
20FreeBSD Journal • July/August 2024

1 of 3

ZFS has native support for encrypting datasets which allows you to easily pro-
tect data with industry-standard cipher suites. The major benefit to en-
crypting a dataset on a disk vs full-disk encryption of the disk is that a data-

set can be unmounted when not in use, while full-disk encryption requires the disk to be
powered down to get the data encrypted while it is at rest. Keep in mind that ZFS native en-
cryption has the concept of loading and unloading keys. Simply unmounting the encrypted
dataset is not enough. You must also unload the key associated with that particular dataset.
If the key is still loaded, the dataset can be mounted and the data will be available. Unload-
ing the key will make the mount operation fail. Loading the key is a prerequisite to mount-
ing the dataset. Nested child datasets inherit the encryption key of their parent — but they
don’t have to. Different encryption keys and cipher suites may be used even if the parent
dataset uses different encryption settings. Finally, changing keys is as easy as issuing the
zfs change-key command on the dataset.

Those are the basic concepts to get started.
Turning on the encryption parameter for a newly

created dataset and setting a key format is enough to
get started. If an encryption cipher suite isn’t specified,
the default of aes-256-gcm is used. The default is sub-
ject to change as new cipher suites get added in the
future. The encryption property of an existing dataset
is read-only, modifying the property of an unencrypted
dataset to turn on encryption isn’t allowed. To specify
the encryption properties, you need to know what op-
tions are available. I suggest reading up on the available options in the zfsprops man page.
Do this by typing the command man zfsprops. I also recommend reading the man page
zfs-load-key. For our first encrypted dataset, we will start with the default cipher suite, the
passphrase key format, and create a dataset called secrets. I’m using a FreeBSD jail ma-
chine I created in my lab for this article called alice. All the jails in my lab exist on the zpool
called lab. I’ve made a zpool available to the jail with the name zroot. From inside the jail I
must use the entire path lab/alice/zroot as the name of my zpool in order to create a
dataset within. For contrast, on my laptop I can simply use the name of my zpool and direct-
ly create a dataset there. Listed below are the commands to create an encrypted dataset on
both the alice jail as well as on my laptop. Like any ZFS dataset, setting a mount point is a

Loading the key is a
prerequisite to mounting
the dataset.

Protecting Data
with ZFS
Native Encryption
BY ROLLER ANGEL

21FreeBSD Journal • July/August 2024

good idea, just keep in mind ZFS is a layering filesystem so don’t use an existing path as the
new dataset mount point.
alice jail:

zfs create -o encryption=on -o keyformat=passphrase -o mountpoint=/secrets
lab/alice/zroot/secrets

my laptop:

zfs create -o encryption=on -o keyformat=passphrase -o mountpoint=/secrets zroot/secrets

After running the zfs create command, I’m prompted to enter in a sufficiently long
passphrase. Now, I have a mounted dataset with encryption enabled where I can store data
that I need to protect. While the dataset is mounted, I can use it like any other unencrypt-
ed dataset. When I’m done adding the secret data, I can unmount the secrets dataset and
unload the key together in one command by typing zfs unmount -u lab/alice/zroot/
secrets. To decrypt and mount the data again, I run the command zfs mount -l lab/
alice/zroot/secrets. This will ask me for my passphrase, load the key, then mount the
dataset. Omitting the -u flag in the unmount command will only unmount the dataset, leav-
ing the key loaded. The dataset can still be mounted without prompting for the passphrase
with zfs mount lab/alice/zroot/secrets. To un-
load the key after the dataset has been unmounted,
I run zfs unload-key lab/alice/zroot/secrets.
Now the previous mount command will fail because
the key isn’t loaded and I didn’t provide the -l flag to
ask ZFS to load the key before mounting. To load a key
and allow the dataset to be mounted, I run zfs load-
key lab/alice/zroot/secrets. I’m prompted for my
passphrase and the previous mount command will now
succeed because the key is loaded. To check whether
a key is loaded or not, view the properties of the dataset. Some useful properties to look at
are displayed when I run zfs list -o name,mountpoint,encryption,keylocation,
keyformat,keystatus,encryptionroot lab/alice/zroot/secrets. The KEYSTATUS
column shows available meaning the key is loaded. To see all of the dataset properties I
can use zfs get all lab/alice/zroot/secrets.

