in the boot volume and the
status of each device, click the “Status” button.

If you highlight a boot environment, you can
delete, clone, activate (if it is not currently set as
the boot default), or rename it. If the boot vol-
ume is getting low on space or you have applied
many updates, you can delete multiple older
boot environments that you do not plan to boot
into in the future. To instead create a new envi-
ronment, click the “Create” button and input
the name to appear in the boot menu.

Configuration Wizard
Beginning with 9.3, FreeNAS provides a configu-
ration wizard which runs automatically either
after the initial upgrade to or installation of ver-
sion 9.3. This wizard provides an efficient mech-
anism for quickly configuring the system in order
to reduce the amount of time from initial bootup
to serving data over the network. It allows the
administrator to:
• Configure the system’s localization, keyboard
mapping, and time zone.
• Import an existing ZFS pool or create a new
ZFS pool.
• Select a directory service to attach to (Active
Directory, LDAP, or NIS) and provide the required
credentials.
• Configure CIFS (including guest access), AFP
(including Time Machine), NFS, and iSCSI shares.
Each share configuration should work “out of

the box” and can be further fine-tuned for more
complex scenarios using the FreeNAS graphical
administrative interface.
• Set the administrative email address which will
receive security run outputs and administrative
alerts.
• Configure the system to optionally display
console messages at the bottom of the screen to
ease troubleshooting.

The wizard can be rerun at any time, making it
trivial to add additional shares or directory servic-
es. Any configuration performed by the wizard
can still be viewed and edited using the configu-
ration screens provided by the FreeNAS GUI.

Certificate Manager
Many of the FreeNAS services support encryption
using a certificate. FreeNAS 9.3 provides a
graphical certificate manager for creating a cer-
tificate authority, importing and creating certifi-
cates, self-signing certificates, and creating cer-
tificate signing requests. This certificate manager
is integrated into the system, meaning that all
added certificates are available for use within the
configuration screens of the services which sup-
port encryption.

Creating a self-signed certificate is as simple
as filling in the information in the screen shown
in Figure 6.

Figure 5 Managing Boot Environments

Figure 6 Using Certificate Manager to Create a Self-Signed Certificate

22 FreeBSD Journal

Figure 7 provides an example of configuring
the graphical administrative interface to use
HTTPS. In this example, two certificates have
been created, one for the web service and one
for the ftp service. See Figure 7.

Improved iSCSI/Virtualization
Integration
The move to kernel iSCSI, with many perform-
ance improvements, and support for all of the
VAAI (vStorage APIs for Array Integration) stor-
age primitives greatly enhance FreeNAS integra-
tion with virtual datastores. VAAI is an API frame-
work that enables certain storage tasks, such as
thin provisioning, to be offloaded from the virtu-
alization hardware to the storage array. The fol-
lowing VAAI primitives are supported in 9.3:
• unmap: tells ZFS that the space created by
deleted files should be freed. Without unmap, ZFS
is unaware of freed space made using a virtualiza-
tion technology such as VMware or Hyper-V.
• atomic test and set: allows a virtual machine
to only lock the part of the virtual machine it is
using rather than locking the whole LUN, which
would prevent other hosts from accessing the
same LUN simultaneously.
• write same: when allocating virtual machines
with thick provisioning, the necessary write of

zeroes is done locally, rather than over the net-
work, so virtual machine creation is much quicker.
• xcopy: similar to Microsoft ODX, copies hap-
pen locally rather than over the network.
• stun: if a volume runs out of space, this fea-
ture pauses any running virtual machines so that
the space issue can be fixed before any corrup-
tion occurs.
• threshold warning: the system reports an error
when a configurable capacity is reached. In
FreeNAS, this threshold can be configured both at
the pool level and the zvol (device extent) level.
• LUN reporting: the LUN reports that it is thin
provisioned.

In addition, ZFS snapshots work correctly
when VMware is configured as a datastore.
FreeNAS will automatically snapshot any running
VMware virtual machines before taking a ZFS
snapshot of the dataset or zvol backing that
VMware datastore. This means that the resulting
ZFS snapshots will contain coherent VMware
snapshots. A new configuration screen, found in
Storage -> VMWare-Snapshot and shown in
Figure 8, can be used to configure the datastore.

Miscellaneous Features
Several other features have been added in 9.3,
including:
• A new sharing type, WebDAV, provides authen-
ticated access to the specified volume or dataset
from a web browser or webdav client. Encryption
or forced encryption can optionally be configured
on these shares.
• Kerberized NFSv4 support is now available.
• The LLDP service has been added for providing
Ethernet device discovery using IEEE 802.1AB.Figure 7 Selecting the Certificate to Use

Figure 8 Configuring a VMware Datastore

FreeNAS 9.3

Premier VPS Hosting

www.rootbsd.net

RootBSD has multiple datacenter locations,
and offers friendly, knowledgeable support staff.

Starting at just $20/mo you are granted access to the latest
FreeBSD, full Root Access, and Private Cloud options.

• The addition of the SSSD service means that multi-
ple directory services are supported.
• SNMP is now provided by Net-SNMP.
• The system logger has been replaced by
syslog-ng.
• The ability to manage sysctls, loader.conf
values, and rc.conf values has been integrated into
one configuration screen (System -> Tunables).
• ZFS pool upgrades can now be performed using the
graphical interface. The alert system will indicate
when newer OpenZFS feature flags are available.
• Zvols can now be grown using the graphical inter-
face. LUNs can now be grown without the need to
first disconnect initiators or stop the iSCSI service.
• Kerberos realms and Kerberos keytabs can now be
configured from the graphical interface and, once
added, become available in the configuration screens
for the directory services that support realms and
keytabs.

Summary
FreeNAS continues to add innovative features, making
it easier than ever to configure this open-source oper-
ating system and integrate

it as a storage solution within any size network. Boot
environments reduce the risk of updating the operat-
ing system, and the up-
date mechanism provides flexibility when determining
when to apply updates. The configuration wizard
reduces the amount of time needed to deploy
FreeNAS, and the certificate manager makes it easy to
create and manage certificates.

