
INTERACTING with the FreeBSD Project

First you need to get a fresh copy of the
FreeBSD ports tree. The fastest way to get one

is by using portsnap(8). This is a two-step
process. First fetch the portsnap data file, which
is about 70Mb and can take some time depend-
ing on your Internet connection. Then install the
ports tree itself, which will extract a large num-
ber of small files, which also can take time
depending on the speed of your disks.

portsnap fetch
portsnap extract

This will place a full copy of the ports tree in
/usr/ports. Updating an earlier version of the
ports tree installed by portsnap is a similar two-
step process:

portsnap fetch
portsnap update

Looking in /usr/ports you can see a number of
files and a large number of directories. One of
the first files that should be noticeable is the
Makefile. The FreeBSD ports tree is written in
make(1), a language extensively used for building
and installing software. Of course a single 200

by Erwin Lansing /

HOW TO Build a PortBuild a Port
•

FreeBSD has long been known for its ports tree, where users
had to start by compiling all the software they wanted to install,
which in some cases can be slow and bothersome. Over the last few
years, a lot of work has been done to build a first-class packaging sys-
tem, where a user can simply download and install a pre-built pack-
age, with entirely new packaging tools and also a brand new package
distribution infrastructure. For most users, this is now the recommend-
ed way to install software, and most users will no longer need to
compile software themselves if using the new pkg(8) system (see
FreeBSD Journal, March/April 2014). Underneath it all, however, is still
the FreeBSD ports system, which has all the information on how to
build and install third-party software on FreeBSD. With almost 25,000
packages available, it still may happen that a package does not exist,
and so a new port will need to be written. Similarly, to change an
existing package, the underlying ports need to be modified. In this
article I give a brief overview of how the ports system is structured
and an introduction on how to build a simple port.

BUILD
PORT

line Makefile is not enough, and most of the ports
infrastructure code is in the /usr/ports/Mk directory.
Most of the other directories are the categories
containing the actual ports.

A very simple port consists of four files:
Makefile, pkg-descr, pkg-plist, and distinfo. The
Makefile contains some basic information about
the port and the instructions on how
to fetch, build, and install it. pkg-
descr, or package description, con-
tains a short description of what
this port is and does and also a link
to the official project website of the
software package. pkg-plist, or
packaging list, is a list of files that
this port installs, and finally, distinfo
contains a checksum and size of
any external files this port needs to
fetch from the Internet. I’m going
to use the Stand-Alone Shell (SASH)
port, found in /usr/ports/shells/sash,
as an example here. In Example 1
you can also see a directory named
files, which can contain additional
files useful for this port.

Looking at the SASH Makefile in Example 2, the
first line has an attribution to the original author
when the port first was added to the ports tree.
Next is the subversion identification string, which
will be expanded by subversion automatically and
for a new port should only be:

$FreeBSD$

Next is a section of variables with some essential
information about the software this port will

install. The name of the port in PORTNAME should
be unique across the whole ports tree, although
there are options available for adding a prefix or
suffix to the name.
PORTVERSION is the version of this port and is
usually the same as the version of the original soft-
ware package. Note that the ports version can never
decrease, as the tools for upgrading installed pack-
ages cannot handle versions going back in time.
CATEGORIES is a list of port categories starting
with the primary category this port belongs to,
which is also the directory in the ports tree it is in.
A port can belong to more than one category list-
ed after the primary category including virtual cat-
egories that do not have a directory themselves,
but can still help users find the port. A full list of
available categories is available in the Porters
Handbook: https://www.freebsd.org/doc/
en_US.ISO8859-1/books/porters-handbook/
makefile-categories.html#porting-categories.

The list of URLs in MASTER_SITES is used by the
ports system to fetch the original sources of the
software package. It is recommended to have
more than one in case that site is temporarily
unreachable. This is also where some of the magic
starts. The actual URL of the file to be fetched is
constructed by the ports system automatically,
based on some of the earlier specified variables. In
its simplest form it will default to

${MASTER_SITE}/${PORTNAME}-
${PORTVERSION}.tar.gz

In the example SASH port, this will be:
http://members.tip.net.au/~dbell/

programs/sash-3.8.tar.gz
Lots of software projects use their own version-

ing or naming schemes, and there are a large
number of additional variables available to influ-
ence the final URL, e.g., setting USE_BZIP2 will
change the default suffix to .tar.bz2, and USE_XZ
will change it to .tar.xz. There are also macros
available for well-known download sites with a
large number of mirrors, like SourceForge and
CPAN. Another interesting and extensively used
site is github, which does not have a concept of
official released files, and so the port will need to
depend on a given commit and tag to ensure it
downloads a consistent and tested version of the
software. These are all described in the Porters
Handbook: https://www.freebsd.org/doc/en_
US.ISO8859-1/books/porters-handbook/
makefile-distfiles.html.

