
May/June 2024

Configuration Management Issue

Introducing Hashicorp Vault
rdist
Submitting GitHub Pull Requests
to FreeBSD
Embedded FreeBSD
Adventures in TCP/IP

Nov/Dec 2019 57

November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2024 Editorial Calendar
• Networking

(January-February)

• Development Workflow and CI (March-April)

• Configuration Management Showdown

(May-June)

• Storage and File Systems (July-August)

• To come (September-October)

• To come (November-December)

https://www.freebsdfoundation.org/journal

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
 John Baldwin • Member of the FreeBSD Core Team and
 Chair of FreeBSD Journal Editorial Board

 Tom Jones • FreeBSD Developer, Internet Engineer
 and Researcher at the University of
 Aberdeen

 Ed Maste • Senior Director of Technology,
 FreeBSD Foundation and Member
 of the FreeBSD Core Team

 Benedict Reuschling • FreeBSD Documentation Committer
 and Member of the FreeBSD Core Team

 Jason Tubnor • BSD Advocate, Senior Security Lead
 at Latrobe Community Health Service
 (NFP/NGO), Victoria, Australia

 Mariusz Zaborski • FreeBSD Developer

Advisory Board
 Anne Dickison • Director of Communications, Events,
 and Operations, FreeBSD Foundation

 Justin Gibbs • Founder of the FreeBSD Foundation,
 President and Treasurer of the FreeBSD
 Foundation Board

 Allan Jude • CTO at Klara Inc., the global FreeBSD
 Professional Services and Support
 company

 Dru Lavigne • Author of BSD Hacks and
 The Best of FreeBSD Basics

 Michael W Lucas • Author of more than 40 books including
 Absolute FreeBSD, the FreeBSD
 Mastery series, and git commit murder

 Kirk McKusick • Lead author of The Design and
 Implementation book series

 George Neville-Neil • Past President of the FreeBSD Foundation
 Board, and co-author of The Design
 and Implementation of the FreeBSD
 Operating System

 Hiroki Sato • Director of the FreeBSD Foundation
 Board, Chair of AsiaBSDCon,
 and Assistant Professor at Tokyo
 Institute of Technology

 Robert N. M. Watson • Director of the FreeBSD Foundation
 Board, Founder of the TrustedBSD
 Project, and University Senior Lecturer
 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

 Editor-at-Large • James Maurer
 maurer.jim@gmail.com

 Design & Production • Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2024 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written

permission from the publisher.

3FreeBSD Journal • May/June 2024

Dear Readers,

Welcome to the 2024 May/June issue! As I’m writing
this, I’m listening to the FreeBSD Day livestreams from
community members. It’s been interesting hearing the
different stories on how folks got involved, how they
are using or contributing to FreeBSD, and what they are
excited about in the FreeBSD world.

The best part is hearing their love and passion
for FreeBSD. In this issue, authors span a range of
experiences with the Project, from a recent GSoC
participant to a few folks who have decades of
experience with FreeBSD. Even though they have
different experience levels, they share their knowledge
and dedication on topics they have experience in.

Though this issue doesn’t focus on FreeBSD Day,
if you missed the recent celebrations, you can visit our
FreeBSD Day page to see all the live streams and other
related content.

I don’t like to play favorites on authors or subjects,
but I am keen on reading Warner’s article on
Submitting GitHub Pull Requests to FreeBSD because
I personally want to start contributing to FreeBSD
documentation. Maybe I’ll write an article about that
experience!

I want to mention one more thing. Many of you
already know about the sudden passing of Mike Karels.
It’s a great loss for this community. I always saw him
as a gentle soul, deeply connected to the history
of FreeBSD while also being involved in its current
development and support. Recently, Mike took on the
role of Deputy Release Engineer to support Colin in his
new position as Lead Release Engineer. In memory of
Mike, I’d like to ask everyone to reach out to others in
the community with kindness. Let’s lend a helping hand
to support each other and fill in the gaps — as Mike
did — in this wonderful Project. Although we can never
replace Mike, we can continue to carry on his passion
for FreeBSD and keep his memory alive.

I hope you enjoy this issue!
Deb Goodkin
FreeBSD Foundation Executive Director

https://freebsdfoundation.org/freebsd-day/

4FreeBSD Journal • May/June 2024

May/June 2024

 9 mfsBSD in Base
 By Soobin Rho

 12 rdist
 By Cy Schubert

 17 Hashicorp Vault
 By Dave Cottlehuber

 28 Submitting GitHub Pull Requests to FreeBSD
 By Warner Losh

 3 Foundation Letter
By Deb Goodkin

 5 In Memory of Mike Karels
by the FreeBSD Foundation

 6 We Get Letters
by Michael W. Lucas

 37 Embedded FreeBSD: Breadcrumbs
By Christopher R. Bowman

 41 Adventures in TCP/IP: TCP Black Box Logging
By Randall Stewart and Michael Tüxen

 48 Practical Ports: Developing Custom Ansible Modules
By Benedict Reuschling

 56 Events Calendar
By Anne Dickison

Configuration Management Issue

5FreeBSD Journal • May/June 2024

1 of 1

We are deeply saddened about the passing of Mike
Karels, a pivotal figure in the history of BSD UNIX,
a respected member of the FreeBSD community,

and the Deputy Release Engineer for the FreeBSD Project.
Mike’s contributions to the development and advancement
of BSD systems were profound and have left an indelible
mark on the Project.

Mike’s vision and dedication were instrumental in shaping
the FreeBSD we know and use today. His legacy will continue
to inspire and guide us in our future endeavors.

Our thoughts are with Mike’s family, friends, and all who
knew him. He will be greatly missed.

See the notification prepared by the family for more in-
sights into his incredible life.

In lieu of flowers, the family has asked for donations to
the Foundation to fund future FreeBSD projects.

Articles about Mike:
BSD-Urgestein: Michael J. Karels mit 68 Jahren gestorben

In Memory of
Mike Karels

https://www.youtube.com/watch?v=XSziyKlG1ws
https://www.gearty-delmore.com/obituaries/michael-mike-karels
https://www.heise.de/news/BSD-Urgestein-Michael-J-Karels-mit-68-Jahren-gestorben-9751528.html

Dear Letters Column,

My employer has dozens of servers, and I don’t
know how many operating systems. One of them
has an uptime longer than I do, and nobody dares
touch it. But some doofus left a computer magazine
in the bathroom, the boss found it, and now his
brain has latched onto “configuration management”
as the solution to all our problems when what the
datacenter really needs is a backpack nuke. How
can I make him understand that these tools are not
for environments like ours?

 — I’m Already Doomed,
Asking You Can’t Hurt

Dear Doomed,
“Asking me can’t hurt.” As if there’s a limit to how much pain a sysadmin can experience,

or how doomed they can be. Doom is not an integer value that can overflow. Doom is a so-
cial construct, and yours is fully built.

We’ve all seen the propaganda on configuration management. Deploy dedicated-pur-
pose, highly tuned servers with a single command! Adjust computation clouds with a simple
playbook! Seamlessly and transparently migrate from server to server! Containers! That’s
fine for people starting from a green field, but most system administrators work in environ-
ments best described as “baroque” if not “antediluvian.” I find myself with a green field only
when I personally raze the earth and wait for clover to grow. Not grass. Lawns are a climate
atrocity. Unless you own sheep. Or goats, but if you own any kind of goat, you won’t have
a lawn for long, which demonstrates that any force for good is also an agent of desertifica-
tion. Besides, who wants to wait for clover before installing a datacenter? Bulldoze away the
rubble of that razed kindergarten and get on with your day.