This article did not cover all of the features and
improvements added to FreeNAS 9.3. Refer to the 9.3
Release Notes and the “What’s New in 9.3” section of
the FreeNAS 9.3 Users Guide for a more complete list
of the new features.•

Dru Lavigne has been using FreeBSD as her primary
platform since 1997 and is the lead documentation
writer for the FreeBSD-derived PC-BSD and FreeNAS
projects. She is author of BSD Hacks, The Best of Free-
BSD Basics, and The Definitive Guide to PC-BSD. She is
founder and current Chair of the BSD Certification
Group Inc., a nonprofit organization with a mission to
create the standard for certifying BSD system adminis-
trators, and serves on the Board of the FreeBSD
Foundation.

March/April 2015 23

INTERACTING with the FreeBSD Project

First you need to get a fresh copy of the
FreeBSD ports tree. The fastest way to get one

is by using portsnap(8). This is a two-step
process. First fetch the portsnap data file, which
is about 70Mb and can take some time depend-
ing on your Internet connection. Then install the
ports tree itself, which will extract a large num-
ber of small files, which also can take time
depending on the speed of your disks.

portsnap fetch
portsnap extract

This will place a full copy of the ports tree in
/usr/ports. Updating an earlier version of the
ports tree installed by portsnap is a similar two-
step process:

portsnap fetch
portsnap update

Looking in /usr/ports you can see a number of
files and a large number of directories. One of
the first files that should be noticeable is the
Makefile. The FreeBSD ports tree is written in
make(1), a language extensively used for building
and installing software. Of course a single 200

by Erwin Lansing /

HOW TO Build a PortBuild a Port
•

FreeBSD has long been known for its ports tree, where users
had to start by compiling all the software they wanted to install,
which in some cases can be slow and bothersome. Over the last few
years, a lot of work has been done to build a first-class packaging sys-
tem, where a user can simply download and install a pre-built pack-
age, with entirely new packaging tools and also a brand new package
distribution infrastructure. For most users, this is now the recommend-
ed way to install software, and most users will no longer need to
compile software themselves if using the new pkg(8) system (see
FreeBSD Journal, March/April 2014). Underneath it all, however, is still
the FreeBSD ports system, which has all the information on how to
build and install third-party software on FreeBSD. With almost 25,000
packages available, it still may happen that a package does not exist,
and so a new port will need to be written. Similarly, to change an
existing package, the underlying ports need to be modified. In this
article I give a brief overview of how the ports system is structured
and an introduction on how to build a simple port.

BUILD
PORT

line Makefile is not enough, and most of the ports
infrastructure code is in the /usr/ports/Mk directory.
Most of the other directories are the categories
containing the actual ports.

A very simple port consists of four files:
Makefile, pkg-descr, pkg-plist, and distinfo. The
Makefile contains some basic information about
the port and the instructions on how
to fetch, build, and install it. pkg-
descr, or package description, con-
tains a short description of what
this port is and does and also a link
to the official project website of the
software package. pkg-plist, or
packaging list, is a list of files that
this port installs, and finally, distinfo
contains a checksum and size of
any external files this port needs to
fetch from the Internet. I’m going
to use the Stand-Alone Shell (SASH)
port, found in /usr/ports/shells/sash,
as an example here. In Example 1
you can also see a directory named
files, which can contain additional
files useful for this port.

Looking at the SASH Makefile in Example 2, the
first line has an attribution to the original author
when the port first was added to the ports tree.
Next is the subversion identification string, which
will be expanded by subversion automatically and
for a new port should only be:

$FreeBSD$

Next is a section of variables with some essential
information about the software this port will

install. The name of the port in PORTNAME should
be unique across the whole ports tree, although
there are options available for adding a prefix or
suffix to the name.
PORTVERSION is the version of this port and is
usually the same as the version of the original soft-
ware package. Note that the ports version can never
decrease, as the tools for upgrading installed pack-
ages cannot handle versions going back in time.
CATEGORIES is a list of port categories starting
with the primary category this port belongs to,
which is also the directory in the ports tree it is in.
A port can belong to more than one category list-
ed after the primary category including virtual cat-
egories that do not have a directory themselves,
but can still help users find the port. A full list of
available categories is available in the Porters
Handbook: https://www.freebsd.org/doc/
en_US.ISO8859-1/books/porters-handbook/
makefile-categories.html#porting-categories.

The list of URLs in MASTER_SITES is used by the
ports system to fetch the original sources of the
software package. It is recommended to have
more than one in case that site is temporarily
unreachable. This is also where some of the magic
starts. The actual URL of the file to be fetched is
constructed by the ports system automatically,
based on some of the earlier specified variables. In
its simplest form it will default to

${MASTER_SITE}/${PORTNAME}-
${PORTVERSION}.tar.gz

In the example SASH port, this will be:
http://members.tip.net.au/~dbell/

programs/sash-3.8.tar.gz
Lots of software projects use their own version-

ing or naming schemes, and there are a large
number of additional variables available to influ-
ence the final URL, e.g., setting USE_BZIP2 will
change the default suffix to .tar.bz2, and USE_XZ
will change it to .tar.xz. There are also macros
available for well-known download sites with a
large number of mirrors, like SourceForge and
CPAN. Another interesting and extensively used
site is github, which does not have a concept of
official released files, and so the port will need to
depend on a given commit and tag to ensure it
downloads a consistent and tested version of the
software. These are all described in the Porters
Handbook: https://www.freebsd.org/doc/en_
US.ISO8859-1/books/porters-handbook/
makefile-distfiles.html.

