
41FreeBSD Journal • May/June 2024

1 of 7

Evolution of TCP Logging in FreeBSD
4.2 BSD was released in 1983 and included the first TCP implementation in BSD. This ver-

sion also added support for a facility to debug the TCP implementation. The kernel part,
controlled by the kernel option TCP_DEBUG (disabled by default), provides a global ring buf-
fer of TCP_NDEBUG (default 100) elements and routines to add an entry to the ring buffer
whenever a TCP segment is sent or received, a TCP timer expires, or a TCP related proto-
col user request is processed. These events are only added for sockets, for which the SOL_
SOCKET-level socket option SO_DEBUG was enabled. 4.2 BSD also provided the command
line utility trpt (transliterate protocol trace), which can read
the ring buffer from a live system or core file and print it.
It not only prints the TCP header of the sent and received
TCP segments, but also the most important parameters of
the TCP endpoint when TCP segments are sent or received,
TCP timers expire or a TCP related protocol user request is
processed. It is important to note, that in case of a panic, the
contents of the ring buffer might provide enough informa-
tion to figure out why the system ended up in the bad state.
However, since this facility does not match today’s usage of
TCP anymore, it was removed in FreeBSD 14. In earlier ver-
sions of FreeBSD, building a kernel with a non-default con-
figuration was required.

In 2010, the siftr (statistical information for TCP re-
search) kernel module was added to FreeBSD. No chang-
es to the FreeBSD kernel are required, just loading the module to use it. siftr is only con-
trolled via sysctl-variables. When enabled, controlled by the sysctl-variable net.inet.
siftr.enabled, siftr writes its output to a file, controlled by the sysctl variable net.
inet.siftr.logfile (default /var/log/siftr.log). The entries, except for the first and
last, correspond to a sent or received TCP segment and provide information about the di-
rection, IP addresses and TCP port numbers and internal TCP state. Since it is envisioned to
be used in combination with a packet capturing tool like tcpdump, no additional information
about the TCP segments (for example the TCP header) is stored. Every n-th TCP segment
will be logged for each TCP connection, seperately for the sent and receive direction. n is
controlled by the sysctl-variable net.inet.siftr.ppl. A TCP port filter controlled by the
sysctl-variable net.inet.siftr.port_filter can be applied to focus on specific TCP
connections. All information is stored in ASCII, therefore no additional userland tool is re-

BY RANDALL STEWART AND MICHAEL TÜXEN

TCP Black Box Logging

4.2 BSD was released
in 1983 and included
the first TCP implementation
in BSD.

42FreeBSD Journal • May/June 2024

quired to access the information. In the default configuration, only TCP/IPv4 is supported.
Adding support for TCP/IPv6 requires a re-compilation of the siftr kernel module.

In 2015, a facility was added to the kernel, which is controlled by the kernel option
TCP_PCAP (disabled by default). If enabled on a non-default kernel, each TCP endpoint con-
tains two ring buffers: one for sent and one for received TCP segments. It should be not-
ed that no additional information, not even the time when a TCP segment was sent or re-
ceived, is stored. The maximum number of TCP segments in each ring buffer is controlled
by the IPPROTO_TCP-level socket options TCP_PCAP_OUT and TCP_PCAP_IN. The default val-
ue is controlled by the sysctl-variable net.inet.tcp.tcp_pcap_packets. Since there is no
userland utility to extract the contents of the ring buffers, the use of this feature is limited
to analyzing core files. It should be noted that also the TCP payload is logged, which might
make it hard to share core files containing such information due to privacy aspects. Support
of this facility is planned to be removed in the upcoming
version FreeBSD 15.

The latest TCP logging facility, the TCP BBLog (TCP black
box logging) was added in 2018. It was initially called TCP
BBR (black box recorder), but to avoid confusion with the
TCP congestion control called BBR (bottleneck bandwidth
and round trip propagation time), it is now called BBLog.
BBLog is enabled on all 64-bit platforms of all production
releases of FreeBSD. It combines the advantages of TCP_
DEBUG and TCP_PCAP without their disadvantages. There-
fore, it is intended to replace both of them. BBLog can be
controlled via the sysctl-interface and the socket API as
described later in this column.