March/April 2015 25

Example 1:
erwin@panda:/usr/ports/shells/sash % ls -l
total 20
-rw-r--r-- 1 root wheel 349 Apr 11 2014 Makefile
-rw-r--r-- 1 root wheel 123 Apr 11 2014 distinfo
drwxr-xr-x 2 root wheel 512 Jun 24 2014 files
-rw-r--r-- 1 root wheel 458 Jan 22 2014 pkg-descr
-rw-r--r-- 1 root wheel 35 Jun 11 2014 pkg-plist

Example 2:
erwin@panda:/usr/ports/shells/sash % cat Makefile
Created by: Patrick Gardella <patrick@FreeBSD.org>
$FreeBSD: head/shells/sash/Makefile 350947 2014-04-11 13:41:06Z miwi $

PORTNAME= sash
PORTVERSION= 3.8
CATEGORIES=shells
MASTER_SITES= http://members.tip.net.au/~dbell/programs/

MAINTAINER= ports@FreeBSD.org
COMMENT= Stand-Alone Shell combining many common utilities

.include <bsd.port.mk>

The next section contains some basic metadata
about the port. The FreeBSD ports system has a

concept of maintainership, where a single person
or multiple people behind a mailing list address are
the primary contact for the port. Requesting
changes to a port, like updating to a newer ver-
sion, should be approved by the maintainer, and
filing a bug report in the FreeBSD bugzilla instance
will automatically generate an email to the address
listed in the MAINTAINER field.
COMMENT is, as you may have guessed, a short,
one-sentence description of the port. A longer
description is available in the pkg-descr file.

Finally, the port needs to invoke the ports infra-
structure itself by including the main file:

.include <bsd.port.mk>

Speaking of the pkg-descr file, Example 3 lists the
contents of pkg-descr for the shells/sash port,
which is quite explicit and detailed. A usual pkg-
descr should only have a few paragraphs concisely
describing the port so a user knows what the port
does without having to read documentation or
visit a website. The official website of the software
project can be included on the last line, prepended
by WWW.

The files installed by the port are listed in the
pkg-plist file. This list is used at several stages in a
port’s lifetime. The tools that generate packages
use this list to know what files to include, and a
tool removing an installed port or package also
needs to know which files it should delete. Files
are installed in ${PREFIX}, which defaults to
/usr/local, is implicitly assumed in the pkg-plist file,

and should not be included. As you can see in
Example 4, our small port only installs one exe-
cutable file and its corresponding man-page. More
strengths of the ports system turn up here.
Keywords can be used in the packaging list to han-
dle more advanced cases where just installing a
given file in a given location needs more care, or
where an additional file needs to be modified. The
@shell keyword in our example not only installs the
sash executable in /usr/local/bin, but also adds it to
/etc/shells so that it becomes a recognized shell on
the system. Another example is the @sample key-
word. This is very useful for installing configuration
files that should not be overwritten by the stock
version in a later upgrade. Using the @sample key-
word, the port or package will install the stock ver-
sion as filename.conf.sample, but before that it
will test whether filename.conf exists, and if so,
whether it is the same as the stock file in the previ-
ous version, and if not, or if it doesn’t exist, install
the stock version as filename.conf as well. In other
words, if the configuration file already exists and
was modified by the user since its installation,
those modifications will not be overwritten.
More keywords can be found in the
/usr/ports/Keywords directory.

Finally we get to the distinfo file. This is also the
easiest file to create. If all the variables in the

Makefile were correctly filled in, especially those
that influence how to fetch the original sources, it
is just a matter of running:

make makesum
This will fetch the files needed and generate the

distinfo file with a SHA256 checksum and the size
of the file. See Example 5.

