
8FreeBSD Journal • July/August 2024

1 of 6

NVM Express (NVMe) is a recent standard providing access to non-volatile memory block
storage devices such as SSDs. NVMe was originally defined to access non-volatile memo-
ry devices via PCI-express. This includes register definitions for the PCI-express controller
device, the layout and structure of command submission and completion queues stored in
main memory, and sets of commands.

The base NVMe specification defines an Admin Command Set used on a single ad-
min submission and completion queue pair associated with each controller. Administrative
commands do not handle I/O requests. Instead, these commands are used to create I/O
queues, fetch auxiliary data such as error logs, format storage devices, etc. Storage devices
in NVMe are called namespaces and commands for a specific namespace include a name-
space ID. The base specification also defines an NVM Command Set used for I/O requests
to block-oriented namespaces. The specification is de-
signed for future extensions including additional I/O
command sets (e.g. an I/O command set targeting a
key-value store). An NVMe controller and its attached
namespaces together are called an NVM subsystem.

NVMe over Fabrics extends the original specifica-
tion to enable access to NVM subsystems over a net-
work transport instead of PCI-express similar to using
iSCSI to acccess remote block storage devices as SCSI
LUNs. NVMe over Fabrics supports multiple trans-
port layers including FibreChannel, RDMA (over both
iWARP and ROCE) and TCP. To handle these different
transports, Fabrics includes both transport-indepen-
dent extensions to the base NVMe specification as well
as transport-specific bindings.

Fabrics defines a new capsule abstraction to support NVMe commands and comple-
tions. Each capsule contains either an NVMe command or completion. In addition, a cap-
sule may be associated with a data buffer. To support data transfers, the existing PRP entries
in NVMe commands are replaced with a single NVMe SGL entry. Fabrics also replaces the
shared-memory queues used for PCI-express controllers with logical completion and sub-
mission queues. Unlike PCI-express I/O queues, Fabrics queues are always explicitly paired
with each submission queue tied to a dedicated completion queue. The details of how cap-

BY JOHN BALDWIN

NVMe
Over Fabrics

in FreeBSD

NVMe over Fabrics
extends the original
specification to
enable access to
NVM subsystems over
a network transport.

9FreeBSD Journal • July/August 2024

sules and data buffers are transmitted and received on a queue pair are transport-specific,
but in abstract terms, command capsules are transferred on submission queues, and com-
pletions are transferred on completion queues.

A Fabrics host creates an admin queue pair and one or more I/O queue pairs connected
to a controller. A complete set of queue pairs is called an association. A single association
may contain multiple transport-specific connections. For example, the TCP transport uses a
dedicated connection for each queue pair, so an active TCP association requires at least two
TCP connections.

In addition to I/O controllers which provide access
to namespaces, Fabrics adds a discovery controller
type. A discovery controller supports a new discovery
log page which describes the set of controllers avail-
able in a Fabrics NVM subsystem. The log page may
include one or more I/O controllers and/or references
to discovery controllers in other subsystems. The log
page may include multiple entries for a single control-
ler if a controller can be accessed via multiple trans-
ports. Each log page entry contains the type of a con-
troller (I/O or discovery) as well as the transport type
and transport-specific address. For the TCP transport
the address includes the IP address and TCP port
number.

Fabrics hosts and controllers are identified by an
NVMe Qualified Name (NQN). NQNs are an ASCII string which should start with “nqn.
YYYY-MM.reverse-domain” followed by an optional trailer. The reverse-domain portion of
the name should be a valid DNS name in reverse order, and the YYYY and MM fields should
specify a valid year and month when the DNS name was owned by the organization using
the prefix. The specification defines a fixed subsystem NQN for Discovery controllers as
well as a scheme for constructing a NQN from a UUID. Both the host and subsystem (con-
troller) NQNs must be specified when establishing an association.

FreeBSD 15 includes support for accessing remote namespaces via a host kernel driver
as well as support for exporting local storage devices as namespaces to remote hosts. The
kernel implementation of Fabrics includes a transport abstraction layer (provided by nvmf_
transport.ko) to hide most of the transport-specific details from the host and controller
modules. This module is auto-loaded as needed. Separate kernel modules provide support
for individual transports. These modules must be explicitly loaded to enable use of a trans-
port. Currently, FreeBSD includes support for the TCP transport via nvmf_tcp.ko. TCP spe-
cific details are documented in nvmf_tcp(4).