March/April 2015 25

Example 1:
erwin@panda:/usr/ports/shells/sash % ls -l
total 20
-rw-r--r-- 1 root wheel 349 Apr 11 2014 Makefile
-rw-r--r-- 1 root wheel 123 Apr 11 2014 distinfo
drwxr-xr-x 2 root wheel 512 Jun 24 2014 files
-rw-r--r-- 1 root wheel 458 Jan 22 2014 pkg-descr
-rw-r--r-- 1 root wheel 35 Jun 11 2014 pkg-plist

Example 2:
erwin@panda:/usr/ports/shells/sash % cat Makefile
Created by: Patrick Gardella <patrick@FreeBSD.org>
$FreeBSD: head/shells/sash/Makefile 350947 2014-04-11 13:41:06Z miwi $

PORTNAME= sash
PORTVERSION= 3.8
CATEGORIES=shells
MASTER_SITES= http://members.tip.net.au/~dbell/programs/

MAINTAINER= ports@FreeBSD.org
COMMENT= Stand-Alone Shell combining many common utilities

.include <bsd.port.mk>

The next section contains some basic metadata
about the port. The FreeBSD ports system has a

concept of maintainership, where a single person
or multiple people behind a mailing list address are
the primary contact for the port. Requesting
changes to a port, like updating to a newer ver-
sion, should be approved by the maintainer, and
filing a bug report in the FreeBSD bugzilla instance
will automatically generate an email to the address
listed in the MAINTAINER field.
COMMENT is, as you may have guessed, a short,
one-sentence description of the port. A longer
description is available in the pkg-descr file.

Finally, the port needs to invoke the ports infra-
structure itself by including the main file:

.include <bsd.port.mk>

Speaking of the pkg-descr file, Example 3 lists the
contents of pkg-descr for the shells/sash port,
which is quite explicit and detailed. A usual pkg-
descr should only have a few paragraphs concisely
describing the port so a user knows what the port
does without having to read documentation or
visit a website. The official website of the software
project can be included on the last line, prepended
by WWW.

The files installed by the port are listed in the
pkg-plist file. This list is used at several stages in a
port’s lifetime. The tools that generate packages
use this list to know what files to include, and a
tool removing an installed port or package also
needs to know which files it should delete. Files
are installed in ${PREFIX}, which defaults to
/usr/local, is implicitly assumed in the pkg-plist file,

and should not be included. As you can see in
Example 4, our small port only installs one exe-
cutable file and its corresponding man-page. More
strengths of the ports system turn up here.
Keywords can be used in the packaging list to han-
dle more advanced cases where just installing a
given file in a given location needs more care, or
where an additional file needs to be modified. The
@shell keyword in our example not only installs the
sash executable in /usr/local/bin, but also adds it to
/etc/shells so that it becomes a recognized shell on
the system. Another example is the @sample key-
word. This is very useful for installing configuration
files that should not be overwritten by the stock
version in a later upgrade. Using the @sample key-
word, the port or package will install the stock ver-
sion as filename.conf.sample, but before that it
will test whether filename.conf exists, and if so,
whether it is the same as the stock file in the previ-
ous version, and if not, or if it doesn’t exist, install
the stock version as filename.conf as well. In other
words, if the configuration file already exists and
was modified by the user since its installation,
those modifications will not be overwritten.
More keywords can be found in the
/usr/ports/Keywords directory.

Finally we get to the distinfo file. This is also the
easiest file to create. If all the variables in the

Makefile were correctly filled in, especially those
that influence how to fetch the original sources, it
is just a matter of running:

make makesum
This will fetch the files needed and generate the

distinfo file with a SHA256 checksum and the size
of the file. See Example 5.

The files directory in a port can hold any file the
port needs at some point during the build, installa-
tion, or packaging. Filenames starting with the pre-
fix patch- will automatically be applied between
unpacking the original sources and compilation
and can be very useful when porting software
written without FreeBSD in mind. See Example 6.

For a new port, an entry in the category
Makefile needs to be created. In our example, that
would be in /usr/ports/shells/Makefile

SUBDIR += sash

Dependencies
One important and often used feature our exam-
ple port does not use is dependencies. A depend-
ency is another port that the current port needs in
some phase of its lifetime, for example, an exe-
cutable or other file during run time, or while
building, or a library. Libraries are specified in
the LIB_DEPENDS variable as a list of library:port
combinations.

26 FreeBSD Journal

Example 3:
erwin@panda:/usr/ports/shells/sash % cat pkg-descr
SASH (Stand-Alone Shell)

It is a nice combination of bare-bones shell and a dozen
or so most useful UNIX commands.

Shell includes: echo pwd cd mkdir mknod rmdir sync rm chmod
chown chgrp touch mv ln cp cmp more exit
setenv printenv umask kill where

Commands include: dd ed grep gzip ls tar file find mount chattr
WWW: http://members.tip.net.au/~dbell/

Example 4:
erwin@panda:/usr/ports/shells/sash % cat pkg-plist
@shell bin/sash
man/man1/sash.1.gz

LIB_DEPENDS=
libsqlite3.so:${PORTSDIR}/databases/sqlite3

Run time or build time dependencies are speci-
fied in a similar way in the RUN_DEPENDS and
BUILD_DEPENDS variables, consisting of a list of
file:port combinations.

RUN_DEPENDS=
${LOCALBASE}/bin/bash:${PORTSDIR}/shells/bash

The ${LOCALBASE} variable is usually the same
as ${PREFIX} we saw earlier, but make the distinc-
tion between where already installed ports are
(LOCALBASE) and where the current port will be
installed (PREFIX). For an executable in the default
path, the full path is not needed, so the above
example could be shortened to:

RUN_DEPENDS=
bash:${PORTSDIR}/shells/bash

Testing the Port
It is highly recommended to turn on the developer
mode while testing. This is easily done by setting
DEVELOPER=yes in /etc/make.conf:

echo DEVELOPER=yes >> /etc/make.conf
This turns on extra quality checks and displays

more warnings, like use of deprecated features.
A first and simple test that can be done is run-

ning “make describe.” This should produce a string
composed of a lot of the metadata we talked
about earlier. This information is used by several
tools for keeping track of dependencies and search-
ing for port names or descriptions. See Example 7.