Introduction to BBLog
BBLog is controlled by the kernel option TCP_BLACKBOX (enabled by default on all 64-

bit platforms) and the kernel source code is in sys/netinet/tcp_log_buf.c and its corre-
sponding header file sys/netinet/tcp_log_buf.h. On a BBLog enabled kernel, there is
a device (/dev/tcp_log) for providing BBLog information to userland tools, and each TCP
endpoint contains a list of BBLog events.

Each event contains a standard set of important TCP state information as well as (option-
ally) a block of event-specific data. These events are collected to a set limit and when the
limit is reached these events may be sent over to a /dev/tcp_log which, if open, relays the
information to the reading process(s) for recording. Note that if no process has the device
open then the data is discarded.

tcplog_dumper, from the FreeBSD ports collection, can be used to read from /dev/tcp_
log as described below.

All FreeBSD TCP stacks have been instrumented with a minimum of the following event
types:

• TCP_LOG_IN — Generated when a TCP segment arrives.
• TCP_LOG_OUT — Generated when a TCP segment is sent.
• TCP_RTO — Generated when a timer expires.
• TCP_LOG_PRU — Generated when a PRU event is called into the stack.
The TCP RACK and BBR stack generate many other logs; there are currently 72 event

2 of 7

BBLog is enabled on
all 64-bit platforms
of all production releases
of FreeBSD.

43FreeBSD Journal • May/June 2024

types defined in netinet/tcp_log_buf.h. These logs instrument a wide variety of con-
ditions and both the TCP BBR and RACK stack even have a verbose mode that can be
used when debugging the stack. These verbose options are set through stack specific sy-
sctl-variables net.inet.tcp.rack.misc.verbose and net.inet.tcp.bbr.bb_verbose.

Each TCP endpoint can be in one of the following BBLog states:
• TCP_LOG_STATE_OFF (0) — BBLog is disabled.
• TCP_LOG_STATE_TAIL (1) — Log only the last events on the connection. Each connec-

tion is allotted a finite number (default 5000) of log entries. When the last entry is hit,
reuse the first entry overwriting it.

• TCP_LOG_STATE_HEAD (2) — Log only the first events processed on the connection up
to the limit.

• TCP_LOG_STATE_HEAD_AUTO (3) — Log the first events processed on a connection and
when you reach the limit dump the data out to the log dumping system for collection.

• TCP_LOG_STATE_CONTINUAL (4) — Log all events and when you hit the maximum col-
lected number of events send the data out the log dumping system and start allocating
new events.

• TCP_LOG_STATE_TAIL_AUTO (5) — Log all events at the
tail of a connection and when you hit the limit send the
data out to the log dumping system.

Note for general debugging the BBLog state TCP_LOG_
STATE_CONTINUAL is often used. However in some specif-
ic instances (debugging a panic) it is preferable to use the
BBLog state TCP_LOG_STATE_TAIL such that the last BBLog
events are recorded inside the panic dump.

BBLog states can be set when the TCP connection is es-
tablished or via the socket API. In addition to that, they can
be set when a TCP connection fulfills a particular condition.
This is called a trace point and they are specified for particu-
lar TCP stacks and are identified by a number. One example
of a tracepoint is getting ENOBUF when the TCP stack calls the IP output routine.

The contents of each event consists of three parts:
1. A BBLog header containing the IP addresses and TCP port numbers of the TCP con-

nection, the time of the event, an identifier, a reason, and a tag.
2. A set of mandatory state variables of the TCP connection including the TCP connec-

tion state and various sequence number variables.
3. A set of optional data like information about send and receive buffer occupancy, TCP

header information and further event specific information.
Note that TCP payload information is not contained in any BBLog event, but information

about IP addresses and TCP port numbers is included in every BBLog event.