Configuration management is one of those things where the advertised ideal is the ene-
my of reduced agony. Yes, the Canadian Hockey League can devops up a whole fleet of web
servers to dynamically manage the increased load of their nation’s entire citizenry simulta-
neously watching the last game of the Memorial Cup, and I told they can also devops up ad-
ditional mental health facilities to handle the crushing depression when the London Knights
lose to the Saginaw Spirit — who aren’t even Canadian! You? Not so much. Dynamic pur-
chasing is a prerequisite for dynamic provisioning, and you clearly lack both.

1 of 3

6FreeBSD Journal • May/June 2024

by Michael W Lucas

But you can deploy configuration management, and not in a malicious compliance sense.
Skip the magic pixie dust of managing the entire server fleet. Your fleet couldn’t be man-
aged with a chair, a whip, and a flamethrower. But the painful parts of your systems can be
taken under control.

Configuration management is a sysadmin tool. So, use it to fit your needs. Start with a
handful of systems. Configure a management account with access so that your manage-
ment system can ping those hosts. Congratulations — you’ve achieved malicious compli-
ance! That serves your need with management, but it doesn’t fit your management needs.

Each server is its own special snowflake, albeit a snowflake with rabies. When you start
bringing these systems under control, start with something comparatively simple, with
known good values, that’s mostly consistent across Unix variants. There’s a cliché about
problems: “it’s always DNS.” It’s always DNS because sysadmins don’t understand DNS, and
don’t consistently update /etc/resolv.conf when nameservers change. That’s where I always
start. You’re not only bringing systems under initial configuration management, you are au-
diting current DNS configurations as a prerequisite to that project. Your manager will love it.
Group your hosts by operating system and bring their resolver under your management. If
you’re kind, comment the file.

under configuration management
your changes will be overwritten without a human ever seeing them
search mwl.io tiltedwindmillpress.com
nameserver 203.0.113.53
nameserver 2001:db8::53

Congratulations! You have DNS resolution under control. Will it change often? Hopefully
not. But you could now change it trivially. If you want people to take you seriously you must
always implement your threats, so schedule a monthly configuration management run to
update resolv.conf.

You can legitimately claim your hosts are under configuration management, but you ha-
ven’t used it to make your life easier. Look at another common service that every host has
but is often configured inconsistently: SSH. Your organization probably has rules like “no
password-based authentication.” If it doesn’t, wait until you have a security incident then
propose it. Never waste a good crisis! The simplest way to lock down SSH and make sure it
remains locked down is to bring sshd_config under centralized management. Yes, every op-
erating system has its own sshd_config tweaks, because before integrating software Unix
maintainers feel compelled to rub it in their armpits so it smells like them, but management
systems use templates to accommodate such unhygienic behavior. You could probably re-
cite the default sshd_config while sleeping through your commute, so make your managed
configuration looks nothing like the default.

#Configuration Under Management
#Manual Changes Will be Overwritten
Port 9991
PasswordAuthentication no
Subsystem sftp /usr/libexec/sftp-server

Any sysadmin thinking “I’ll just comment out the default option” will feel alarm all the way
down their brainstem upon seeing this.

Piece by piece, you can bring broad sections of your environment under your control.

2 of 3

7FreeBSD Journal • May/June 2024

Changes to managed services will become trivial. Coworkers will see that. Discussions of
changing unmanaged services will turn into “how can we bring this service under manage-
ment?” Use those discussions to implement necessary changes in the environment, or to
get yourself a better fourth monitor. Doom is a social construct, but with configuration
management you can transform it into a protective shell. Or a battering ram. At the very
least, you can share that pain.

Deploying configuration management has a rarely discussed but horrid side effect, how-
ever: whoever controls the environment, controls the environment. Any change must go
through you. People can’t permanently enable password authentication on that public-fac-
ing server, but that doesn’t mean they won’t whine at you about it. They’ll expect you to
participate in problem-solving, and nobody can survive becoming known as a problem-solv-
er. That ineradicable reputation stain will serve only to get you the title of Company Scape-
goat.

Fortunately, you know what goats are agents of. Start grazing.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of Networking for System Administrators and a mul-
titude of other crimes against civilization. A collection of these columns, Dear Abyss, will
launch on Kickstarter soon, proving premeditation. See it for yourself at https://mwl.io/ks.

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

Contents 8FreeBSD Journal • May/June 2024

freebsdjournal.org

mailto:letters@freebsdjournal.org
https://mwl.io/ks
https://mwl.io

9FreeBSD Journal • May/June 2024

1 of 3

mfsBSD is an in-memory FreeBSD.
What makes mfsBSD different is that it runs an instance of FreeBSD completely in

memory — hence the mfs (memory file system). Of course, this means we can boot into
FreeBSD without affecting our existing drives at all when using mfsBSD. We can, for exam-
ple, use it for troubleshooting cloud or on-prem servers¹. It’s fascinating to see what kind
of problems people have managed to solve using mfsBSD (search mfsBSD on the mailing
lists). My personal favorite would be installing FreeBSD in a system where there’s only a sin-
gle drive available for whatever reason. I would use FreeBSD installation media if I could just
stick in a USB drive, but if access to external devices was prohibited, I would first build an
mfsBSD image; install the image to the drive; boot into mfsBSD; and run bsdinstall. Here’s
an example:

First, build mfsBSD:

The patch set that integrates mfsBSD into base is under review and is available at:
https://reviews.freebsd.org/D41705
cd /usr/src/release
make mfsbsd-se.img

se here refers to mfsBSD special edition, which comes packed with
dist files - base.txz and kernel.txz - which are required for bsdinstall.
cd /usr/obj/usr/src/${ARCH}/release/
ls -lh

Then, write mfsBSD to the drive:

Install the mfsBSD image to your target drive.
Replace ada0 with your target drive.
dd if=./mfsbsd-se.img of=/dev/ada0 bs=1M
reboot

Boot into mfsBSD and then execute bsdinstall:

Copy the special edition dist files so that bsdinstall can use them for installation.
mkdir /mnt/dist
mount /dev/ada0p3 /mnt/dist
mkdir /usr/freebsd-dist
cp /mnt/dist/<version>/*.txz /usr/freebsd-dist/
bsdinstall

This is possible because mfsBSD loads a FreeBSD system entirely in memory. After
mfsBSD has been loaded, the original disk can be modified completely as all mfsBSD files
are now running in memory. As Matuška describes in his 2009 white paper, “mfsBSD is a

BY SOOBIN RHO
mfsBSD in Base

10FreeBSD Journal • May/June 2024

toolset to create small-sized but full-featured mfsroot based distributions of FreeBSD that
store all files in memory.”²

Brief History of mfsBSD
Martin Matuška wrote mfsBSD. Looking back at the repository’s commit history, he

made the first ever commit on November 11, 2007, which is around the time FreeBSD
7.0 BETA was released. “This project [mfsBSD] is based on ideas from the Depenguinator
project,” which was a 2003 project by Colin Percival to create a toolset to remotely install
FreeBSD on dedicated servers that only offer Linux distributions³. Matuška wanted to pro-
vide the Depenguinator functionality for the FreeBSD 6.x, and that’s how mfsBSD started.