The portlint utility, found in ports-mgmt/portlint
or just “pkg install portlint,” evaluates whether the
port is syntactically correct and also has some rec-

ommendations for best practices that have devel-
oped over the years. For a new port, portlint -A
should be run; for an existing port portlint -C is suf-
ficient. See Example 8.

This is a valid warning as our example port does
not set the ${LICENSE} variable. The ${LICENSE}
variable can be set to a known license abbreviation,
listed in /usr/ports/Mk/bsd.licenses.db.mk. If a soft-
ware project includes a file with its license, it should
also be installed by using the ${LICENSE_FILE} vari-
able. See Example 9.

Testing a Port
The easiest way to test is, of course, to install the
newly hatched port on your local system. I would
recommend against that, as it can easily break the
existing system, accidentally overwriting an existing
file or exhibit other unexpected behavior, and
already installed software can also make it harder
to check what the new port adds. For example,
with plenty of software already installed, it is easy
to miss a newly installed file and leave it out of the

Example 8:
erwin@panda:/usr/ports/shells/sash % portlint -C
WARN: Makefile: Consider defining LICENSE.
0 fatal errors and 1 warning found.

Example 6:
erwin@panda:/usr/ports/shells/sash % ls -l files/
total 20
-rw-r--r-- 1 root wheel 1356 Apr 11 2014 patch-Makefile
-rw-r--r-- 1 root wheel 442 Jan 22 2014 patch-cmd_ls.c
-rw-r--r-- 1 root wheel 2572 Apr 11 2014 patch-cmds.c
-rw-r--r-- 1 root wheel 551 Apr 11 2014 patch-sash.c
-rw-r--r-- 1 root wheel 219 Jan 22 2014 patch-sash.h

Example 7:
erwin@panda:/usr/ports/shells/sash % make describe
sash-3.8|/usr/ports/shells/sash|/usr/local|Stand-Alone shell combining many common
utilities|/usr/ports/shells/sash/pkg-descr|ports@FreeBSD.org|shells||||||http://members.tip.net.au/~dbell/

Example 9:
LICENSE= GPLv2
LICENSE_FILE= ${WRKSRC}/COPYING

Example 5:
erwin@panda:/usr/ports/shells/sash % cat distinfo
SHA256 (sash-3.8.tar.gz) =
13c4f9a911526949096bf543c21a41149e6b037061193b15ba6b707eea7b6579
SIZE (sash-3.8.tar.gz) = 53049

March/April 2015 27

28

pkg-plist.
Using a clean installation or a jail might help

avoid most of those pitfalls, but tools are available
to do all the hard work for you. The poudriere
system (https://github.com/freebsd/poudriere) is
not only useful for building your own in-house
package repository, but is also an excellent port
testing framework. It can be used to test the
entire ports tree, a subset of the tree, or even a
single port and its dependencies. Using jails and
the ZFS file system, it ensures that it is self-con-
tained and does not influence the host system in
any way. It generates very useful log files on a
per-port basis, that can be used to see how the
port was built, packages installed and deinstalled,
and is very useful for checking whether the pkg-
plist file was complete. It can be a bit hardware
hungry due to its heavy reliance on ZFS, and of
course compiling does require a lot of processing.

Install poudriere from a package “pkg install
poudriere” or from the port in ports-
mgmt/poudriere, and review the settings in
/usr/local/etc/poudriere.conf, especially those deal-
ing with the ZFS file system. Next, create a jail
with the FreeBSD version you want to test:

poudriere jail -c -j 93Ramd64 -v 9.3-
RELEASE -a amd64

If you plan to submit your port to be included
in the FreeBSD ports tree, you should test on all
supported major releases. The ports team sup-
ports the same FreeBSD releases as the FreeBSD
security officer (https://www.freebsd.org/security/),
which currently includes FreeBSD 8, 9, and 10,
plus the development version in HEAD, 11.

Of course you need a ports tree as well, which
can be created by:

poudriere ports -c
This will create a ports tree named default.

You’re now ready to test your port:
poudriere testport -j 93Ramd64 -p default -o

shells/sash
You will find the log file in

/poudriere/data/logs/bulk/93Ramd64-default/
latest/logs/sash-3.8.log. A more extensive intro-

duction for using poudriere as a testing tool can
be found in the Porters Handbook:
https://www.freebsd.org/doc/en/books/
porters-handbook/testing-poudriere.html.
At the time this article was written, the redports
(https://redports.org) system was down for main-
tenance. Hopefully, the site will be back, so keep
checking. It provides all the tests above and a
large number of extended checks, all via a con-
venient web interface.

Submitting a Port
Once you are satisfied the port works the way you
want, you are ready to submit it for inclusion in
the official FreeBSD ports tree, which will also
make packages available for easy installation with
pkg. Make sure the port directory is clean of any
unnecessary files. Removing the work/ directory
can easily be done with the “make clean” com-
mand. From the category directory, one level up
from the port directory, use the shar(1) utility to
bundle the files in a shar archive:

shar `find sash’> sash.shar
The resulting sash.shar can be submitted to the

FreeBSD bugzilla database.
We have only brushed the surface in this intro-

duction to the ports tree, so be sure to check the
Porters Handbook (https://www.freebsd.org/
doc/en/books/porters-handbook/index.html),
which is constantly updated and contains compre-
hensive information on all the features of the
ports tree. There is also an active porters commu-
nity that will be happy to answer any questions.
You can find them on the freebsd-ports mailing
list (http://lists.freebsd.org/mailman/listinfo/
freebsd-ports) or on the IRC channel #bsdports on
EFnet. Happy porting! •

Erwin Lansing lives in Copenhagen with his
wife and son. He works for DK Hostmaster
trying to keep the lights on on the Danish
Internet. He is also Vice President of the Board

WeCan’t DoThis
YOU! PLEASE DO

YOUR PART
& DONATE

TODAY
Your contribution makes a real difference! Help the Free-
BSD Foundation Support: •Project Development •FreeBSD
Advocacy •Growth of the FreeBSD Journal •And More!