Configuration of BBLog
There are basically two ways of configuring BBLog. The general configuration is done via

the sysctl-interface and the TCP connection specific configuration is done via the socket API.

Generic Configuration via the sysctl-Interface
This is the list of BBog related sysctl-variables, which are all under net.inet.tcp.bb:

3 of 7

BBLog states can be set
when the TCP connection
is established or via
the socket API.

44FreeBSD Journal • May/June 2024

[rrs]$ sysctl net.inet.tcp.bb
net.inet.tcp.bb.pcb_ids_tot: 0
net.inet.tcp.bb.pcb_ids_cur: 0
net.inet.tcp.bb.log_auto_all: 1
net.inet.tcp.bb.log_auto_mode: 4
net.inet.tcp.bb.log_auto_ratio: 1
net.inet.tcp.bb.disable_all: 0
net.inet.tcp.bb.log_version: 9
net.inet.tcp.bb.log_id_tcpcb_entries: 0
net.inet.tcp.bb.log_id_tcpcb_limit: 0
net.inet.tcp.bb.log_id_entries: 0
net.inet.tcp.bb.log_id_limit: 0
net.inet.tcp.bb.log_global_entries: 5016
net.inet.tcp.bb.log_global_limit: 5000000
net.inet.tcp.bb.log_session_limit: 5000
net.inet.tcp.bb.log_verbose: 0
net.inet.tcp.bb.tp.count: 0
net.inet.tcp.bb.tp.bbmode: 4
net.inet.tcp.bb.tp.number: 0

Using the sysctl-interface, BBLog can be enabled for TCP connections. The key
sysctl-variables for this are net.inet.tcp.bb.log_auto_all, net.inet.tcp.bb.log_
auto_mode and net.inet.tcp.bb.log_auto_ratio.

The first sysctl-variable to consider is net.inet.tcp.bb.log_auto_all. If this variable
is set to 1 all connections will be considered for the BBLog ratio. If this value is set to zero,
then only connections that have had a TCP_LOGID set (see below) will get the BBLog ratio
applied to them. In most cases, where the sysctl-method is used to enable BBLog, the ap-
plication probably does not have set a TCP_LOGID, so setting net.inet.tcp.bb.log_auto_
all to 1 assures that every connection will be considered.

The next sysctl-variable to set is the net.inet.tcp.bb.log_auto_ratio. This value de-
termines 1 in n (where n is the value provided by setting net.inet.tcp.bb.log_auto_ra-
tio) connections will have BBLog enablement applied to them. So, for example, if net.
inet.tcp.bb.log_auto_ratio is set to 100 then 1 in every 100 connections will have BBLog
enabled upon them. If BBLog needs to be enabled for every connection net.inet.tcp.
bb.log_auto_ratio needs to be set to 1.

The final sysctl-variablel to consider is net.inet.tcp.bb.log_auto_mode. The value is
the numeric constant for the BBLog state. For TCP development, the default could be set
to 4 for TCP_LOG_STATE_CONTINUAL to log every event that is generated by any connection
for debugging purposes.

Some of the other items in the sysctl-variable can also be useful, the net.inet.tcp.
bb.log_session_limit controls how many BBLog events a connection can collect before
it has to do something with the data, i.e., either send it off to the collection system or recy-
cle (overwrite) the events. The net.inet.tcp.bb.log_global_limit enforces a global sys-
tem limit on how many total BBLog events the operating system will allow to be allocated.

The last three sysctl-variables are related to trace points. net.inet.tcp.bb.tp.bbmode
specifies the BBLog state to be used if the trace point is triggered. net.inet.tcp.bb.tp.

4 of 7

45FreeBSD Journal • May/June 2024

count is the number of connections that are allowed to have the specified trace point trig-
gered. For example, if set to 4, then 4 connections can trigger the trace point and after that
no others will trigger that specific point (this is to limit the amount of BBLog events generat-
ed). net.inet.tcp.bb.tp.number specifies the trace point to be enabled.

