
28FreeBSD Journal • July/August 2024

1 of 5

TCP Large Receive Offload (TCP LRO) is a protocol-specific method to minimize the CPU
resources used for receiving TCP segments. It is also implementation specific, and this arti-
cle describes its implementation in the FreeBSD kernel. At any given time, TCP is often used
for unidirectional communication, although TCP provides a bidirectional channel. This is the
case, for example, if the application protocol using TCP as its transport protocol is of the re-
quest/response type like HTTP.

TCP LRO can reduce the CPU resources required in a
number of ways including:

•	Combining acknowledgments so that a single large
stretch acknowledgment is delivered to the TCP stack
instead of multiple smaller acknowledgments. This ap-
plies to the case where the TCP endpoint is mostly
sending user data.

•	Combining multiple inbound data segments into one,
big, larger piece of data. This helps if the TCP endpoint
is mostly receiving user data.

•	Bypassing parts of IP stack processing. Therefore, it is
useful for TCP LRO to intercept the packets at the net-
work interface layer.

All of these methods are focused on cutting down the
number of times the TCP stack gets called and/or minimizing the number of cache misses
that the CPU will have to take by compressing all of the processing into one, or a series of
packets, processed together. For most all FreeBSD drivers, a single software TCP LRO pro-
cess is used, though some specific hardware and its drivers do support hardware TCP LRO.
This article will discuss only the software TCP LRO in FreeBSD.

Evolution of TCP LRO
The initial implementation of TCP LRO was implemented by Andrew Gallatin in 2006

and was specific to the mxge(4) driver. It was then made generic to all drivers by Jack Vogel
in 2008. It had only two focuses:

BY RANDALL STEWART AND MICHAEL TÜXEN

Introduction to TCP
Large Receive Offload

At any given time, TCP is
often used for unidirectional
communication.

29FreeBSD Journal • July/August 2024

1.	Collecting and merging together small inbound data segments to present a larger, sin-
gle, inbound data segment to TCP, or,

2.	Collecting a number of acknowledgments and presenting one, single, larger acknowl-
edgment to the TCP stack.

Both methods were implemented to cut down on the number of times the TCP receive
path was called to save CPU resources. Its implementation was very careful to only handle
consecutive segments and ones without TCP options (the only allowed TCP option was the
timestamp option). The initial implementation remained pretty much untouched in FreeBSD
for almost a decade, except for the addition of IPv6 support by Bjoern A. Zeeb in 2012.

The Addition of Sorting
By 2016 the TCP LRO code was starting to show its age, with the ever faster NICs being

deployed on both clients and servers, more and more pack-
ets were arriving on each driver interrupt. The initial imple-
mentation only allowed for eight different connections to
have data collected and compressed. This worked fine in
workloads with only a few connections, but was less effec-
tive for workloads with a large number of connections, since
a driver was sending in far more packets from different
connections on each interrupt. With so many more pack-
ets from multiple connections arriving in an interrupt, the
chances of a single connection seeing packets with small
enough interleaving to fit in the eight connection limit grew
less and less to the point where TCP LRO was rarely effec-
tive, especially for the server case.

This is when Hans Petter Selasky had a brilliant idea, he
added an optional path for a driver to call that would sort
the inbound packets before submitting them to TCP LRO.
This meant that all packets arriving from each connection
could be processed together. Which then meant that you maximized TCP LRO’s effective-
ness on each interrupt. This change vastly improved TCP LRO performance while still allow-
ing older drivers to remain unchanged.

Packet Queuing
As TCP LRO became more effective, other problems with this more efficient path began

to show up including:
a.	TCP’s congestion control prefers to see every acknowledgment, since an acknowledg-

ment advances its congestion window. Compressing acknowledgments can hamper
the congestion control algorithm.

b.	Modern TCP stacks often would like to have precise Round Trip Time (RTT) informa-
tion, compressing multiple acknowledgments can hide this information from TCP.

c.	Implementations of TCP ECN needed to see the IP header bits so that ECN signaling
from the network can be monitored and reacted to, compressing data or acknowledg-
ments effectively hides this information.

d.	If a TCP stack is pacing packets (We will discuss pacing packets in a future column.),
then processing a series of acknowledgments when the stack is prohibited from send-
ing out packets increases overhead. This is because the acknowledgment can’t send

2 of 5

By 2016 the TCP LRO
code was starting
to show its age.