Without

The mo reeBSD
kernel�s internal structure has now been extensively updated to
cover all major improvements between Versions 5 and 11.

Terms & Conditions: Discount code FREEBSD35 is applied to list price of Design and Implementation of FreeBSD, Second Edition
print or eBook and cannot be combined with any other offers. Offer is only good at informit.com.

SAVE 35%
When you order from informit.com/freebsd
Use discount code FREEBSD35 during checkout

EBOOK FORMATS INCLUDE EPUB, MOBI, AND PDF � ALL FOR ONE PRICE � FREE SHIPPING WITHIN THE U.S.

NEW EDITION � Now Available!

INTERACTING with the FreeBSD Project

We were not always so capable, but
during our 15 years the vision to get
us here has not changed. By telling
the story of our origin—why I felt
the FreeBSD Foundation had to
exist—I hope to better explain our

mission and how we’ll continue to
move forward in the next 15 years.

The story begins during the early days
of the FreeBSD Project.

I started my involvement with
FreeBSD on a purely technical level. Filled with
curiosity and an appetite for learning, I saw
FreeBSD as an incomplete puzzle. Creating new
pieces and putting them in place was addictive;
finding out that my solutions worked for others,
immensely satisfying. I had stumbled upon a tech-
nical playground where I could share my ideas and
build great things without the impractical sched-
ules and other constraints I found when writing
software for school or work.

The founders of this “FreeBSD playground”
may not have realized exactly what they were
creating. The goal was to carry on the BSD tra-
dition, challenge ourselves to create the “best
UNIX,” and to have fun. But as the project
grew, it became clear that someone had to be
responsible for the playground: the grass need-
ed to be cut, the play equipment maintained,
and the occasional fight broken up. To fill this
role, without much desire or inclination to be
managers, the founders and a few of the early
technical contributors to the project came
together to form the FreeBSD Core Team.

Late in 1993, I was invited to join the

FreeBSD Core Team. In those days, this was how
the project acknowledged technical expertise—
being on the Core Team lent weight to your
arguments on technical matters. It was a
tremendous honor and one I readily accepted.
What I didn’t fully grasp was that I was accept-
ing a management position. Lacking the skill set
or natural talent for “cat herding,” I was now
one of a handful of volunteers—hackers really—
responsible for guiding FreeBSD forward.

The next seven years that I served on the
FreeBSD Core Team was an amazing experience.
Reluctant volunteer managers attempting to
manage a volunteer community may sound like
a recipe for disaster. However, it worked surpris-
ingly well. We were young, fiercely loyal, and
had enviously large amounts of spare time to
dedicate to the project. With enough effort and
sheer will, there is almost nothing you cannot
do. But it became clear to me that as a group of
technophiles, many of the things we had to do
were things we didn’t enjoy doing. Making the
project function and grow took time away from
the coding projects I loved. For me, this wasn’t
sustainable.

In 1999, two years into a serious relationship,
my thoughts turned to marriage and raising a
family. It was obvious that my time commitment
to the FreeBSD Project would have to change,
but I didn’t want to give any less to a communi-
ty that had given me so much in return. I also
wanted to really enjoy the time that I chose to
give to the project.

That same year, the FreeBSD Core Team was
looking for a way to accept the transfer of the

30 FreeBSD Journal

Some 15 years later, the FreeBSD Foundation continues to grow the ways it
supports the FreeBSD community. From funded development projects and promotion of
FreeBSD, to providing legal support and bringing our community together at confer-
ences and summits, the FreeBSD Foundation compliments the hard work of FreeBSD's

contributors, focusing on areas that are underserved in an all volunteer project.

The FreeBSDThe FreeBSD
Foundation at 15

by Justin Gibbs /

•

FreeBSD trademark from Walnut Creek CDROM.
FreeBSD is a collection of individuals, not a formal
legal entity. We needed a structure for safeguarding
the intellectual property of the project. In research-
ing how a nonprofit company might fit this role, I
found a potential solution to both problems. A
“FreeBSD Foundation” could certainly hold the
trademark. It could also be a sustainable way for
me to give back to the project in ways I could never
achieve as a single volunteer.

On March 15, 2000, the FreeBSD Foundation
was born. The combination of a tiny budget, piles
of paperwork, filing and legal fees, and letters to
and from the IRS made for a slow and inauspicious
beginning. During some particularly frustrating
times, it was hard to believe my original goals were
attainable. The FreeBSD Foundation still needed me
for constant care and feeding. I rarely wrote code
for FreeBSD in my spare time. I looked forward to
the day when the Foundation would be able to
bring in expertise from outside the Project to help
with marketing and legal issues, while freeing vol-
unteers to work on the things they loved.

In December 2000, the Foundation received pro-
visional, 501(c)(3) nonprofit status. The first major
hurdle had been cleared. Jumping those that fol-
lowed became progressively easier: learning the
rules of maintaining nonprofit status, setting up to
legally receive donations, figuring out basic
accounting. Finally, on June 27, 2001, the FreeBSD
Foundation was publicly announced to the world.

Now the real work began to transform the
Foundation from a mere paper entity into an asset
to the FreeBSD community. We took ownership of
and started to protect the FreeBSD trademark. We
worked with Sun to license FreeBSD Java binaries.
We funded the early work on network scalability
for SMP systems. We fostered nascent BSD confer-
ences. These early accomplishments proved the
value of the FreeBSD Foundation. But it wasn’t yet
sustainable.

Prior to 2006, all of the Foundation’s activities
were managed by volunteers. Jonathan Bresler and
John Polstra served as officers and provided tremen-
dous amounts of support during the early life of the
FreeBSD Foundation. Over time, more volunteers
agreed to participate on the Foundation’s board and
help grow its capabilities. However, the Foundation’s
address was still my house. The Foundation’s phone
number still rang my phone. I had a day job and
family to care for. The Foundation needed someone

to manage it on a daily basis or it would never reach
its full potential.