TCP Connection Specific Configuration via the Socket API
The following IPPROTO_TCP-level socket options that can be used to control BBLog on

an individual connection:
• TCP_LOG — This option sets the BBLog state on a connection. Any use of this socket op-

tion overrides any previous setting.
• TCP_LOGID — This option is passed a string that when set will be used to name the files

generated by the tcplog_dumper. It associates the string as an “ID” to be associated
with the connection. Note that multiple connections may use the same “ID” string. This
is possible because the tcplog_dumper also incorporates the IP address and ports in
the filename generated.

• TCP_LOGBUF — This socket option can be used to read data from the current connec-
tions logging buffer. Normally this is not used and instead /dev/tcp_log is read from
by a general purpose tool such as the tcplog_dumper (which reads and stores the
BBLogs). But this, as an alternative, allows a user process to collect a number of logs.

• TCP_LOGDUMP — This socket option directs the BBLog system to dump any records that
are in queue on the connection to /dev/tcp_log. If no dump reason or ID has been
given then the system default for the type of logging underway is used in any “reason”
field inside the dump file.

• TCP_LOGDUMPID — This socket option, like TCP_LOGDUMP, directs the BBLog system to
dump out any records to /dev/tcp_log, but in addition it specifies a specific user given
“reason” for the output which will be included in the BBlog “reason” field.

• TCP_LOG_TAG — This option associates an additional “tag” in the form of a string with all
BBLog records for this connection.

For example, if access to the source code of the program using a TCP connection is avail-
able, the BBLog state of the connection can be set to TCP_LOG_STATE_CONTINUAL using the
TCP_LOG socket option:

#include <netinet/tcp_log_buf.h>

int err;
int log_state = TCP_LOG_STATE_CONTINUAL;
err = setsockopt(sd, IPPROTO_TCP, TCP_LOG, &log_state, sizeof(int));

This code can also be used for any other BBLog state mentioned earlier.
If no access to the source code is available, one can use with root privileges

tcpsso -i id TCP_LOG 4

where id is the inp_gencnt, which can be determined by running sockstat -iPtcp. 4
is the numeric value of TCP_LOG_STATE_CONTINUAL.

Generating BBLog Files
Before enabling BBLog on a specific TCP connection one needs to first make sure

that the collection of BBLogs is taking place. FreeBSD has a tool designed for that called

5 of 7

46FreeBSD Journal • May/June 2024

tcplog_dumper which is available in the ports tree (net/tcplog_dumper). It can be in-
stalled by running with root privileges:

pkg install tcplog_dumper

Adding

tcplog_dumper_enable=”YES”

to the file /etc/rc.conf will start the daemon automatically after the next reboot. It can
also be started a daemon by manually running with root privileges:

tcplog_dumper -d

By default tcplog_dumper will collect BBLog’s in the directory /var/log/tcplog_dumps.
There are several other options which are supported including:

• -J — This option will cause the tcplog_dumper to output compressed files with xz.
• -D directory path — Store the files collected in the directory path specified, not the

default. This can also be controlled by the rc.conf variable tcplog_dumper_basedir.
The tcplog_dumper will output pcapng (pcap next generation) files. pcapng supports

storing meta information in addition to packet information. For TCP_LOG_IN and TCP_LOG_
OUT events, tcplog_dumper generates an IP header from the event (so except for the
source and destination IP address, the fields in the IP header might not be as they have
been on the wire), uses the TCP header from the event (which means it is as the segment
was on the wire) and adds a dummy payload of the correct length. For each TCP connec-
tion, tcplog_dumper creates a series of files and will put roughly 5000 BBLog events in
each file numbered in sequence .0, .1, .2 etc. The following is an example of a series of 7 files
for a single TCP connection::

[rrs]$ ls /var/log/tcplog_dumps/
UNKNOWN_18262_10.1.1.1_9999.0.pcapng UNKNOWN_18262_10.1.1.1_9999.4.pcapng
UNKNOWN_18262_10.1.1.1_9999.1.pcapng UNKNOWN_18262_10.1.1.1_9999.5.pcapng
UNKNOWN_18262_10.1.1.1_9999.2.pcapng UNKNOWN_18262_10.1.1.1_9999.6.pcapng
UNKNOWN_18262_10.1.1.1_9999.3.pcapng records

So the TCP_LOGID was not set on the connection, one of the TCP ports was 18262, the
other TCP port 9999 and the remote IPv4 address is 10.1.1.1.

