
14FreeBSD Journal • July/August 2024

1 of 6

We all hear about Network Attached Storage (NAS) being able to provide additional
storage for devices on your network. However, the protocols for this storage may
not be appropriate for all use cases.

Welcome to the world of Storage Area Network (SAN). Typically, these are found more
in enterprises than the home or small business, but that does not mean that they shouldn’t
be used in such a situation. In fact, you probably have a very good use case if you do lots of
virtualization with central storage connected to multiple compute devices or have a need
to provide block storage to Windows Workstations used for engineering or graphics design
that require more storage than can physically fit within desktop PCs.

Typically, the SAN providers that we hear of in the
enterprise space are provided by the likes of Dell EMC,
IBM, Hitachi and NetApp to name a few. However, we
are spoiled in the FreeBSD space to have a high-per-
formance, iSCSI SAN solution baked right into the
base system. Using this, in combination with the pow-
erful ZFS volume manager and file system, we have a
flexible, resilient, and fast storage solution that we can
make available to network clients. The iSCSI subsystem
was implemented and part of the 10.0-RELEASE with
numerous performance improvements coming out
with the 10.1-RELEASE.

Internet Small Computer Systems Interface or iSC-
SI for short is an IP-based protocol for carrying SCSI
commands over a TCP/IP ethernet network. It allows
the presentation of block device storage to machines distributed across the network. It is
flexible enough to even be routed over the internet if required, but the security implications
and precautions that need to be considered are out of scope for this text.

In an ideal world, iSCSI should exist within its own Layer 2 physical network where the only
communication from compute hosts via dedicated storage interfaces is to that of the storage
target. No other general network traffic should exist on this network segment to avoid con-
tention to the storage for this and other compute nodes. In a smaller environment, using a
segmented switch with VLANs is an acceptable alternative, however, understand that general
network traffic and storage traffic will be competing for interface bandwidth.

BY JASON TUBNOR

Typically, Storage Area
Networks are found more
in enterprises than the
home or small business,
but that does not mean
that they shouldn’t be used
in such a situation.

FreeBSD
iSCSI Primer

15FreeBSD Journal • July/August 2024

The high-level iSCSI terminology is quite simple. There is the initiator (client) and the tar-
get (host). The initiator is the active end of the connection whereas the target is passive — it
will never try to connect to an initiator.

In the following exercise, we are going to prepare a simple iSCSI configuration on a
FreeBSD host to use as a target and provide ZFS zvol block devices to a FreeBSD and MS
Windows initiator.

Our hosts on the network:

2001:db8:1::a/64 – FreeBSD ZFS Storage Host (Target)
2001:db8:1::1/64 – FreeBSD Client (Initiator)
2001:db8:1::2/64 – Windows Server 2022 (Initiator)

First, we will configure ZFS volumes to present as iSCSI targets for each of the initiators
on the storage host. This could also be simply files on a ZFS dataset or UFS partition, but
ZFS volumes give you far more control over aspects of the storage, especially ongoing man-
agement as data requirements change or in relation to snapshot and replication require-
ments.

zfs create -o volmode=dev -V 50G tank/fblock0
zfs create -o volmode=dev -V 50G tank/wblock0

Adjust the volblocksize attribute when creating the volumes to meet the requirements
of the workload that they will be used for. As of 14.1-RELEASE, they will be set to 16K which is
a reasonable balance for most workloads.

Create a file /etc/ctl.conf that is only read/writeable by root. This file will contain se-
crets, so it is essential that no other group or user has the ability to view or write to this file.
Below are the contents that we will add to provide storage points for our initiators:

auth-group ag0 {
 chap-mutual “inituser1” “secretpassw0rd” “targetuser1” “topspassw0rd”
 initiator-portal [2001:db8:1::1]
}

auth-group ag1 {
 chap-mutual “inituser2” “hiddenpassw0rd” “targetuser2” “freepassw0rd”
 initiator-portal [2001:db8:1::2]
}

portal-group pg0 {
 discovery-auth-group no-authentication
 listen [2001:db8:1::a]
}

target iqn.2012-06.org.example.iscsi:target1 {
 alias “Target for FreeBSD”
 auth-group ag0
 portal-group pg0
 lun 0 {
 path /dev/zvol/tank/fblock0