Next I create a dataset nested below the secrets dataset with a different cipher suite
and key format. This time, I’ll use a key file instead of a passphrase. To create a dataset that
uses a key file, I first need to generate the key and store it in a file. I do this by typing the
command dd if=/dev/urandom bs=32 count=1 of=/media/more-secrets.key. I used
the bs=32 because the key file is required to be 32 bytes long. Also, the output is going to
the /media path because I have mounted a portable USB drive there and have used dd to
generate the key file and store it directly onto the drive. This is so there is no trace of the key
file on my machine when I unload the key and I unmount and remove the USB drive. I rec-
ommend storing this key file on more than one USB drive as a safeguard in case a USB drive
is damaged. Now that the key file has been generated I can create the nested dataset with
the AES-256-CCM cipher suite by running zfs create -o encryption=aes-256-ccm -o
keyformat=raw -o keylocation=file:///media/more-secrets.key -o mountpoint=/
secrets/more-secrets lab/alice/zroot/secrets/more-secrets. Viewing the proper-

2 of 3

While the dataset
is mounted, I can use it
like any other unencrypted
dataset.

22FreeBSD Journal • July/August 2024

ties of this new dataset I can see the ENCROOT column is set to lab/alice/zroot/secrets/
more-secrets. I can use the same methods to unmount and unload the key as I used on
the secrets dataset. As I get more datasets and keys, I may want to consider unloading all
the keys with zfs unload-key -a or I can unload a subset of keys by unloading just the
keys for the secrets dataset and all descendant datasets with zfs unload-key -r lab/
alice/zroot/secrets. Conversely, If I want to load a subset of keys for the secrets dataset
and all descendant datasets, I run zfs load-key -r lab/alice/zroot/secrets.

If I decide later on that the data in this more-secrets dataset doesn’t need to have a sep-
arate key file, and instead, I want it to inherit the settings from its parent dataset secrets
(switching from custom generated key file to the passphrase configured earlier) all I need to
do is run zfs change-key -i lab/alice/zroot/secrets/more-secrets. View the prop-
erties again and notice that ENCROOT, KEYLOCATION, and KEYFORMAT have all changed. The
encryption suite, however, doesn’t change because the
encryption suite can only be set on the creation of a
dataset. Since more-secrets is contained within
secrets it will unmount as part unmouting the
secrets dataset. Although mounting the secrets
dataset will not also mount more-secrets. That will
need to be mounted separately, but the key will only
need to be loaded once since they both share the
same key. To switch back to using the key file, I run
zfs change-key -o keyformat=raw -o keylocation=file:///media/more-secrets.
key lab/alice/zroot/secrets/more-secrets. If I want to permanently destroy the data
in more-secrets, I simply unmount the dataset, unload the key, and destroy the key file and
any backup copies of the key file I have made. Now, the data is not able to be recovered.
I can then run zfs destroy lab/alice/zroot/secrets/more-secrets to remove the
dataset.

One final note I’d like to share is regarding backups of encrypted data. As you have seen,
ZFS native encryption allows data to be easily protected with encryption. Snapshots of en-
crypted datasets can be received on an untrusted backup server in their encrypted form.
Without the key, the remote backup server won’t be able to mount the dataset. Use the
--raw flag of the zfs send command to help accomplish this. For more details, I suggest
reading the man page zfs-send to get an idea of how it works and then get a copy of the
book ZFS Mastery: Advanced ZFS to really dive deep into the specifics and to learn a myriad
of techniques to further hone your ZFS skills.

I hope you enjoyed this how-to article and that you begin protecting your sensitive data
using the native encryption offered by the amazing ZFS filesystem.

ROLLER ANGEL spends most of his time helping people learn how to accomplish their
goals using technology. He’s an avid FreeBSD Systems Administrator and Pythonista who
enjoys learning amazing things that can be done with Open Source technology — especially
FreeBSD and Python — to solve issues. He’s a firm believer that people can learn anything
they wish to set their minds to. Roller is always seeking creative solutions to problems and
enjoys a good challenge. He’s driven and motivated to learn, explore new ideas, and to keep
his skills sharp. He enjoys participating in the research community and sharing his ideas.

3 of 3

ZFS native encryption
allows data to be easily
protected with encryption.

