
48FreeBSD Journal • May/June 2024

Ansible offers a lot of different modules and a typical user makes use of them with-
out the need to ever write their own due to the sheer size of available modules. Even
if the necessary functionality is not available in the ansible.builtin modules, the

Ansible Galaxy offers plenty of third party modules from enthusiasts that extend the mod-
ule count even more.

When the desired functionality is not covered
by a single module or a combination of them,
then you have to develop your own. Developers
can chose to keep custom models local without
having to publish them on the Internet or without
Ansible Galaxy using them. Modules are com-
monly developed in Python, but other program-
ming languages are possible when the module is
not planned for submission into the official Ansi-
ble ecosystem.

To test the module, install the ansible-core
package, which helps by providing common code
that Ansible uses internally. The custom module can then piggy-back onto much of the core
Ansible functionality that existing modules use and is both reliable and stable.

Example Module Using Shell Programming
We’ll start with a simple example to understand the basics. Later, we will extend it to use

Python for more functionality.
Description of our custom module: Our custom module called touch checks for a file in

/tmp called BSD.txt. If it exists, the module returns true (state unchanged). If it does not
exist, it creates that (empty) file and returns state: changed.

Custom modules are in a library directory next to the playbook that uses the module.
Create that directory using mkdir:

mkdir library

BY BENEDICT REUSCHLING

1 of 8

Developing
Custom Ansible Modules

PRACTICAL

Developers can chose to
keep custom models local
without having to publish
them on the Internet or
without Ansible Galaxy
using them.

49FreeBSD Journal • May/June 2024

Create a shell script in library that holds the module code:

touch library/touch

Enter the following code in library/touch as the module logic:

 1 FILENAME=/tmp/BSD.txt
 2 changed=false
 3 msg=''
 4 if [! -f ${FILENAME}]; then
 5 touch ${FILENAME}
 6 msg=”${FILENAME} created”
 7 changed=true
 8 fi
 9 printf ‘{“changed”: “%s”, “msg”: “%s”}’ “$changed” “$msg”

First, we define some variables and set some default values. Line 4 checks if the file does
not exist. If that is the case, we let the module create the file and update the msg variable.
We need to notify Ansible about the changed state, so we return a variable called changed
along with the updated message in line.

Create a playbook called touch.yml at the same location as the library directory. It
looks like this:

- hosts: localhost
 gather_facts: false
 tasks:
 - name: Run our custom touch module
 touch:
 register: result

 - debug: var=result

Note: We could execute the custom module against any remote nodes, not localhost
alone. It’s easier to test against localhost first during development.

Run the playbook like any other we’ve written before:

ansible-playbook touch.yml

Running the Example Module
When the file /tmp/BSD.txt does not exist, the playbook output is:

PLAY [localhost] ***

TASK [Run our custom touch module] ***********************
changed: [localhost]

TASK [debug] ***
ok: [localhost] => {
 “changed”: true,
 “result”: {
 “failed”: false,

2 of 8

50FreeBSD Journal • May/June 2024

 “msg”: “/tmp/BSD.txt created”
 }
}

When the file /tmp/BSD.txt exists (from a previous run), the output is:

PLAY [localhost] ***

TASK [Run our custom touch module] ***********************
ok: [localhost]

TASK [debug] ***
ok: [localhost] => {
 “result”: {
 “changed”: false,
 “failed”: false,
 “msg”: “”
 }
}

Custom Modules in Python
What are the benefits of writing a module in Python, like the rest of the ansible.

builtin modules? One benefit is that we can use the existing parsing library for the mod-
ule parameters without having to reinvent our own. It’s difficult in shell to define the name
of each parameter in our own module. In Python, we can teach the module to accept some
parameters as optional and require others as mandatory. Data types define what kind of in-
puts the module user must provide for each parameter. For example, a dest: parameter
should be a path data type rather than an inte-
ger. Ansible provides some handy functionality to
include in our script so that we can focus on our
module’s core functionality.

The Ansiballz Framework
Modern Ansible modules use the Ansiballz

framework. Unlike the Module Replacer, which
were used by Ansible versions before 2.1, it uses
real Python imports from ansible/module_
utils instead of preprocessing the module.

Module Functionality: Ansiballz constructs a
zip file. Contents:

•	the module file
•	ansible/module_utils files imported by the module
•	boilerplate for the module parameters
The zip file is Base64 encoded and wrapped into a small Python script for decoding it.

Next, Ansible copies it into the temp directory of the target node. When executing, the An-
sible module script extracts the zip file and places itself in the temp dir, too. It then sets the
PTHONPATH to find Python modules inside the zip and imports the Ansible module under
the special name. Python then thinks it executes a regular script rather than importing a

3 of 8

If I use a feature
only twice per year,
I may need to look
it up again.

51FreeBSD Journal • May/June 2024

module. This allows Ansible to run both the wrapper script and the module’s code in a single
Python copy on the target host.

Creating the Python Module
To create a module, use a venv or virtualenv for the development part. We start like

before with a library directory where we create a new hello.py module with this content:

#!/usr/bin/env python3

from ansible.module_utils.basic import *

def main():
 module = AnsibleModule(argument_spec={})
 response = {“hello”: “world!”}
 module.exit_json(changed=False, meta=response)

if name == “__main__”:
 main()

import imports the Ansiballz framework to construct modules. It includes code con-
structs like argument parsing, file operations, and formatting return values as JSON.