2 of 6

16FreeBSD Journal • July/August 2024

 #blocksize 4096
 option naa 0x4ee0ebaf06a1acee
 option pblocksize 4096
 option ublocksize 4096
 }
}

target iqn.2012-06.org.example.iscsi:target2 {
 alias “Target for Windows”
 auth-group ag1
 portal-group pg0
 lun 1 {
 path /dev/zvol/tank/wblock0
 blocksize 4096
 option naa 0x4ee0ebaf06a1acbb
 }
}

Let’s break down the file to get an understanding of the what and why of each component:

auth-group ag0 {
 chap-mutual “inituser1” “secretpassw0rd” “targetuser1” “topspassw0rd”
 initiator-portal [2001:db8:1::1]
}

This is the authorization group that can be used across multiple targets. This example
binds the auth-group to a unique initiator with the address 2001:db8:1::1 and requires it to
have mutual authentication. You can simply use CHAP authentication as a ‘one way’ au-
thentication, but it is recommended that, if supported, you use mutual authentication to
ensure that both the initiator and the target are correctly authenticating against each other.

This authentication may be sufficient where the initiator and target reside on the same
physical network, but it should not be relied upon as a security control. This type of authen-
tication should be seen as a method of ensuring that only the correct storage is allocated
to the initiator. Loosely configured iSCSI targets could make the wrong storage available to
a target which could have the undesired effect of overwriting data, partition table, or other
meta data, so restricting access to a specific target dataset is essential.

portal-group pg0 {
 discovery-auth-group no-authentication
 listen [2001:db8:1::a]
}

Portal groups set the target environment offered to the initiators. Here we define a
portal group to allow initiators to connect to the target via 2001:db8:1::a and so they can
discover the target datasets that include this portal group without having to authenticate
first. Typically, in a controlled environment, this would be fine to ensure initiators can find
what they need to connect to, but would be undesirable in a more hostile or untrusted
environment.

3 of 6

17FreeBSD Journal • July/August 2024

target iqn.2012-06.org.example.iscsi:target1 {
 alias “Target for FreeBSD”
 auth-group ag0
 portal-group pg0
 lun 0 {
 path /dev/zvol/tank/fblock0
 #blocksize 4096
 option naa 0x4ee0ebaf06a1acee
 option pblocksize 4096
 option ublocksize 4096
 }
}

The meat of the configuration is the target. This will include the auth-group and
portal-group to build up the previously described components for the presentation to
the initiator. These can be over-ridden on a per target basis and can be defined without the
applicable group definition.

The iSCSI Qualified Name (IQN) format takes the form iqn.yyyy-mm.namingauthority:
uniquename. This is needed for each target definition.

The alias definition is simply a human readable description for the target.
Each target can have multiple LUNs but here we simply have only one LUN per target.
The LUN context allows you to define the charac-

teristics of the LUN. This is important where ZFS is be-
ing used on the presented storage within the initiator.
While your ZFS volume on the target has a block size
of 16KB, the ZFS pool — when created on the initiator
— will complain that the block size of the storage is not
4KB or less. It won’t stop you from using it, but a mes-
sage when you execute zpool status on the initiator
will continually remind you of this. Adjusting the block
size attribute to 4096 is not sufficient to remediate the
issue. The pblocksize and ublocksize options will
need to specifically be added for a ZFS use case.

Option naa should be explicitly defined for LUNs.
This is either a 64- or 128-bit unique hexadecimal iden-
tifier. This is important when you are backing VMWare
compute onto an iSCSI target to ensure there is no confusions with LUN assignments.

This is now enough to get you up and running and present storage from your target. En-
able ctld and bring up the daemon:

service ctld enable
service ctld start

To verify that the storage is presented, you can check that the daemon is listening:

netstat -na | grep 3260
tcp6 0 0 2001:db8:1::a.3260 *.* LISTEN

4 of 6

Each target can have
multiple LUNs but here
we simply have only
one LUN per target.