Host
The Fabrics host in FreeBSD consists of new nvmecontrol(8) commands and an nvmf(4)

kernel driver. The kernel driver exposes remote controllers as nvmeX new-bus devices simi-
lar to PCI-express NVMe controllers. Remote namespaces are exposed via nda(4) disk devic-
es via CAM. Unlike the PCI-express nvme(4) driver, the Fabrics host driver does not support
the nvd(4) disk driver. All of the new nvmecontrol(8) commands use a host NQN generated
from the host’s UUID unless an explicit host NQN is given.

2 of 6

A Fabrics host creates
an admin queue pair
and one or more
I/O queue pairs connected
to a controller.

https://man.freebsd.org/nvmf_tcp/4
https://man.freebsd.org/nvmecontrol/8
https://man.freebsd.org/nvmf/4
https://man.freebsd.org/nda/4
https://man.freebsd.org/nvme/4
https://man.freebsd.org/nvd/4

10FreeBSD Journal • July/August 2024

Discovery Service
The nvmecontrol(8) discover command queries the discovery log page from a discov-

ery controller and displays its contents. Example 1 shows the log page from a Fabrics con-
troller running on a Linux system. For the TCP transport, the service identifier field identifies
the TCP port of the remote controller.
Example 1: The Discovery Log Page from a Linux Controller

nvmecontrol discover ubuntu:4420# nvmecontrol discover ubuntu:4420
Discovery
=========
Entry 01
========
 Transport type: TCP
 Address family: AF_INET
 Subsystem type: NVMe
 SQ flow control: optional
 Secure Channel: Not specified
 Port ID: 1
 Controller ID: Dynamic
 Max Admin SQ Size: 32
 Sub NQN: nvme-test-target
 Transport address: 10.0.0.118
 Service identifier: 4420
 Security Type: None

Connecting To an I/O Controller
The nvmecontrol(8) connect command establishes an association with a remote control-

ler. Once the association is established, it is handed off to the nvmf(4) driver which creates a
new nvmeX device. The connect command requires both the network address and subsystem
NQN of the remote controller. Example 2 connects to the I/O controller listed in Example 1.
Example 2: Connecting to an I/O Controller

kldload nvmf nvmf_tcp # kldload nvmf nvmf_tcp
nvmecontrol connect ubuntu:4420 nvme-test-target# nvmecontrol connect ubuntu:4420 nvme-test-target

Once the association is established, the kernel outputs the text from Figure 1 to the sys-
tem console and system message buffer. The nvmeX device includes the remote subsystem
NQN in the device description, and each remote namespace is enumerated as an ndaX pe-
ripheral.
Figure 1: Console Messages from Connecting

nvme0: <Fabrics: nvme-test-target>
nda0: at nvme0 bus 0 scbus0 target 0 lun 1
nda0: <Linux 5.15.0-8 843bf4f791f9cdb03d8b>
nda0: Serial Number 843bf4f791f9cdb03d8b
nda0: nvme version 1.3
nda0: 1024MB (2097152 512 byte sectors)

3 of 6

11FreeBSD Journal • July/August 2024

The nvme0 device from Figure 1 can be used with other nvmecontrol(8) commands such
as identify similar to PCI-express controllers. Example 3 shows a subset of the identify
controller data displayed by nvmecontrol(8). The nda0 disk device can be used like any other
NVMe disk device.
Example 3: Identify a Remote I/O Controller

nvmecontrol identify nvme0 # nvmecontrol identify nvme0
Controller Capabilities/Features
================================
...
Model Number: Linux
Firmware Version: 5.15.0-8
...

Fabrics Attributes
==================
I/O Command Capsule Size: 16448 bytes
I/O Response Capsule Size: 16 bytes
In Capsule Data Offset: 0 bytes
Controller Model: Dynamic
Max SGL Descriptors: 1
Disconnect of I/O Queues: Not Supported

Connecting via Discovery
The nvmecontrol(8) connect-all command fetches the discovery log page from the

indicated discovery controller and creates an association for each log page entry. The
association from Example 2 could be created by executing nvmecontrol connect-all
ubuntu:4420 instead of fetching the discovery log page and using the connect command.