Generating BBLog files from a core dump is currently being worked on. A debugger will
be used to extract the information and provide it to tcplog_dumper for actually writing the
BBLog files.

Reading BBLog Files
There are two easily accessible tools that can read BBLog files.These are read_bbrlog

and wireshark, both available as ports or packages.

read_bbrlog
read_bbrlog is a small program that will read a series of BBLog files and display each log

entry in text form. It needs to be given the prefix of the BBLog files as the input source and it
finds all of the files associated with that tcp connection and prints out to stdout each event
in text form. Note that there is also an option to redirect the output to a file (highly recom-
mended since lots of data will be displayed). Here is an example on how to run read_bbrlog:

6 of 7

47FreeBSD Journal • May/June 2024

[rrs]$ read_bbrlog -i UNKNOWN_18262_10.1.1.1_9999 -o
my_output_file.txt -e Files:7 Processed 30964 records Saw
30964 records from stackid:3 total_missed:0 dups:0

In this case three options are used: -i input where the input argument is the base con-
nection id, i.e., the text displayed by ls minus the .X.pcapng. The -o outfile to redirect
output to the output file my_output_file.txt and finally the -e option which is typically
used to put out “extended” output which is more verbose.

Here is a small clip from the file my_output_file.txt to give a flavor of the data present-
ed. Note due to the large line length some of the data for display has been truncated off:

106565924 0 rack [50] PKT_OUT Sent(0) 763046978:5 (PUS|ACK fas:0 bas:1) bw:208.00 bps(26)
 avail:5 cw:14480 scw:14480 rw:65535 flt:0 (spo:64 ip:0)
106565979 0 rack [55] TCP_HYSTART -- New round begins round:1 ends:763046983 cwnd:14480
106565982 0 rack [3] BBR_PACING_CALC Old rack burst mitigation len:5 slot:0 trperms:369
106565985 0 rack [3] TIMERSTAR type:TLP(timer:4) srtt:39001 (rttvar:17063 * 4) rttmin:30000
106565986 0 rack [1] USERSEND avail:5 pending:5 snd_una:763046978 snd_max:763046983 out:5
106565986 0 rack [0] TCP_LOG_PRU pru_method:SEND (9) err:0
106607480 0 rack [2] IN Ack:Normal 5 (PUS|ACK) off:32 out:5 lenin:5 avail:5 cw:14480
 rw:4000512 una:763046978 ack:763046983

This shows that a 5 byte packet was sent at timemark 106565924 and sequence number
763046978. The congestion window at the time was 14480 bytes and the flight size (flt) was
0. No pacing was engaged. About 41 milliseconds (41,494 i.e. 106604046 - 106607480) an ac-
knowledgement was received for those bytes.

Wireshark
wireshark and tshark can also be used to display BBLog files. They only operate on

individual files, not on a file series as read_bbrlog does. Currently no event specific infor-
mation will be displayed. For TCP_LOG_IN and TCP_LOG_OUT events the BBLog information
is shown in the Frame Information. For all other events, the BBLog information is directly
shown.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer since 2006. He specializes in Transports including TCP
and SCTP but has also been known to poke into other areas of the operating system. He is
currently an independent consultant.

MICHAEL TÜXEN (tuexen@freebsd.org) is a professor at the Münster University of Applied
Sciences, a part-time contractor for Netflix, and a FreeBSD source committer since 2009.
His focus is on transport protocols like SCTP and TCP, their standardization at the IETF and
their implementation in FreeBSD.

7 of 7

mailto:rrs@freebsd.org
mailto:tuexen@freebsd.org