18FreeBSD Journal • July/August 2024

Then verify the LUNs are presented using the CAM Target Layer control utility:

ctladm lunlist
(7:1:0/0):<FREEBSD CTLDISK 0001> Fixed Direct Access SPC-5 SCSI device
(7:1:1/1):<FREEBSD CTLDISK 0001> Fixed Direct Access SPC-5 SCSI device
ctladm devlist
LUN Backend Size (Blocks) BS Serial Number Device ID
 0 block 104857600 512 MYSERIAL0000 MYDEVID0000
 1 block 13107200 4096 MYSERIAL0001 MYDEVID0001

Now to configure your FreeBSD initiator. You need to create the /etc/iscsi.conf
configuration file. This also needs to be set as read/write explicitly for root as it contains
secrets:

fblock0 {
targetaddress = [2001:db8:1::a];
targetname = iqn.2012-06.org.example.iscsi:target1;
initiatorname = iqn.2012-06.org.example.freebsd:nobody;
authmethod = CHAP;
chapiname = “inituser1”;
chapsecret = “secretpassw0rd”;
tgtChapName = “targetuser1”;
tgtChapSecret = “topspassw0rd”;
}

Each of these attributes are:
• fblock0 — This is a human readable identifier; it is not related to anything except

grouping each of the following configuration items.
• targetaddress — The network address of the storage target. This can also be a fully

qualified domain name.
• targetname — This will align with the corresponding target name that was defined in

the ctl.conf file
• initiatorname — Defining the IQN of the initiator.
• authmethod — Can simply be defined on FreeBSD as CHAP. Mutal settings will be as-

sumed if ChapName and ChapSecret are prefixed with ‘tgt’.
• chapiname/chapsecret — Authentication as defined previously in the ctl.conf file.
• tgtChap[Name,Secret] — Authentication that the target needs to complete the au-

thentication handshake with the initiator.
To enable use, simply issue:

service iscsid enable
service iscsictl enable
service iscsid start
service iscsictl start

This should then attach the target’s storage presentation to the initiator:

iscsictl -L
Target name Target portal State
iqn.2012-06.org.example.iscsi:target1 [2001:db8:1::a] Connected: da0

5 of 6

19FreeBSD Journal • July/August 2024

While we are here, let’s look at the simple switches that will be used most frequently with
the iscsictl command:

• L This lists targets mounted to the initiator and where they are connected.
• Aa Attach all targets defined in the iscsi.conf file
• Ra Remove all targets that are connected to the initiator

gpart create -s GPT da0
da0 created
gpart add -t freebsd-zfs -a 1M da0
da0p1 added
zpool create tank da0p1
zpool list tank
NAME SIZE ALLOC FREE CKPOINT EXPANDSZ FRAG CAP DEDUP HEALTH ALTROOT
tank 49.5G 360K 49.5G - - 0% 0% 1.00x ONLINE -
zpool status tank
 pool: tank
 state: ONLINE
config:

 NAME STATE READ WRITE CKSUM
 tank ONLINE 0 0 0
 da0p1 ONLINE 0 0 0

errors: No known data errors

The manual pages for the configuration, daemons, and control tools are exceptionally
well written and can be referenced to get a better understanding of what else is available.

This only touches the surface of the full power that is available with the iSCSI implemen-
tation within FreeBSD, but it gives you an idea and practical examples of how it can be har-
nessed to provide flexible, remote storage options for your computing infrastructure.

JASON TUBNOR has over 28 years of IT industry experience in a vast range of disciplines
and is currently the ICT Senior Security Lead at Latrobe Community Health Service (Victo-
ria, Australia). Discovering Linux and Open Source in the mid 1990s, then being introduced
to OpenBSD in 2000, Jason has used these tools to solve various problems in organizations
that cover different industries. Jason is also a co-host on the BSDNow Podcast.

6 of 6