Disconnecting
The nvmecontrol(8) disconnect command detaches the namespaces from a remote

controller and destroys the association. Example 4 disconnects the association created by
Example 2. The disconnect-all command destroys associations with all remote controllers.
Example 4: Disconnecting From a Remote I/O Controller

nvmecontrol disconnect nvme0# nvmecontrol disconnect nvme0

Reconnecting
If a connection is interrupted (for example, one or more TCP connections die), the ac-

tive association is torn down (all queues are disconnected), but the nvmeX device is left in a
quiesced state. Any pending I/O requests for remote namespaces are left pending as well.
In this state, the reconnect command can be used to establish a new association to resume
operation with a remote controller. Example 5 reconnects to the controller from Example 2.
Note that the reconnect command requires an explicit network address similar to the con-
nect command.

4 of 6

12FreeBSD Journal • July/August 2024

Example 5: Reconnecting to a Remote I/O Controller

nvmecontrol reconnect nvme0 ubuntu:4420# nvmecontrol reconnect nvme0 ubuntu:4420

Controller
The Fabrics controller on FreeBSD exposes local block devices as NVMe namespaces to

remote hosts. The controller support on FreeBSD includes a userland implementation of a
discovery controller as well as an in-kernel I/O controller. Similar to the existing iSCSI target
in FreeBSD, the in-kernel I/O controller uses CAM’s target layer (ctl(4)).

Block devices are created by adding ctl(4) LUNs via ctladm(8). The discovery service and
initial handling of I/O controller connections are managed by the nvmfd(8) daemon. The
in-kernel I/O controller is provided by the nvmft(4) module. Example 6 adds a ZFS volume
named pool/lunØ as a ctl(4) LUN and starts the nvmfd(8) daemon. Remote hosts can then
access the ZFS volume as a NVMe namespace.
Example 6: Exporting a local ZFS Volume

kldload nvmft nvmf_tcp # kldload nvmft nvmf_tcp
ctladm create -b block -o file=/dev/zvol/pool/lun0 # ctladm create -b block -o file=/dev/zvol/pool/lun0
LUN created successfully
backend: block
device type: 0
LUN size: 4294967296 bytes
blocksize 512 bytes
LUN ID: 0
Serial Number: MYSERIAL0000
Device ID: MYDEVID0000
nvmfd -F -p 4420 -n nqn.2001-03.com.chelsio:frodo0 -K

Each time a remote host connects to the I/O controller, a message is logged by the ker-
nel listing the remote host’s NQN (see Figure 2).
Figure 2: Log Messages from New Association

nvmft0: associated with
nqn.2014-08.org.nvmexpress:uuid:00000000-0000-0000-0000-ffffffffffff

LUNs can be added or removed by ctladm(8) while nvmfd(8) is running. If any remote
hosts are connected while a LUN is added or removed, an asynchronous event is reported
to the remote hosts. This allows remote hosts to notice that namespaces have been added
or removed while connected.

Two new commands have been added to ctladm(8) to manage Fabrics associations. The
nvlist command lists all active associations from remote hosts. Example 7 shows the output
from the nvlist command while a single host is connected to the controller from Example 6.
Example 7: Listing Active Associations

ctladm nvlist # ctladm nvlist
 ID Transport HostNQN SubNQN
 0 TCP
nqn.2014-08.org.nvmexpress:uuid:00000000-0000-0000-0000-ffffffffffff
nqn.2001-03.com.chelsio:frodo0

5 of 6

https://man.freebsd.org/ctl/4
https://man.freebsd.org/ctladm/8
https://man.freebsd.org/nvmfd/8
https://man.freebsd.org/nvmft/4

13FreeBSD Journal • July/August 2024

The nvterminate command closes one or more associations. Associations for a single
connection or NQN can be terminated, or all active associations can be terminated. Exam-
ple 8 terminates the association from Example 7. After the association is terminated, the ker-
nel logs the messages from Figure 3.
Example 8: Terminating an Association

ctladm nvterminate -c 0 # ctladm nvterminate -c 0
NVMeoF connections terminated

Figure 3: Log Message after Terminating

nvmft0: disconnecting due to administrative request
nvmft0: association terminated

Conclusion
NVMe over Fabrics support will be available in FreeBSD 15.0 including both host and con-

troller support. The development of Fabrics support was sponsored by Chelsio Communi-
cations, Inc.

JOHN BALDWIN is a systems software developer. He has directly committed changes to
the FreeBSD operating system for over twenty years across various parts of the kernel (in-
cluding x86 platform support, SMP, various device drivers, and the virtual memory subsys-
tem) and userspace programs. In addition to writing code, John has served on the FreeBSD
core and release engineering teams. He has also contributed to the GDB debugger. John
lives in Concord, California with his wife, Kimberly, and three children: Janelle, Evan, and Bella.

6 of 6