Having no idea where to start, I asked the HR
director at my work for advice on hiring the
FreeBSD Foundation’s first employee. Kathy Stoltz
introduced me to her longtime friend, Deb
Goodkin. Deb has been serving the FreeBSD
Foundation, now as its executive director, ever
since. I feel very lucky to have found such a capable
steward for the FreeBSD Foundation. More impor-
tantly, she has worked with the Foundation board
to create policies and a structure to ensure, as vol-
unteers, board members, and staff come or go,
that the FreeBSD Foundation will survive and con-
tinue its work supporting the FreeBSD Project.

This journey has taught me several things.
FreeBSD is about much more than writing documen-
tation or code and building a system. As a communi-
ty, we need to understand that, and seek creative
ways to achieve the goals we aren’t best equipped
to tackle as volunteers. The work we enjoy doing
can have a tremendous impact on our world. But for
that to happen, we must promote it, while making it
easier to use and more accessible to researchers,
educators, and builders of commercial products. The
FreeBSD Foundation is a vehicle for performing this
necessary work—for meeting challenges, in coopera-
tion with the FreeBSD community, that seem impos-
sible for the FreeBSD Project to conquer on its own.
This is why I have invested so much to make the
FreeBSD Foundation a reality.

The journey is not over. The work is not
done. I want to thank the FreeBSD Foundation
staff, former and current board members, and
our donors for making our achievements pos-

sible. To the many users of FreeBSD we’ve talked
to, thank you for your words of encouragement
and your challenges to do even more.

Finally, as founder and president of the FreeBSD
Foundation, I want to thank the FreeBSD communi-
ty for your trust. Holding the FreeBSD trademark
and supporting the FreeBSD Project is a privilege.
The FreeBSD Foundation will continue to grow and
the faces of those running it may change, but our
commitment to this community and keeping your
trust will always remain the same. •

Justin Gibbs is the founder and president of
the FreeBSD Foundation, and has been working
on the storage-related subsystems of FreeBSD
since 1993. He currently works at Spectra Logic
Corporation building petabyte-scale, archive
storage systems using FreeBSD, flash, disk,
and tape.

March/April 2015 31

http://docs.freebsd.org/cgi/getmsg.cgi?fetch=6629+0+arc
hive/2001/freebsd-announce/20010701.freebsd-announce

IMPORTANT PORTS UPDATES

Several exp-runs were performed (23 actually) to
check whether major ports updates are safe or

not. From those important updates we can men-
tion the following highlights:

• default python3 version set to 3.4

• default ruby version set to 2.1

• gcc updated to 4.9

• clang updated to 3.6.0

• cmake updated to 3.1.3

• ruby-gems updated to 2.4.5
As usual, please read the /usr/ports/UPDATING file
carefully before updating your ports, as manual
steps may be involved.

NEW PORTS COMMITTERS AND
SAFEKEEPING

In January and February two new committers
were granted ports commit bits: Jan Beich, who is

mentored by bapt@ and flo@, and Brad Davis, who
already owned a doc commit bit and who is men-
tored by bdrewery@, swills@, and zi@.

Only one commit bit was taken in
for safekeeping during the last two
months (rafan@), but we also had
some sad news with decke@, who
decided to step down from his duties
at FreeBSD to focus on his family and
professional life. decke@ has been
invaluable to the FreeBSD Project, being

the creator of redports.org,
QAT, and the developer who
ported and maintained
VirtualBox for FreeBSD. Many
thanks to him for all his hard
work. For anyone who would
like to know more about
Bernhard you can find his inter-
view at http://
blogs.freebsdish.org/portmgr/
2013/10/29/getting-to-know-
your-portmgr-bernhard-
froehlich/.

And to close this issue’s column, we would
like to give a few stats so that people can

get a better idea of the outstanding amount
of work performed by our volunteers. In the
first two months of 2015, 4,046 commits were
applied to the ports tree, 1,182 PR were
closed, and 1,002 emails were received by
portmgr@ (without counting the spam...). And
all this handled by an average of only 130
active ports developers!

Frederic Culot has worked in the IT industry for the
past 10 years. During his spare time he studies busi-
ness and management and just completed an MBA.
Frederic joined FreeBSD in 2010 as a ports commit-
ter, and since then has made around 2,000 commits,
mentored six new committers, and now assumes the
responsibilities of portmgr-secretary.

The new year started with sustained activity on the PR front,
culminating in February with more than 600 problem reports
closed! Thanks to all contributors and developers who helped
make this happen. Regarding the ports tree, January and
February saw a bit more than 4,000 commits in total. That’s not
bad, but at this rate last year’s record with more than 37,500
commits is still standing, so any volunteer interested in working
on ports is more than welcome to join our ranks in 2015!

PORTSreport
by Frederic Culot

•

EVENTS

32 FreeBSD Journal

There was an important event (FOSDEM) in Europe that
brought together major players in the open-source

world. During this event bapt@ delivered an interesting
talk about the history of pkg(8), which has become the
main tool for installing third-party software on FreeBSD.
Slides can be found online at https://fosdem.org/2015/
schedule/event/4yearofpkg/).

TM

®

We’re excited to announce that March

15, 2015 marks the 15th Anniversary of

the FreeBSD Foundation!

You’ve helped up accomplish so much

during the last 15 years and we look

forward to continuing that progress

through out the rest of 2015. The

areas we’d like to invest in include the

following:

• Funding Projects to Advance FreeBSD

• Increasing Our FreeBSD Advocacy

and Marketing Efforts

• Providing Additional Conference

Resources and Travel Grants

• Continued Development of the

FreeBSD Journal

• Protecting FreeBSD IP and Providing

Legal Support to the Project

• Purchasing Hardware to Build

and Improve FreeBSD Project

Infrastructure

• And More!