Since then, Matuška maintained https://mfsbsd.vx.sk/ to distribute images of mfsBSD as
it gained popularity and has maintained its source code on GitHub⁴ for the past seventeen
years, fixing an uncountable number of bugs along the way, and adding support for
zfsinstall, compressed tar of /usr, and so on.

In May, 2023, one year before this article was written, a Google Summer of Code project
to integrate mfsBSD into base began.

Google Summer of Code
How did it all start? I was reading Hacker News. (probably procrastinating on my college

assignments at the time). That’s how I first came across Google Summer of Code (GSoC).
One of the top comments there said that FreeBSD was one of the participating organiza-
tions, and what I found interesting about the commen-
tary was that there was no mention of anything else, as
if everything else was self-explanatory.

I got hooked right away. The most surprising thing
about FreeBSD was that macOS is a derivative of
FreeBSD, and also that Netflix uses FreeBSD for its
CDN. The GSoC application process involves submit-
ting a project proposal. It was strongly recommended
that applicants find a project idea from each of the or-
ganizations’ project idea lists (unless you had your own
idea that you’d like to pursue). I had a look at the list,
and the mfsBSD project was the most interesting to
me because other project ideas seemed closer to ker-
nel development than I was comfortable with.

After shooting an email to my mentors, I got email back from Joseph Mingrone and Juraj
Lutter; had a brief zoom call; and a few weeks later I got an acceptance from GSoC. After
that, we had what’s called a community bonding period, at which all of the contributors and
mentors gathered around and had a virtual meeting for half an hour introducing ourselves.
That was Friday, May 12, 2023.

mfsBSD in Base
Three months and twenty-two days later, the project to integrate mfsBSD into base final-

ly came to completion, after a lot of back and forth between debugging (a lot of the bugs
were resolved by googling and digging through all the past GitHub Issues), and testing (sh
scripts with two of my laptops, Thinkpad T440 and P17), and me asking too many questions
to my mentors. A set of three patches were pushed to Phabricator.⁵

2 of 3

In May, 2023, one year
before this article was
written, a Google Summer
of Code project to integrate
mfsBSD into base began.

mailto:mm@FreeBSD.org
https://mfsbsd.vx.sk/
mailto:jrm@FreeBSD.org
mailto:otis@FreeBSD.org
mailto:otis@FreeBSD.org

11FreeBSD Journal • May/June 2024

Basically, the first commit “mfsBSD: Vendor import mfsBSD” imports mfsBSD as
contrib/mfsbsd. The main commit “release: Integrate mfsBSD image build targets into
the release tool set” adds mfsbsd-se.img and mfsbsd-se.iso targets in release/Make-
file as release/Makefile.mfsbsd. The last commit
“release(7): Add entries for the new mfsBSD build tar-
gets” adds corresponding entries on share/man/man7/
release.7. What this means is that we can now build
mfsBSD in the same release Makefile we use for build-
ing all the FreeBSD installation media, such as cdrom,
dvdrom, memstick, and mini-memstick, as make re-
lease WITH_MFSBSD=1.

Now, the patch set is under review. mfsBSD previ-
ously existed outside the FreeBSD release tool chain,
and only the release versions have been produced.
What I envision with this patch set is to make mfsBSD
images available as a part of base, and with this, we will
be able to build custom mfsBSD images by invoking cd
/usr/src/release && make release WITH_MFSBSD=1, which will then create mfsbsd-se.
img and mfsbsd-se.iso at /usr/obj/usr/src/${ARCH}/release/.

References
1. Matuška, Martin. (2022). FreeBSD on Hetzner dedicated servers — VX Weblog. [online]

Available at: https://blog.vx.sk/archives/353
2. Matuška, Martin. (2009). mfsBSD Toolset to create memory filesystem based FreeBSD

distributions. [online] Available at: https://people.freebsd.org/~mm/mfsbsd/mfsbsd.pdf
3. Colin Percival. (2003). Depenguinator — FreeBSD remote install. [online] Available at:

http://www.daemonology.net/depenguinator/
4. Matuška, Martin. (2024). mmatuska/mfsbsd. [online] GitHub. Available at: https://github.

com/mmatuska/mfsbsd
5. https://reviews.freebsd.org/D41705

SOOBIN RHO is a college senior at Augustana University in South Dakota. Born in South
Korea but raised in Dubai, he ended up going to a college in the US and is now a part-timer
at The Bancorp’s Cybersecurity Department, which he will join as an Information Security
Analyst after graduation. He has been a FreeBSD contributor since 2023 Google Summer of
Code.

3 of 3

Contents

This means is that we
can now build mfsBSD in
the same release Makefile
we use for building all
the FreeBSD installation
media.

https://blog.vx.sk/archives/353
https://people.freebsd.org/~mm/mfsbsd/mfsbsd.pdf
http://www.daemonology.net/depenguinator/
https://github.com/mmatuska/mfsbsd
https://github.com/mmatuska/mfsbsd
https://reviews.freebsd.org/D41705

12FreeBSD Journal • May/June 2024

1 of 5

What is RDIST?
To quote the man page, “rdist is a program to maintain identical copies of files over mul-

tiple hosts.” rdist is a general-purpose tool that can be utilized for multiple purposes, such
as maintaining consistent copies of files across the network, like rsync and unison do, or as a
distributed configuration management tool like cfengine, ansible, puppet, salt, or other con-
figuration management tool.

Why RDIST?
To understand why rdist understanding a little bit of its history will give us a better idea

why it was created.
Written in 1983-1984 by Ralph Campbell at UCB, rdist first appeared in 4.3BSD (in 1986)

and was one of the first applications to address the issue of distributed software manage-
ment. During the late 1980s and 1990s it was distributed with almost every commercial
UNIX. It became the standard for remote platform administration at the time.

rdist predates other software of its kind. It also predates rsync. Rsync is a backup tool
used to backup or clone directory trees while rdist is generally used as a network file distri-
bution application. Each is tailored to its design purpose.

With all these options, why use rdist?
• rdist is lighter weight than any of the subsequent configuration distribution applications

such as ansible.
• rdist integrates easily into shell scripts and Makefiles.
• rsync is not able to distribute to multiple hosts in parallel like rdist can. Nor can rsync

synchronize files using a configuration file, like rdist does. Rsync and rdist are designed
for different purposes, rsync for backup and cloning of files while rdist works better as a
configuration management tool.

On the flip side, why would one want to use another tool instead? As rdist is lightweight
when compared to tools like cfengine and ansible, its ability to configure remote nodes on
the network is limited to distributing files and performing simple post-distribution tasks.
Whereas a heavier weight tool can perform pre-distribution tasks, this can be addressed
through simple shell scripting or a Makefile.) As a personal example of this, I manage my ip-
filter firewall rules using a configuration tool (called ipfmeta) to generate the firewall config-
uration files from a rules file and an objects file using a Makefile. The Makefile uses rdist to
distribute the generated files to remote firewalls as defined in rdist’s Distfile. One can think
of a Distfile similar in relation to rdist as a Makefile is to make. Unlike rsync, rdist distributes
files using rules coded in its Distfile.