30FreeBSD Journal • July/August 2024

and yet results in a number of cache misses on the TCP stack during its processing,
which will then have to be repeated when the stack is allowed to output.

This set of problems brought about another optimization where the TCP stack enables
the TCP LRO code to directly queue packets to it for processing when it next awakens. This
then allows all the data in the IP and TCP headers to be processed at a single time when
the stack can send out data and reveals all the information (including the timing due to re-
ceive timestamps being added either in hardware by the NIC, or in software in the TCP LRO
code) that TCP wants to see.

Compressed Acknowledgments
This new queuing mechanism worked well but also caused an additional set of cache

misses when a series of acknowledgments arrived. This is because each packet in queue to
the stack results in a cache miss when it is processed. In the old compressed scheme, infor-
mation was lost but superior optimization was performed, since only one cache miss would
occur for some number of arriving acknowledgments.

This brought about another TCP LRO optimization. When consecutive acknowledg-
ments arrive, the TCP LRO code can now compress them
into a special packet that holds an array of the arriving pack-
et information. This compression technique allows all the
previously lost data (including arrival times) to be present-
ed to the TCP stack in the array structure so that only one
cache miss is taken to access the special packet. Note that
a TCP stack must signal the TCP LRO code that it supports
this special type of processing.

Inner and Outer Headers
The last set of optimizations to TCP LRO have to do with

the way inbound IP packets are examined. Originally, only
Ethernet frames containing a TCP segment using IPv4 or
IPv6 were supported. To support other encapsulations of
TCP segments, for example VXLAN which makes it possible to encapsulate an Ethernet
frame into a UDP packet, the packet parsing was generalized to support an inner and out-
er header. This way, packets with UDP as an outer header and TCP as an inner header can
be processed by TCP LRO. This assumes that the NIC can do the checksum offloading for
both protocols.

Management of TCP LRO
If a NIC driver supports TCP LRO, it can be enabled or disabled using the lro or -lro pa-

rameter of ifconfig.
A NIC driver must contain a struct lro_ctrl, which contains in addition to other fields

a pointer to:
•	An array of pairs consisting of a pointer to struct mbuf and a sequence number. The

number of these pairs is lro_mbuf_max.
•	A number of struct lro_entry. The number of these entries is lro_cnt.
The struct lro_entry is used to store the information about one aggregated set of re-

ceived TCP segments. If such an entry is not used, it is contained in the lro_free list. When
it is used, it is contained in the lro_active list and also accessible via the hashtable lro_hash.

3 of 5

Each packet in queue to
the stack results in a cache
miss when it is processed.

31FreeBSD Journal • July/August 2024

These two lists and the hash table are also contained in struct lro_ctrl.
There are two ways for a NIC driver to initialize the TCP LRO specific data. The classical

way is to call the tcp_lro_init() function. The number lro_cnt of struct lro_entry
which should be allocated, is specified by the loader tunable net.inet.tcp.lro.entries.
When using the classical way of initialization, the array of pairs has no entries. The mod-
ern way is to use the function tcp_lro_init_args() which allows the caller to specify the
lro_cnt and lro_mbuf_max. This means that the array of pairs might also be allocated.

No matter which way was used for initializing the struct lro_ctrl, calling the function
tcp_lro_free() frees all allocated resources.

Passing TCP Segments to TCP LRO
The NIC driver has a classical and a modern way of try-

ing to pass a TCP segment to TCP LRO. If passing the TCP
segment over to TCP LRO fails, the NIC driver must contin-
ue the normal processing of the TCP segment. One reason
for TCP LRO to fail is if the NIC was not able to verify the
checksums on the received IP packet.

To use the classical way to pass the TCP segment to TCP
LRO, the NIC driver calls tcp_lro_rx(). Basically this starts
the processing done by tcp_lro_rx_common(), which is
described in the next subsection. The modern way to pass
TCP segments to TCP LRO, which also requires the modern way of initialization, is to call
tcp_lro_queue_mbuf(). This function just computes a sequence number for the TCP seg-
ment and stores it in combination with the TCP segment in the next free entry of the array
of pairs. If the array becomes full by this operation, tcp_lro_flush_all() is called which is
also described in the next subsection.