Thank you for all of your continued

support. We can’t do it without you!

FreeBSD is internationally recognized as an innovative

leader in providing a high-performance, secure, and stable

operating system. Our mission is to continue and increase

our support and funding to keep FreeBSD at the forefront

of operating system technology.

For 15 years, the FreeBSD Foundation has been proudly

supporting the FreeBSD Project and community thanks

to people like you. We are incredibly grateful for all the

support we receive from you and so many individuals

and organizations that value FreeBSD.

Make a gift to support our work in 2015. Help us continue

and increase our support of the FreeBSD Project and

community worldwide!

Making a donation is quick and easy.

Go to freebsdfoundation.org/donate

Support
 FreeBSD
Donate to the Foundation!

Since 2005, Google has
offered their annual
Summer of Code

(http://www.google-
melange.com/gsoc/homepage/
google/gsoc2015), a program
that provides student develop-
ers from across the globe a
three-month stipend to write
code for a mentoring, open-
source software project. This
program provides several bene-
fits to both the student and the
mentoring organization. In
addition to being paid, students
learn how to write a proposal
of work and to achieve timed
milestones for that work. Their
project is mentored by an expe-
rienced developer who can
assist in code review, time
organization, and learning that
project’s tools, communication
channels, and coding standards.
The mentoring organization has
the opportunity to nurture new
ideas and integrate new fea-
tures into their codeset with the
possibility of training new
developers for the project.

The FreeBSD Project has the
distinction of being a mentor-
ing organization for every
Google Summer of Code since
the program’s inception in

2005. This means that 2015
marks the 11th year of partici-
pation for the FreeBSD Project.
As of this writing, student pro-
posals are still being reviewed
so we do not yet know the
names of the 2015 student
participants.

We can, however, take a
look at the last 10 years of par-
ticipation. Each Summer of
Code student, mentor, project,
and a summary of that project's
results can be found at
https://www.freebsd.org/
projects/summerofcode.html.
In addition to an overview of
the process, that page contains
a hyperlink for each year of
participation.

Over the 10-year period, the
FreeBSD Project has mentored a
total of 136 students. Google
Summer of Code allows stu-
dents who are interested and
still eligible for the program to
reapply. For FreeBSD, the break-
down of student participation is
presented below:

This level of participation, an
average of over 13 students per
year, reflects the importance to
the FreeBSD Project of cultivat-
ing new ideas and attracting
new developers as each student
requires a time commitment of
three months from a mentor.
It is also encouraging that 25
students were both eligible
and chose to reapply for subse-
quent years.

Google Summer of Code has
received some bad press about
students who do not complete
their projects, do not have their
code integrated into the pro-
ject’s codebase, or who never
participate again with the proj-
ect once their Summer of Code
finishes. While not every
Summer of Code student works
out, the FreeBSD Project has
had good success in cultivating
relationships, integrating stu-
dent code, and gaining new
developers.

The FreeBSD Project uses a
“commit bit” process to denote
contributors who have the abili-
ty to commit directly to a
FreeBSD source repository.
Commit bits are granted to
active contributors, and new
committers have their commits
reviewed by several mentors
before they are committed.
Commit bits are also retired
should the committer no longer
have time to contribute, typical-
ly after a year of inactivity. The
FreeBSD Project defines three
types of commit bits, indicating
to which source repository the

In FreeBSD BY DRU LAVIGNE
this month

34 FreeBSD Journal

This is the time of year when open-source
mentoring organizations review proposals
from students looking to participate in
Google’s Summer of Code. This month,
we take a look at the FreeBSD Project’s
participation in the program.

136 students (total)
111 students ...participated for 1 year
18 students ...participated for 2 years
3 students ...participated for 3 years
3 students ...participated for 4 years
1 student...participated for 6 years

• •

March/April 2015 35

contributor has commit access:
src, ports, and doc.

Out of the 136 Google
Summer of Code participants, 20,
or nearly 15%, were granted
commit bits. Some were granted
multiple commit bits, which
reflects on their continued level of
participation within the Project.
Out of the 20 committers over
that 10 year period, 17 are still
active committers. The break-
down is as follows:

The granted commit bits were for
the source repositories below:

In addition to commit bits,
some participants also became
active in other areas. Several for-
mer Summer of Code stu-
dents became mentors for
later Summer of Code stu-
dents. One participant
became a member of the
FreeBSD Doc Engineering Team
and another is secretary for the
FreeBSD Core Team.

While it is too late to apply for
the 2015 Google Summer of
Code, interested students should
follow the Google Open Source
blog (http://google-
opensource.blogspot.com/) to
keep up-to-date on the 2016
proposal period, which should
take place next March. The

FreeBSD Project provides several
idea lists to help students narrow
down their project ideas:

Note that these ideas are not
limited to Google Summer of
Code students, which is good
news for those of us who do not
meet the age or student require-
ments of that program, but who
are also interested in contribution
ideas. Each idea provides a tech-
nical contact who is willing to act
as a mentor for that idea. •

Dru Lavigne is a Director of
the FreeBSD Foundation and
Chair of the BSD Certification
Group.

20 committers (total)
16 committers with 1 commit bit
3 committers with 2 commit bits
1 committer with 3 commit bits

17 src committers, with 3 retired (out of a total of 314 src committers)
6 ports committers (out of a total of 192 ports committers)
2 doc committers (out of a total of 41 doc committers)

• https://wiki.freebsd.org/IdeasPage
• https://wiki.freebsd.org/SummerOfCodeIdeas
• https://wiki.freebsd.org/JuniorJobs

WHERE ...Ottawa, Canada
University of Ottawa

WHENThurs. & Fri. June 10-11 (tutorials)
Fri. & Sat. June 12-14 (conference)

COME JOIN US AT THE 12TH ANNUAL BSDCAN!�
Ottawa, Canada

BSDCAN 2015
THE TECHNICAL

BSD CONFERENCE.
The BSD Conference held in
Ottawa, Canada, has quickly
established itself as the techni-
cal conference for people
working on and with 4.4BSD
based operating systems and
related projects. The organizers
have found a fantastic formula
that appeals to a wide range of
people from extreme novices
to advanced developers.