How Does RDIST Work?
Just as make(1) parses its Makefile to build applications, rdist parses its Distfile to de-

scribe what files or directories are to be distributed and any post-distribution tasks to be

BY CY SCHUBERT

rdistrdistrdistrdist

13FreeBSD Journal • May/June 2024

performed. Initially, rdist used the insecure rcmd(3) interface for network communication.
rcmd() would make a connection to a remote rshd(8). When the connection is made it
spawns an rdistd(8) remote file distribution server to perform the distribution functions on
the remote server. This is similar to how ssh’s sftp-server provides remote function to sftp.

The Berkeley “r” commands, such as rsh are insecure. Today’s implementation of rdist can
use ssh as a transport instead of rsh. With ssh one can use ssh keys or GSSAPI (kerberos)
authentication. Unlike ansible where connection is made under your own account and priv-
ilege escalation is done using “become,” rdist must connect directly to root on the destina-
tion server. To facilitate this PermitRootLogin can be set to prohibit-password in sshd_con-
fig, forcing the use of either ssh keys or Kerberos tickets.

rdist does no authentication itself. It relies on the transport for this. Compared to ansible,
it also relies on the ssh transport for authentication and it relies on su(1), sudo(1) or ksu(1) for
privilege escalation.

rdist can be used to manage application files in a service account such as mysql, oracle or
other application account. Replace root with the desired account name.

rdistd(8) must be in the user’s search path ($PATH) on the target server.
rdist negotiates a protocol version. The systuils/rdist6 port/package uses the RDIST ver-

sion 6 protocol while sysutils/rdist7 (alpha) uses the RDIST version 7 protocol.

Installing RDIST
To install rdist, simply,

pkg install rdist6

or

pkg install rdist7

Or using ports, using rdist7 as an example,

cd /usr/ports/sysutils/rdist7
make install clean

Using RDIST
As noted previously, rdist uses a configuration file similar to how host make uses its con-

figuration file. We must build our Distfile.
There are three types of Distfile statement.

The Distfile
Like make, rdist looks for a file named Distfile or distfile. Just as we can override the name

of the Makefile make uses, we can override the name of the rdist Distfile.
Distfiles contain a sequence of entries that specify the files to be distributed (copied), to

which nodes those files are to be copied, and the post-copy operations that are to be per-
formed following the distribution of the files.

Variables
One or more items can be assigned to a variable using the following format.

<variable name> '=' <name list>

2 of 5

14FreeBSD Journal • May/June 2024

For example,

HOSTS = (matisse root@arpa)

This defines the strings matisse and root@arpa to the variable HOSTS.
Another example assigns three directory names to the variable called FILES.

FILES = (/bin /lib /usr/bin /usr/games)

Distributing Files to Other Hosts
The second statement type tells rdist to distribute files to other hosts. Its format is,

[label:] <source list> '->' <destination list> <command list>

<source list> is the name of a file or a variable. <destination list> is a list of hosts to which
the files will be copied. While <command list> are a list of rdist instructions to be applied to
applied to the copy operation.

The optional label identifies the statement for partial updates when the label is refer-
enced from the command line.

For example, from my firewall Distfile,

install-ipf: ipf.conf -> ${HOSTS}
 install /etc/ipf.conf ;
 special “chown root:wheel /etc/ipf.conf; chmod 0400 /etc/ipf,conf” ;

This tells rdist to install ipf.conf to the nodes listed in the HOSTS variable. The install com-
mand line tells rdist the file is to be installed to /etc/ipf.conf.

The special command line tells rdist to run chown and chmod following the copy oper-
ation.

The install-ipf label can be addressed on the rdist command line, limiting the operation to
just that operation, i.e. rdist install-ipf.

The command list includes keywords such as install, except, special and cmdspecial.

install Identifies where to install target files.

notify List email addresses to be notified upon completion of the copy
operation.

except An exception pattern of files not to be copied.

except_pat Same as except but using a regexp pattern.

special Shell commands to be executed after each file is copied.

cmdspecial Shell commands to be executed after all files in a rule have been
copied.

A simple example follows. It copies my working copy of this article to a directory in my

FreeBSD working directory tree.

3 of 5

15FreeBSD Journal • May/June 2024

HOSTS = (localhost)

FILES = (/t/tmp/rdist.odt)

${FILES} -> ${HOSTS}
 install /home/cy/freebsd/rdist/rdist.odt ;

Here we are copying the file /t/tmp/rdist.odt to /home/cy/freebsd/rdist/rdist.odt on my
laptop. Of course, a simple cp(1) command would suffice, but this simple example gives us a
taste of how to copy single files. Also note that the destination is a file by the same name. If
the destination was a directory, i.e., /home/cy/freebsd/rdist, it would remove all the files and
subdirectories in the target directory, replacing it with a single rdist.odt file. Be careful when
specifying target files or directories. This would be like,

 rsync -aHW –delete /t/tmp /home/cy/freebsd/rdist

Unanticipated results can make for a bad day.
The rdist(1) man page provides a better example:

 HOSTS = (matisse root@arpa)

 FILES = (/bin /lib /usr/bin /usr/games
 /usr/lib /usr/man/man? /usr/ucb /usr/local/rdist)

 EXLIB = (Mail.rc aliases aliases.dir aliases.pag crontab dshrc
 sendmail.cf sendmail.fc sendmail.hf sendmail.st uucp vfont)

 ${FILES} -> ${HOSTS}
 install -oremove,chknfs ;
 except /usr/lib/${EXLIB} ;
 except /usr/games/lib ;
 special /usr/lib/sendmail “/usr/lib/sendmail -bz” ;

 srcs:
 /usr/src/bin -> arpa
 except_pat (\\.o\$ /SCCS\$) ;

 IMAGEN = (ips dviimp catdvi)

 imagen:
 /usr/local/${IMAGEN} -> arpa
 install /usr/local/lib ;
 notify ralph ;

 ${FILES} :: stamp.cory
 notify root@cory ;

4 of 5

16FreeBSD Journal • May/June 2024

In the example above, files listed in the FILES variable will be copied from the localhost to
the machines listed in the HOSTS variable. Except for files listed in the EXLIB variable, /usr/
games/lib and a pattern. After each file is copied, sendmail with a -bz option is run.

Typically, special is used to run shell commands, but in the example above, /usr/lib/send-
mail is executed (as if it were a shell), passing the quoted arguments to sendmail.

Three files in /usr/local will be copied to /usr/local/lib on the target systems, with an email
to ralph when the copy has been completed.

A time stamp file is touched when the job completes, sending an email to root@cory.
Time stamp files are used to avoid gratuitous copies. For example, if any of the listed files is
newer than the time stamp file, the file is copied. (Conversely, ansible uses a checksum.)

Gotchas
As mentioned, things can go wrong if one is not careful. Like rsync, rdist does not verify

the source file is the same type of object (file or directory) as the target. It is easy to replace
a destination file with a directory or replace a destination directory with a file. Like rsync, it
can render a system unusable. Be careful and test in a sandbox or jail.