Executing the Python Module from a Playbook

- hosts: localhost
 gather_facts: false
 tasks:
 - name: Testing the Python module
 hello:
 register: result

 - debug: var=result

Again, we run the playbook like this: ansible-playbook hello.yml

PLAY [localhost] ***

TASK [Testing the Python module] *************************
ok: [localhost]

TASK [debug] ***
ok: [localhost] => {
 “result”: {
 “changed”: false,
 “failed”: false,
 “meta”: {
 “hello”: “world!”
 }
 }
}

4 of 8

52FreeBSD Journal • May/June 2024

Defining Module Parameters
The modules we used had taken parameters like path:, src:, or dest: to control the be-

havior of the module. Some of these parameters are essential for the module to function
properly, while others were optional. In our own module, we want to control what parame-
ters we take overall and which are required. Defining the data type makes our module ro-
bust against incorrect inputs.

The argument_spec provided to AnsibleModule defines the supported module argu-
ments, as well as their type, defaults, and more.

Example parameter definition:

parameters = {
 'name': {“required”: True, “type”: 'str'},
 'age': {“required”: False, “type”: 'int', “default”: 0},
 'homedir': {“required”: False, “type”: 'path'}
}

The required parameter name is of type string. Both age (an integer) and homedir (a
path) are optional and if not defined, sets age to 0 by default. A new module that uses these
parameter definitions calculates the result from passing two numbers and an optional math
operator. When not provided, we assume an addition as default parameter. Create a new
python file in library called calc.py:

#!/usr/bin/env python3
from ansible.module_utils.basic import AnsibleModule

def main():
 parameters = {
 “number1”: {“required”: True, “type”: “int”},
 “number2”: {“required”: True, “type”: “int”},
 “math_op”: {“required”: False, “type”: “str”, “default”: “+”},
 }

 module = AnsibleModule(argument_spec=parameters)

 number1 = module.params[“number1”]
 number2 = module.params[“number2”]
 math_op = module.params[“math_op”]

 if math_op == “+”:
 result = number1 + number2

 output = {
 “result”: result,
 }

 module.exit_json(changed=False, **output)

if __name__ == “__main__”:
 main()

5 of 8

53FreeBSD Journal • May/June 2024

The Playbook for the Module

- hosts: localhost
 gather_facts: false
 tasks:
 - name: Testing the calc module
 calc:
 number1: 4
 number2: 3
 register: result

 - debug: var=result

The calc module optionally takes a parameter math_op, but since we defined a default
action (+) for it, the user can omit it in the playbook or on the commandline. The task that
runs the module must specify the required parameters or the playbook will fail to execute.

Running the calccalc Module
The relevant output of the playbook execution is below:

ok: [localhost] => {
 “result”: {
 “changed”: false,
 “failed”: false,
 “result”: 7
 }
}

We extend the example to properly handle +, -, *, /. The module returns false when it
gets a math_op that is is different from the ones defined. Also, handling division by zero by
returning “Invalid Operation” is a classic assignment for students since the dawn of time. I
need to properly learn Python one day, but until then, my solution looks like this:

#!/usr/bin/env python3
 from ansible.module_utils.basic import AnsibleModule

def main():
 parameters = {
 “number1”: {“required”: True, “type”: “int”},
 “number2”: {“required”: True, “type”: “int”},
 “operation”: {“required”: False, “type”: “str”, “default”: “+”},
}

 module = AnsibleModule(argument_spec=parameters)

 number1 = module.params[“number1”]
 number2 = module.params[“number2”]
 operation = module.params[“operation”]
 result = “”

6 of 8

54FreeBSD Journal • May/June 2024

 if operation == “+”:
 result = number1 + number2
 elif operation == “-”:
 result = number1 - number2
 elif operation == “*”:
 result = number1 * number2
 elif operation == “/”:
 if number2 == 0:
 module.fail_json(msg=”Invalid Operation”)
 else:
 result = number1 / number2
 else:
 result = False

 output = {
 “result”: result,
 }

 module.exit_json(changed=False, **output)

if __name__ == “__main__”:
 main()

Testing our extended module is straightforward. Here is the test for division by zero:

- hosts: localhost
 gather_facts: false
 tasks:
 - name: Testing the calc module
 calc:
 number1: 4
 number2: 0
 map_op: ‘/’
 register: result

 - debug: var=result

Which results in the following expected output:

TASK [Testing the calc module] **
fatal: [localhost]: FAILED! => {“changed”: false, “msg”: “Invalid Operation”}

Conclusion
With these basics, its easy to get started on a custom module. Bear in mind that these

modules need to run on different operating systems. Add extra checks to find out the avail-
ability of certain commands or let your module outright refuse to run in certain environ-
ments. Be as compatible as possible to increase the module’s popularity and usefulness.
There are not a lot of BSD-specific modules available. How about adding a bhyve module,
or one that manages boot environments, the pf firewall or rc.conf entries? Plenty of op-
tions await the intrepid developer with a background in both Ansible and Python.

7 of 8

55FreeBSD Journal • May/June 2024

References:
•	Ansible module architecture

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project
and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

8 of 8

https://docs.ansible.com/ansible/latest/dev_guide/developing_program_flow_modules.html#ansiballz
https://www.bsdnow.tv/