The files directory in a port can hold any file the
port needs at some point during the build, installa-
tion, or packaging. Filenames starting with the pre-
fix patch- will automatically be applied between
unpacking the original sources and compilation
and can be very useful when porting software
written without FreeBSD in mind. See Example 6.

For a new port, an entry in the category
Makefile needs to be created. In our example, that
would be in /usr/ports/shells/Makefile

SUBDIR += sash

Dependencies
One important and often used feature our exam-
ple port does not use is dependencies. A depend-
ency is another port that the current port needs in
some phase of its lifetime, for example, an exe-
cutable or other file during run time, or while
building, or a library. Libraries are specified in
the LIB_DEPENDS variable as a list of library:port
combinations.

26 FreeBSD Journal

Example 3:
erwin@panda:/usr/ports/shells/sash % cat pkg-descr
SASH (Stand-Alone Shell)

It is a nice combination of bare-bones shell and a dozen
or so most useful UNIX commands.

Shell includes: echo pwd cd mkdir mknod rmdir sync rm chmod
chown chgrp touch mv ln cp cmp more exit
setenv printenv umask kill where

Commands include: dd ed grep gzip ls tar file find mount chattr
WWW: http://members.tip.net.au/~dbell/

Example 4:
erwin@panda:/usr/ports/shells/sash % cat pkg-plist
@shell bin/sash
man/man1/sash.1.gz

LIB_DEPENDS=
libsqlite3.so:${PORTSDIR}/databases/sqlite3

Run time or build time dependencies are speci-
fied in a similar way in the RUN_DEPENDS and
BUILD_DEPENDS variables, consisting of a list of
file:port combinations.

RUN_DEPENDS=
${LOCALBASE}/bin/bash:${PORTSDIR}/shells/bash

The ${LOCALBASE} variable is usually the same
as ${PREFIX} we saw earlier, but make the distinc-
tion between where already installed ports are
(LOCALBASE) and where the current port will be
installed (PREFIX). For an executable in the default
path, the full path is not needed, so the above
example could be shortened to:

RUN_DEPENDS=
bash:${PORTSDIR}/shells/bash

Testing the Port
It is highly recommended to turn on the developer
mode while testing. This is easily done by setting
DEVELOPER=yes in /etc/make.conf:

echo DEVELOPER=yes >> /etc/make.conf
This turns on extra quality checks and displays

more warnings, like use of deprecated features.
A first and simple test that can be done is run-

ning “make describe.” This should produce a string
composed of a lot of the metadata we talked
about earlier. This information is used by several
tools for keeping track of dependencies and search-
ing for port names or descriptions. See Example 7.

The portlint utility, found in ports-mgmt/portlint
or just “pkg install portlint,” evaluates whether the
port is syntactically correct and also has some rec-

ommendations for best practices that have devel-
oped over the years. For a new port, portlint -A
should be run; for an existing port portlint -C is suf-
ficient. See Example 8.

This is a valid warning as our example port does
not set the ${LICENSE} variable. The ${LICENSE}
variable can be set to a known license abbreviation,
listed in /usr/ports/Mk/bsd.licenses.db.mk. If a soft-
ware project includes a file with its license, it should
also be installed by using the ${LICENSE_FILE} vari-
able. See Example 9.

Testing a Port
The easiest way to test is, of course, to install the
newly hatched port on your local system. I would
recommend against that, as it can easily break the
existing system, accidentally overwriting an existing
file or exhibit other unexpected behavior, and
already installed software can also make it harder
to check what the new port adds. For example,
with plenty of software already installed, it is easy
to miss a newly installed file and leave it out of the

Example 8:
erwin@panda:/usr/ports/shells/sash % portlint -C
WARN: Makefile: Consider defining LICENSE.
0 fatal errors and 1 warning found.