Summary
rdist is an excellent tool when used in conjunction with scripts, makefiles, or other tooling

in scenarios when no one tool can do everything, combined with other tools as I do to man-
age my ipfilter firewalls, ipfmeta, make Makefiles, rdist Distfiles, and git rdist integrates nice-
ly to create a lightweight application. In the case of integration with heavier weight tools like
ansible or cfengine which don’t integrate with scripts and Makefiles, rdist fills that unique
niche. rdist follows the original UNIX philosophy of a single tool for a single purpose that can
be integrated with other tools to create new tools and applications.

Bibliography
• https://man.freebsd.org/cgi/man.cgi?query=44bsd-rdist&sektion=1&apropos=0&man-

path=FreeBSD+14.0-RELEASE+and+Ports
• https://www.magnicomp.com/download/rdist/overhaul.pdf
• https://www.cs.umb.edu/~ckelly/teaching/common/project/linux/sys_admin/p7_rdist.pdf

CY SCHUBERT is a FreeBSD src and ports committer. His career began over fifty years ago,
writing and maintaining electrical engineering applications written in Fortran. His experience
includes IBM MVS (mainframe) systems programming, writing extensions to the MVS kernel
and Job Entry Subsystem 2 (JES/2). His career took a turn down the UNIX path thirty-five years
ago moving to SunOS, Solaris, Tru64, NCR AT&T, DG/UX, HP-UX, SGI, Linux and FreeBSD sys-
tems administration.

Cy’s FreeBSD journey also began thirty-five years ago. After trying a Linux distro with Linux
kernel 0.95 and seeing it didn’t support UNIX domain sockets, he tried an experimental Linux
kernel. After a disastrous month of restoring EXTFS filesystems corrupted by the experimental
kernel, Cy posted a query on the FreeBSD and NetBSD USENET newsgroups. The only per-
son to reply to Cy’s question was Jordan Hubbard from the FreeBSD project. Since Jordan was
the first and only person to answer, Cy decided to try FreeBSD first. He’s been using FreeBSD
since 2.0.5. He became a ports committer in 2001 and a source committer eleven years ago.
He is currently employed by a Canadian subsidiary of a large managed services provider.

Contents

5 of 5

https://man.freebsd.org/cgi/man.cgi?query=44bsd-rdist&sektion=1&apropos=0&manpath=FreeBSD+14.0-RELEASE+and+Ports
https://man.freebsd.org/cgi/man.cgi?query=44bsd-rdist&sektion=1&apropos=0&manpath=FreeBSD+14.0-RELEASE+and+Ports
https://www.magnicomp.com/download/rdist/overhaul.pdf
https://www.cs.umb.edu/~ckelly/teaching/common/project/linux/sys_admin/p7_rdist.pdf

17FreeBSD Journal • May/June 2024

1 of 11

Working from home is the new normal. But from a security perspective, things just
got a lot more complicated. Gone are the secure offices with carefully manicured
security perimeters and 24x7 physical security.

Security professionals talk about the categories of risks we care about as our “threat land-
scape”, or “security posture”.

That’s a fancy way of saying that we can make decisions
such as not caring about GCSB, KGB, CIA, Mossad, and oth-
er Government-funded attackers, but we do care about for-
getting a laptop on the train, or having somebody’s office
broken into, to steal high value items. And we care about
passwords and credentials. A lot.

But Where To Store the Secrets?
Of particular interest, both to attackers, and to ourselves

as sysadmins or developers, is managing, and rotating,
secrets.

How many environments have you seen, where data-
base credentials haven’t changed in, well, forever? Where
long-running batch jobs use the same password across mul-
tiple systems? Or where changing one of these can result in unexpected downtime, as a
cascading butterfly effect ripples across the company, and ultimately your career?

Clearly sticky notes, and credentials checked into git repos, are neither scalable, nor se-
cure. We need something that is reasonably generic, and yet supports a wide range of use
cases.

So what’s a sensible DevOps engineer supposed to do?
One solution is a typical password store, like BitWarden or 1Password, and to extend

these tools across a team of people, and into various command-line tools. While these solve
a part of the problem, they don’t solve enough of it.

They are primarily user-facing tools, and are not easily wired up to a complex pipeline of
git repos, puppet and ansible deployments, and ensuring that credentials are rotated regu-
larly, and only accessible to appropriate users and systems.

Secrets Management Platforms
Sometimes called Key Management Systems, these are commonly found integrated into

Cloud vendors. Azure, Amazon, Google, Oracle all offer tightly coupled and well-integrated
tools for their platforms.

VaultVault
BY DAVE COTTLEHUBER

We do care about
forgetting a laptop
on the train, or having
somebody’s office
broken into, to steal
high value items.

18FreeBSD Journal • May/June 2024

However if you’re reading the FreeBSD journal, you are more likely to be viewing the idea
of giving all your secrets to companies, with extreme trepidation. Ideally we’d like to manage
our own secrets, without relying on a third party in a foreign country.

Trade Offs
These systems focus on enabling operations teams to distribute, and manage, key mate-

rial, in a highly secure, and controlled fashion.
They aim to address the challenge of securely managing and orchestrating secrets in

modern, complex environments where applications, systems, and users require access to
very sensitive information.

For example, they may integrate changing a secret, to triggering a rollover of container
using that secret, to the new version.

They may enable a batch job to decrypt briefly financial information, and then return it
updated safely encrypted again.

Or it may provide a one-use token, that allows a newly provisioned service, to connect to
a given database, in a way that we can be sure that token was neither hijacked in transit, nor
able to be used by more than one instance.

When a new instance is provisioned or deployed, it will
get a new one-time use token, unique to this instance, and
this time.

This type of functionality is ideal for separating the de-
ployment of systems and associated secrets, from direct ac-
cess to those secrets. This type of smoke and mirrors is of-
ten called cubby-hole deployment — where a one-use token,
tightly bound to a single deploy, is injected during deploy-
ment by an automation toolset. This token is used at instance
boot, to fetch the runtime secret, dedicated and bound to
this instance, perhaps by IP address or other caveats.

Getting Started
This article devotes itself to introducing Hashicorp Vault, which has a feature-parity open

fork called OpenBao, similar to the Terraform / OpenTofu licensing fork as well.
There are other tools, but Vault is ported to FreeBSD, and I’m sure OpenBao will land

soon too.

Vault’s Sweet Spot
Vault, and other KMS, are not great places to keep your Webstorm IDE license, or a

scanned copy of your passport. It’s not end-user friendly, and it’s definitely not usable on a
mobile device.

But if you’re managing servers, databases, and networks, it’s fantastic. It can be easily in-
tegrated with Terraform, Chef, Puppet, Ansible, and almost anything that has, or uses, a
command-line or terminal interface.

Internals
Vault stores all keys and values encrypted on disk. At startup, therefore, a master key is

needed to unlock all other keys. To avoid having a single lightweight key, Vault uses SSS,
or Shamir’s Secret Sharing, to split a large complex key into separate secrets, that can be

2 of 11

At startup a master key
is needed to unlock
all other keys.

https://www.vaultproject.io/
https://openbao.org/
https://en.wikipedia.org/wiki/Shamir%27s_secret_sharing

19FreeBSD Journal • May/June 2024

recombined to unlock the vault. Try the Shamir Demo in a modern WASM-capable web
browser.