No matter whether the classic or modern way of passing TCP segments to TCP LRO is
used, the time when the TCP segment is passed to TCP LRO is saved if there is no hard-
ware receive time from the NIC available.

Processing TCP Segments in TCP LRO
When the modern way of passing TCP segments to TCP LRO is used, one additional ini-

tial step is done. tcp_lro_flush_all() sorts all entries in the array of pairs based on the
sequence number field. This results in all TCP segments for the same TCP connection be-
ing most likely located next to each other in the array and in the sequence they were re-
ceived. Then tcp_lro_rx_common() is called for all the entries in the array. From now on,
the processing of the TCP segments is the same, no matter whether the classic or modern
way of passing them to TCP LRO is used.

tcp_lro_rx_common() parses the TCP segment and uses that information to lookup
the corresponding entry of type struct lro_entry in the hashtable. If such an entry is
found, the TCP segment will be added to the packet chain of TCP segments. If no entry is
found, a new one is created and the TCP segment is added to the entry. Note that when
the TCP LRO code runs out of free entries then an older entry is flushed which then frees
up that structure to be reused for the new allocation.

The NIC driver or the TCP LRO code itself can trigger a flush operation, which will result
in processing the information in the entries of type struct lro_entry such that it is suit-
able to be processed by the TCP stack as described in the next subsection.

4 of 5

There are two ways for
a NIC driver to initialize
the TCP LRO specific data.

32FreeBSD Journal • July/August 2024

Passing Information from TCP LRO to the TCP Stack
If alternate TCP stacks like the TCP RACK or the TCP BBR stack are used, the High Pre-

cision Timer System (HPTS) is employed. If only the FreeBSD base TCP stack is used, this is
not the case.

If the HPTS is not loaded in the FreeBSD kernel, the following will happen in case a flush
operation is triggered: TCP LRO will combine the packet chain for an entry of type struct
lro_entry into a single large TCP segment by concatenating all the user data of the in-
dividual TCP segments. Of course, this only works if there are no gaps or overlaps. If that
happens, TCP LRO might only combine smaller parts. The information about the acknowl-
edged data will also be combined and this large, generated TCP segment will be injected
into the interface layer. This results in less packets needing to be processed, but results also
in the loss of the information when the individual TCP segments were received, as well as
any IP-level ECN bits. Depending on the congestion control or loss recovery, this can have
a negative impact.

If the HPTS system is loaded, a flush operation results in a lookup of the TCP endpoint.
This information is used to determine if the TCP stack used by the TCP endpoint supports
mbuf-queueing. If it does not, the same processing as for the FreeBSD base stack is per-
formed. If the TCP stack supports mbuf-queueing, but not compressed ACKs, the packet
chain of the entry is copied over to the TCP endpoint and the TCP endpoint might be trig-
gered to process that packet chain. This is what is done when the TCP BBR stack is used
which supports mbuf-queueing but not compressed ACKs. If the TCP RACK stack is used,
which also supports compressed ACKs, multiple ACKs, which have been received in se-
quence, can be stored in a special data structure, which allows passing them in a more
memory-efficient way. Please note that when mbuf-queueing and compressed ACKs are
used, the information from when the individual packets were received is preserved and
passed to the TCP endpoint.

Future Evolution
Accurate ECN for TCP is a TCP feature currently being specified by the Internet Engi-

neering Task Force (IETF) and support for it is under development for FreeBSD. In addition
to using two new TCP options, it changes the use of two existing TCP flags and makes use
of one additional flag. This requires changes to the TCP LRO code to still allow the aggrega-
tion of incoming TCP segments for TCP connections supporting Accurate ECN.

The VXLAN support can also be improved to make use of mbuf-queueing.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer since 2006. He specializes in Transports including TCP
and SCTP but has also been known to poke into other areas of the operating system. He is
currently an independent consultant.

MICHAEL TÜXEN (tuexen@freebsd.org) is a professor at the Münster University of Applied
Sciences, a part-time contractor for Netflix, and a FreeBSD source committer since 2009.
His focus is on transport protocols like SCTP and TCP, their standardization at the IETF and
their implementation in FreeBSD.

5 of 5

mailto:rrs@freebsd.org
mailto:tuexen@freebsd.org