Example 6:
erwin@panda:/usr/ports/shells/sash % ls -l files/
total 20
-rw-r--r-- 1 root wheel 1356 Apr 11 2014 patch-Makefile
-rw-r--r-- 1 root wheel 442 Jan 22 2014 patch-cmd_ls.c
-rw-r--r-- 1 root wheel 2572 Apr 11 2014 patch-cmds.c
-rw-r--r-- 1 root wheel 551 Apr 11 2014 patch-sash.c
-rw-r--r-- 1 root wheel 219 Jan 22 2014 patch-sash.h

Example 7:
erwin@panda:/usr/ports/shells/sash % make describe
sash-3.8|/usr/ports/shells/sash|/usr/local|Stand-Alone shell combining many common
utilities|/usr/ports/shells/sash/pkg-descr|ports@FreeBSD.org|shells||||||http://members.tip.net.au/~dbell/

Example 9:
LICENSE= GPLv2
LICENSE_FILE= ${WRKSRC}/COPYING

Example 5:
erwin@panda:/usr/ports/shells/sash % cat distinfo
SHA256 (sash-3.8.tar.gz) =
13c4f9a911526949096bf543c21a41149e6b037061193b15ba6b707eea7b6579
SIZE (sash-3.8.tar.gz) = 53049

March/April 2015 27

28

pkg-plist.
Using a clean installation or a jail might help

avoid most of those pitfalls, but tools are available
to do all the hard work for you. The poudriere
system (https://github.com/freebsd/poudriere) is
not only useful for building your own in-house
package repository, but is also an excellent port
testing framework. It can be used to test the
entire ports tree, a subset of the tree, or even a
single port and its dependencies. Using jails and
the ZFS file system, it ensures that it is self-con-
tained and does not influence the host system in
any way. It generates very useful log files on a
per-port basis, that can be used to see how the
port was built, packages installed and deinstalled,
and is very useful for checking whether the pkg-
plist file was complete. It can be a bit hardware
hungry due to its heavy reliance on ZFS, and of
course compiling does require a lot of processing.

Install poudriere from a package “pkg install
poudriere” or from the port in ports-
mgmt/poudriere, and review the settings in
/usr/local/etc/poudriere.conf, especially those deal-
ing with the ZFS file system. Next, create a jail
with the FreeBSD version you want to test:

poudriere jail -c -j 93Ramd64 -v 9.3-
RELEASE -a amd64

If you plan to submit your port to be included
in the FreeBSD ports tree, you should test on all
supported major releases. The ports team sup-
ports the same FreeBSD releases as the FreeBSD
security officer (https://www.freebsd.org/security/),
which currently includes FreeBSD 8, 9, and 10,
plus the development version in HEAD, 11.

Of course you need a ports tree as well, which
can be created by:

poudriere ports -c
This will create a ports tree named default.

You’re now ready to test your port:
poudriere testport -j 93Ramd64 -p default -o

shells/sash
You will find the log file in

/poudriere/data/logs/bulk/93Ramd64-default/
latest/logs/sash-3.8.log. A more extensive intro-

duction for using poudriere as a testing tool can
be found in the Porters Handbook:
https://www.freebsd.org/doc/en/books/
porters-handbook/testing-poudriere.html.
At the time this article was written, the redports
(https://redports.org) system was down for main-
tenance. Hopefully, the site will be back, so keep
checking. It provides all the tests above and a
large number of extended checks, all via a con-
venient web interface.

Submitting a Port
Once you are satisfied the port works the way you
want, you are ready to submit it for inclusion in
the official FreeBSD ports tree, which will also
make packages available for easy installation with
pkg. Make sure the port directory is clean of any
unnecessary files. Removing the work/ directory
can easily be done with the “make clean” com-
mand. From the category directory, one level up
from the port directory, use the shar(1) utility to
bundle the files in a shar archive:

shar `find sash’> sash.shar
The resulting sash.shar can be submitted to the

FreeBSD bugzilla database.
We have only brushed the surface in this intro-

duction to the ports tree, so be sure to check the
Porters Handbook (https://www.freebsd.org/
doc/en/books/porters-handbook/index.html),
which is constantly updated and contains compre-
hensive information on all the features of the
ports tree. There is also an active porters commu-
nity that will be happy to answer any questions.
You can find them on the freebsd-ports mailing
list (http://lists.freebsd.org/mailman/listinfo/
freebsd-ports) or on the IRC channel #bsdports on
EFnet. Happy porting! •

Erwin Lansing lives in Copenhagen with his
wife and son. He works for DK Hostmaster
trying to keep the lights on on the Danish
Internet. He is also Vice President of the Board

WeCan’t DoThis
YOU! PLEASE DO

YOUR PART
& DONATE

TODAY
Your contribution makes a real difference! Help the Free-
BSD Foundation Support: •Project Development •FreeBSD
Advocacy •Growth of the FreeBSD Journal •And More!

Without