Cleverly, SSS allows a configurable degree of redundancy — say, 3 of 5 keys are need-
ed to unlock the vault. Thus, your 3 main sysadmins can unlock it, but in the absence of any
one, you can beg your lawyer or accountant to loan their key if needed, and reach your quo-
rum of 3. Each admin submits their unlock key locally, and an API challenge is used to pre-
vent any single admin from obtaining all segments of the master key.

Once the vault is unlocked, from a user perspective, it functions largely like any other
HTTP-accessible key-value store. We can store small files like ssh private keys, or TLS certifi-
cates, the usual passwords, or even get vault to generate ephemeral passwords for a limited
time, and limited purpose.

Getting Started
While vault supports complex deployments, with consensus protocols and multiple serv-

ers, I’ve found a small highly reliable physical server with a hot standby and a zfs replicated
backup, to be sufficient. Of course, I rely on Tarsnap for a fully offline backup — an absolute
essential requirement for something as critical as all of our secrets!

Install and Configure
The usual incantations must be performed as root:

pkg install -r FreeBSD security/vault
mkdir -p /var/{db,log}/vault /usr/local/etc/vault
chown root:vault /var/{db,log}/vault /usr/local/etc/vault
chmod 0750 /usr/local/etc/vault
chmod 0770 /var/{db,log}/vault

The rc.conf settings, you can use sysrc(8) for this, or your preferred ops toolkit.

/etc/rc.conf.d/vault or where-ever you prefer
vault_enable=YES
vault_config=/usr/local/etc/vault/vault.hcl

And vault’s config file. There are of course many options, most of this is self-explanatory.
For our test deployment, we will disable TLS and use the loopback IP.

/usr/local/etc/vault/vault.hcl
default_lease_ttl = “72h”
max_lease_ttl = “168h”

ui = true
disable_mlock = false

listener “tcp” {
 address = “127.0.0.1:8200”
 tls_disable = 1
 tls_min_version = “tls12”
 tls_key_file = “/usr/local/etc/vault/vault.key”
 tls_cert_file = “/usr/local/etc/vault/vault.all”

3 of 11

https://bakaoh.com/sss-wasm/%5D
https://en.wikipedia.org/wiki/Shamir%27s_secret_sharing

20FreeBSD Journal • May/June 2024

}

storage “file” {
 path = “/var/db/vault”
}

Now run the daemon in the foreground:

$ vault server -config /usr/local/etc/vault/vault.hcl
==> Vault server configuration:

Administrative Namespace

 Api Address: http://127.0.0.1:8200
...

In a new terminal, let’s check the status:

$ export VAULT_ADDR=http://localhost:8200/
$ vault status
vault status
Key Value
--- -----
Seal Type shamir
Initialized false
Sealed true
Total Shares 0
Threshold 0
Unseal Progress 0/0
Unseal Nonce n/a
Version 1.14.1
Build Date 2023-11-04T05:16:56Z
Storage Type file
HA Enabled false

Note that the vault is uninitialised, and still sealed. Let’s fix that:

$ vault operator init --key-shares=3 --key-threshold=2
Unseal Key 1: jjcVgHTjWw3j4BsyDhugvS9we5t5qMAhJL8bSWzySjbG
Unseal Key 2: WfMeZPA7ixleQAMeeAqyey+gwrxDn9WNfSvdKzdLMaeA
Unseal Key 3: V9cd1eVBH6mstyoS2pbD6S80R7NJVz7jPvlPOcLOUVlw
Initial Root Token: hvs.RAeqzETRhOXOImMPw7xrXbAl

$ export VAULT_TOKEN=hvs.RAeqzETRhOXOImMPw7xrXbAl

$ vault status

4 of 11

21FreeBSD Journal • May/June 2024

Key Value
--- -----
Seal Type shamir
Initialized true
Sealed true
Total Shares 3
Threshold 2
Unseal Progress 0/2
Unseal Nonce n/a
Version 1.14.1
Build Date 2023-11-04T05:16:56Z
Storage Type file
HA Enabled false

Note that the vault is now initialised, and also still sealed. So let’s fix that next, using the
newly generated key shards:

$ vault operator unseal
Unseal Key (will be hidden):
Key Value
--- -----
Seal Type shamir
Initialized true
Sealed true
Total Shares 3
Threshold 2
Unseal Progress 1/2
Unseal Nonce 6ce4351d-012b-df3f-a176-34d266f00795
Version 1.14.1
Build Date 2023-11-04T05:16:56Z
Storage Type file
HA Enabled false

Repeat the unsealing with a different key each time until sealed changes to false. The
final step is to enable auditing, because security people love logs.

$ vault audit enable file path=/var/log/vault/audit.log
Success! Enabled the file audit device at: file/

Feel free to tail this, there are no secrets ever stored here, so it’s only an audit log of re-
quests.

Shamir Secret Ring
Now that you’ve unsealed the vault, distribute your secrets by encrypted avian carrier, to

your chosen secret keepers. Some suitable ceremony is required, and also to ensure these
secrets are adequately protected, both against incompetence or less, as well as Mossad and
North Korean agents.

By now, you should be ready to store secrets.

5 of 11

22FreeBSD Journal • May/June 2024

Storing Secrets
Vault has a concept of engines - there’s a simple key-value storage, also one for ssh cer-

tificates, AWS and Google Cloud integrations, RabbitMQ, PostgreSQL, and many more.
Each one needs to be separately enabled.

$ vault secrets enable -version=2 kv
Success! Enabled the kv secrets engine at: kv/

From here on in, we need to specify both the engine type, and it’s mount path. It’s possi-
ble to retrieve data as JSON, or yaml as well, and even to store files directly.

$ vault kv put -mount=kv blackadder scarlet_pimpernel=”we do not know”
=== Secret Path ===
kv/data/blackadder

======= Metadata =======
Key Value
--- -----
created_time 2024-05-12T23:04:50.283028044Z
custom_metadata <nil>
deletion_time n/a
destroyed false
version 1

$ vault kv get -mount=kv -format=json blackadder
{
 “request_id”: “48141452-8f8f-b497-9c53-1af71e24e2a5”,
 “lease_id”: “”,
 “lease_duration”: 0,
 “renewable”: false,
 “data”: {
 “data”: {
 “scarlet_pimpernel”: “we do not know”
 },
 “metadata”: {
 “created_time”: “2024-05-12T23:04:50.283028044Z”,
 “custom_metadata”: null,
 “deletion_time”: “”,
 “destroyed”: false,
 “version”: 1
 }
 },
 “warnings”: null
}

$ vault kv put -mount=kv blackadder scarlet_pimpernel=”comte de frou frou”

6 of 11

23FreeBSD Journal • May/June 2024

=== Secret Path ===
kv/data/blackadder

======= Metadata =======
Key Value
--- -----
created_time 2024-05-12T23:08:22.369551931Z
custom_metadata <nil>
deletion_time n/a
destroyed false
version 2

$ vault kv get -mount=kv -format=yaml blackadder
data:
 data:
 scarlet_pimpernel: comte de frou frou
 metadata:
 created_time: “2024-05-12T23:08:22.369551931Z”
 custom_metadata: null
 deletion_time: “”
 destroyed: false
 version: 2
lease_duration: 0
lease_id: “”
renewable: false
request_id: 686965d9-811f-8689-d75f-a02f7dded9a7
warnings: null

$ vault kv put kv/blackadder scarlet_pimpernel=@/etc/motd.template

Role-based Access
Vault can be configured to require github authentication, and delegate roles and authen-

tication to something other than LDAP. Many of you will rejoice at this news. With Github
authentication, 2FA can be enforced for all users, so this represents a reasonable trade-off
for small teams.