BSD Certification • Courseware DVD • Register for an Exam
Join the growing ranks of people taking the BSDA exam.

If you missed it in the past, now is your chance to catch up.

GO ONLINE FOR MORE DETAILS
http: / /www.bsdcan.org

36 FreeBSD Journal

BOOKreview
by Joseph Kong

•

I’ll admit right away that I’m probably not the target audi-

ence for this book, because I never have and, hopefully,

never will have to secure the Domain Name System (DNS)

with Domain Name System Security Extensions (DNSSEC).

However, being a security professional, I read Michael W.

Lucas’s DNSSEC Mastery to gain some familiarity with DNSSEC.

This book is right on target and does not waste your time. If you under-
stand DNS and want to learn how to secure it, DNSSEC Mastery is for you.
It’s a clear and concise guide with a ton of handholding and plenty of
examples. Also, at a little over 100 pages in length, it can be read in one
sitting (I know, because I did just that).

Using his own domains, Lucas describes in detail how DNSSEC works,
how to set it up, how to debug it when things go wrong (as they inevitably do), and how to main-
tain it. There’s even a chapter on how to use DNSSEC as a cryptographically verified distribution
method, so that you can, for example, verify SSL certificates without contacting a certificate
authority (CA).

If I had one gripe with this book (and it’s a minor one), it’s that the topic is kind of boring. This
isn’t Lucas’s fault. He does a great job of keeping your attention by injecting humor throughout.
For example, on page 27 he states:

A mob with torches and pitchforks is impractical these days, but should you have the
urge to organize one, an obsolete registrar merits it.

And on page 44 he writes:
I abbreviate the hostnames in the key name, because

I’m not that much of a masochist.
Bits of humor like this are sprinkled throughout the book,

which I greatly appreciated (however, a case might be made
for others not liking it).

Overall, read this book if you’re looking to deploy DNSSEC.
It’ll save you time and spare you a headache.

DNSSEC Mastery
Michael W. Lucas
2013 Tilted Windmill Press • ISBN 978-1484924471 • 130 pages

Joseph Kong is a self-taught computer enthusiast who
dabbles in the fields of exploit development, reverse code
engineering, rootkit development, and systems program-
ming (FreeBSD, Linux, and Windows). He is the author of
the critically acclaimed Designing BSD Rootkits and
FreeBSD Device Drivers. For more information about Joseph
Kong, visit www.thestackframe.org.

Coupon code FBJDNS
is good for 20% off

DNSSEC Mastery at
https://www.

tiltedwindmillpress.com/
?product=dnssec-mastery-
securing-the-domain-name-

service-with-bind-ebook.

This special offer to
FreeBSD Journal subscribers

expires August 31, 2015.

20% OFF20% OFF

G C G !
Go to the next level with
Getting the most out of
BSD operating systems requires a
serious level of knowledge
and expertise NEED

AN EDGE?
BSD Certification can

make all the difference.
Today's Internet is complex.

Companies need individuals with
proven skills to work on some of
the most advanced systems on
the Net. With BSD Certification

YOU’LL HAVE
WHAT IT TAKES!

Providing psychometrically valid, globally affordable exams in BSD Systems Administration

.... . . .

THE INTERNET
NEEDS YOU

....SHOW
YOUR STUFF!

Your commitment and
dedication to achieving the

BSD ASSOCIATE CERTIFICATION
can bring you to the

attention of companies
that need your skills.

BSDCERTIFICATION.ORG

BSD
CERTIFICATION

38 FreeBSD Journal

BY DRU LAVIGNE

Events Calendar
The following BSD-related conferences will take place
in the next few months. More information about these events,

as well as local user group meetings, can be found at www.bsdevents.org.

THROUGH AUGUST

LinuxFest Northwest • April 25 & 26 • Bellingham, WA
http://linuxfestnorthwest.org/2015 • The 16th annual LFNW open-source conference will
take place at Bellingham Technical College and is free to attend. There will be a FreeBSD
booth in the expo area and the BSD Now crew will be filming interviews for future episodes.

Are you aware of a conference, event, or happening that
might be of interest to FreeBSD Journal readers?
Submit calendar entries to editor@freebsdjournal.com.

Texas LinuxFest • Aug. 21 & 22 • San Marcos, TX
http://2015.texaslinuxfest.org/ • There will be a FreeBSD booth and several
FreeBSD-related talks at TLF, to be held in the San Marcos Convention Center.
The BSD certification exam will also be available during this event. There is a

nominal registration fee for this conference.

OSCON • July 21 – 23 • Portland, OR
http://www.oscon.com • There will be a FreeBSD booth in the
Expo Hall of OSCON. Registration is required for this event.

BSDCan • June 10 – 14 • Ottawa, Canada
http://www.bsdcan.org • The 12th annual BSDCan will take place in Ottawa, Canada.
This popular conference appeals to a wide range of people from extreme novices to
advanced developers of BSD operating systems. The conference includes a Developer
Summit, Vendor Summit, Doc Sprints, tutorials, and presentations. The BSDA certification
exam will be available during the lunch break on June 12 and 13 and the beta of the
BSDP lab exam will be available on June 11 and 14.

,

,

Testers, Systems Administrators,
Authors, Advocates, and of course

Programmers to join any of our diverse teams.

� DOWNLOAD OUR SOFTWARE �
http://www.freebsd.org/where.html

� JOIN OUR MAILING LISTS �
http://www.freebsd.org/community/mailinglists.html?

� ATTEND A CONFERENCE �
• http://www.bsdcan.org./2015/ • http://2015.eurobsdcon.org/

WE WANT YOU!WE WANT YOU!

The FreeBSD Project

� �

� �

TM

The FreeBSD Project