$ vault auth enable github
vault auth enable github
Success! Enabled github auth method at: github/

$ vault write auth/github/config organization=skunkwerks
Success! Data written to: auth/github/config

$ vault write auth/github/map/teams/admin value=admins
Success! Data written to: auth/github/map/teams/admin

7 of 11

24FreeBSD Journal • May/June 2024

Place this small policy file in /usr/local/etc/vault/admins.hcl

grant members of github admins group all rights in the kv/ mount
path “kv/*” {
 capabilities = [“create”, “read”, “update”, “delete”, “list”]
}

And then enable it within vault:

$ vault policy write admins /usr/local/etc/vault/admins.hcl
Success! Uploaded policy: admins

You can of course make more restrictive policies, in rights, or in paths, or in selected
mounts, for various groups, such as a deployment bot.

Finally, each user that wishes to use github auth, for vault, must go to https://github.com/
settings/tokens and add a new personal token with privileges of admin— read:org.

This can be used now to generate your vault login token via

$ vault login -method=github token=$GITHUB
Success! You are now authenticated. The token information displayed below
is already stored in the token helper. You do NOT need to run “vault login”
again. Future Vault requests will automatically use this token.

Key Value
--- -----
token hvs....
token_accessor ...
token_duration 72h
token_renewable true
token_policies [“admins” “default”]
identity_policies []
policies [“admins” “default”]
token_meta_org skunkwerks
token_meta_username dch

$ vault kv get -mount=kv -format=yaml blackadder
...

Vault in Automation
Automation tools such as Chef, Puppet, Ansible, and more can use vault to store secrets,

for decryption at deployment time, or even in some circumstances, only to be decrypted at
runtime.

Let’s look at the first case, decrypting secrets at deploy time. Effectively, this extends the
templating capabilities of automation tools, and relies on being able to trigger service re-
starts, after having pushed new and updated secrets.

We can use vault in 4 ways:
• Ansible and similar tools can store secrets in vault, and only decrypt them at deploy

time, using lookups

8 of 11

https://github.com/
https://www.ansible.com/

25FreeBSD Journal • May/June 2024

• rc.d framework scripts can use app roles to fetch their credentials at startup, letting
the local root user have a delegated token that only permits issuing cubby-hole tokens.
The daemon itself will only be able to retrieve its own credentials

• vault can issue time- and IP-bound dynamic credentials that are revoked on expiration,
for daemons, cronjobs, & batch scripts that are time limited

• we can also template out files at runtime, using vault agent

Ansible
There are a number of plugins for ansible, and confusingly, there is an internal ansible

“vault” module that is not compatible with Hashicorp Vault.
Install the plugin, and use the typical lookup functionality:

 super_secret: “{{lookup('hashivault', 'kv', 'blackadder', version=2)}}”

rc.d App Roles
An AppRole is a built-in authentication method, specifically for machines and applications

to authenticate to Vault, and then subsequently obtain a token that only then allows fetch-
ing relevant secrets. This is often called a cubby-hole credential, as it only permits unwrap-
ping the outer layer, to get a key inside.

These can be restricted by time, a limited number of uses, and more. Our trusted root
process generates this restricted secret id, and passes it and the role id to the daemon to
fetch its own credentials. The generation of the secret id can be set up in such a way that
only these credentials can be minted.

Once again, we enable the approle mount, before creating our app-specific credentials,
as it is a form of authentication. For convenience, this approle will re-use the existing
admins group policy used earlier, but it should have a more restrictive one, specifically for
this daemon/service.

$ vault auth enable approle
Success! Enabled approle auth method at: approle/

$ vault write auth/approle/role/beastie \
 secret_id_ttl=60m \
 token_num_uses=10 \
 token_ttl=1h \
 token_max_ttl=4h \
 secret_id_num_uses=40 \
 policies=”default,admins”
Success! Data written to: auth/approle/role/beastie

$ vault read auth/approle/role/beastie/role-id
Key Value
--- -----
role_id 6caaeac3-d8fa-a0e3-83ba-7d37750603c2

$ vault write -f auth/approle/role/beastie/secret-id

9 of 11

https://developer.hashicorp.com/vault/docs/auth/approle
https://developer.hashicorp.com/vault/docs/secrets/databases/postgresqla
https://developer.hashicorp.com/vault/docs/agent-and-proxy/agent

26FreeBSD Journal • May/June 2024

Key Value
--- -----
secret_id 8dd54c92-fe54-0d6d-bee6-e433e815aaa1
secret_id_accessor cb9bc17c-c756-42b3-c391-b61ebde12bff
secret_id_num_uses 0
secret_id_ttl 0s

If we wanted to make these secrets usable within a hypothetical beastie daemon, these
two parameters can be put in an /etc/rc.conf.d/beastie file, which can be secured to
only be readable by root.

beastie_enable=YES
beastie_env=”
 ROLE_ID=6caaeac3-d8fa-a0e3-83ba-7d37750603c2
 SECRET_ID=8dd54c92-fe54-0d6d-bee6-e433e815aaa1
 SECRET_PATH=kv/beastie
 VAULT_ADDR=http://localhost:8200/
“

The /usr/local/etc/rc.d/beastie script runs a pre-cmd that fetches the secret as
root, and injects it into the child environment.

start_precmd=${name}_vault
beastie_vault() {
 # Authenticate with Vault using the approle
 VAULT_TOKEN=$(vault write auth/approle/login role_id=”$ROLE_ID” \
 secret_id=”$SECRET_ID” \
 -format=json | jq -r '.auth.client_token')

 # Retrieve the secret from Vault
 export BEASTIE_SECRET=$(vault kv get -field=data -format=json ${SECRET_PATH} | jq -r .)
}

Agents
Vault also provides an agent mode, which does a lot of the credential management for

you, and supports templating of simple config files.

Sealing the Vault
Typically, a vault is left unsealed and running for months on end, barring patching and

upgrades. In the event of a security incident, it suffices to halt the server that runs the vault
daemon entirely, or optionally issue a seal command. This shuts vault, and unloads the
master secret key.

$ vault operator seal
Success! Vault is sealed.

10 of 11

27FreeBSD Journal • May/June 2024

DAVE COTTLEHUBER has spent the last 2 decades trying to stay at least 1 step ahead of
The Bad Actors on the internet, starting off with OpenBSD 2.8, and the last 9 years with
FreeBSD since 9.3, where he has a ports commit bit, and a prediliction for using jails, and ob-
scure functional programming languages that align with his enjoyment of distributed sys-
tems, and power tools with very sharp edges.

• Professional Yak Herder, shaving BSD-coloured yaks since ~ 2000
• FreeBSD ports@ committer
• Ansible DevOops master
• Elixir developer
• Building distributed systems with RabbitMQ and Apache CouchDB
• Enjoys telemark skiing, and playing celtic folk music on a variety of instruments

11 of 11

Contents

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

28FreeBSD Journal • May/June 2024

1 of 8

The FreeBSD Project recently started supporting GitHub pull requests (PRs) to make it
easier to contribute. We found that accepting patches via our bug tracker Bugzilla re-
sulted in far too many useful contributions being ignored and growing stale, so con-

tributors should prefer GitHub PRs for changes, leaving bugs in Bugzilla. While Phabricator
works well for developers, we’ve also found it’s easy to lose track of changes from outside
contributors there. Unless you are working directly with a FreeBSD developer who has told
you to use Phabricator, please use GitHub instead. GitHub PRs are easier to track, easier to
process, and more familiar to the wider open source community. We hope for faster deci-
sions, fewer dropped changes, and a better experience for all.

Since FreeBSD’s volunteers have limited time, The
Project has developed standards, norms, and policies
to use their time efficiently. You’ll need to understand
these to submit a good PR. We have some automa-
tion which helps submitters fix the common mistakes,
allowing the volunteers to review nearly ready submis-
sions. Please understand we can only accept the most
useful contributions and some contributions cannot be
accepted.

Next, I’ll cover how to turn your changes into a Git
branch, how to refine them to meet the FreeBSD Proj-
ect’s standards and norms, how to make a PR from
your branch, and what to expect from the review pro-
cess. Then I’ll cover how volunteers evaluate PRs and
tips for perfecting your PR.

This article focuses on commits to the base system, not the documentation or ports
trees. These teams are still revising the details for these repositories.

Project Standards
The Project has detailed standards for various aspects of the system. These standards

are described in the FreeBSD Developer’s Handbook and the FreeBSD Committer’s Guide.
Coding standards are documented in FreeBSD manual pages. By convention, manual pag-
es are divided into sections. All the style manual pages are in section 9 for historical reasons.
References to manual pages are traditionally rendered as the name of the page, followed by
its section number in parentheses, for example style(9) or cat(1). This documentation is avail-
able on any FreeBSD system with the man command, or online.

BY WARNER LOSH

We hope pull requests
make it easier to get
changes into FreeBSD and
provide quick decisions
when there are issues.

Submitting
 GitHub Pull Requests
 to FreeBSD

https://docs.freebsd.org/en/books/developers-handbook/
https://docs.freebsd.org/en/articles/committers-guide/
https://man.freebsd.org

29FreeBSD Journal • May/June 2024

The Project strives to produce a well-documented integrated system that covers both a
kernel that controls the machine as well as a user-space implementation of common Unix
utilities. Contributions should be well written with relevant comments. They should include
updates to the relevant manual pages when the behavior changes. When you add a flag to a
command, for example, it should be added to the manual page as well. When new functions
are added to a library, new man pages should be added for the functions. Finally, The Proj-
ect views the metadata in the source code control system part of the system, so commit
messages should conform to the project’s standards.

The Project’s Standard for C and C++ code is described in style(9). This style is often re-
ferred to as “Kernel Normal Form” and is adopted from the style used in Kernighan and
Ritchie’s The C Programming Language. It’s the standard that research unix used, as contin-
ued within the CSRG at Berkelely who produced the BSD releases. The FreeBSD project has
modernized these practices over the years. This style is the preferred style for contributed
code, and describes the style used in most of the sys-
tem. Contributions which change this code should fol-
low this style except for a few files that have their own
style. Lua and Makefiles also have their own standards,
found in style.lua(9) and style.Makefile(9) respectively.

Commit messages follow the form favored by the
Open Source communities that use git. The first line
of the commit message should summarize the entire
commit, but do so in 50 or so characters. The rest of
the message should describe what changed and why.
If what changes is obvious, only explaining why is pre-
ferred. The lines should be 72 characters or fewer. It
should be written in the present tense, with an imperative tone. It ends with a series of lines
that Git calls “trailers” which The Project uses to track additional data about the commits:
where they came from, where details about the bug can be found, etc. The Commit Log
Message section of the Committer’s Guide covers all the details.

Unacceptable Changes
After a few years of experimenting with accepting changes via GitHub, The Project has

had to establish some limits to accepting contributions via GitHub from people who have
not yet earned write access to the project’s repositories. These limits ensure that the volun-
teers that verify and apply the changes to make the best use of their time. Consequently,
The Project is unable to accept:

• Changes too large to review on GitHub
• Typos in comments
• Changes discovered by running static analyzers over the tree (unless they include new

test cases for the bugs the static analyzers found). Exceptions can be made on a case-
by-case basis for “obviously correct” fixes in parts of the system that do not interact
well with our testing harness.

• Changes that are theoretical, but have no specific bug or articulable behavior defect.
• Performance optimizations that aren’t accompanied by before / after measurements

to show improvement. Micro-optimizations are rarely worth it, as compiler and CPU
technology often makes them obsolete (or even slower) in only a few years.

2 of 8

Contributions should be
well written with relevant
comments.

https://docs.freebsd.org/en/articles/committers-guide/#commit-log-message

30FreeBSD Journal • May/June 2024

• Changes that are contentious. These need to be socialized on the freebsd-arch@
freebsd.org or most appropriate mailing list first. GitHub provides a poor forum for
discussing these sorts of issues.

PRs should make the Project better in some, user-visible way.

Evaluation Criteria
• Is the change one that the Project is accepting?
• Is the scope/scale of the change good?

• Are there a reasonable number of commits (say less than 20)?
• Are each of the commits a reviewable size (say less than 100 lines)?

• Does C and C++ code confirm to style(9) (or the file’s current style)
• Do changes to lua confirm to style.lua(9)
• Do changes to Makefiles conform to style.Makefile(9)
• Do changes to man pages pass both mdoc -Tlint and igor?
• Have contentious changes been discussed in the proper mailing list?
• Does make tinderbox run successfully?
• Do the changes fix a specific, articulable problem or add a specific feature?
• Are the commit messages good?

While avoiding these pitfalls:
• Do the changes introduce new test regressions?
• Do the changes introduce behavior regressions?
• Do the changes introduce a performance regression?

Overview of the Process
At a high level, contributing to FreeBSD is a straightforward process, though getting into

the details can obscure this simplicity.

FreeBSD Developer

FreeBSD Infrastucture

Github/Contributor

Developler
repo

Github FreeBSD
FreeBSD–src repo

Github fork of
FreeBSD–src repo

Staging Area
(also developer repo)

5. Developer downloads
 Pull Request

4. Pull Request

FreeBSD cgit
src repo1. main

 mirroring

2. main
 mirroring

3. fork

6. main
 commits

Basic Flow of Commits

1. FreeBSD developers push commits directly to the FreeBSD repository, which is hosted
in the FreeBSD.org cluster.

2. Every 10 minutes, the FreeBSD src repository is mirrored to the freebsd-src GitHub
repo.

3. A user wanting to create a PR will create a branch in their fork of the freebsd-src repo
4. The changes on a user branch are used to create a FreeBSD PR.
5. A FreeBSD developer reviews the PR, provides feedback, and may request changes

from the user.
6. A FreeBSD developer will push the changes into the FreeBSD src repo.

3 of 8

31FreeBSD Journal • May/June 2024

Prepping for Submitting Pull Requests
You’ll need to create a GitHub account, if you don’t already have one. This link will walk

you through the process of creating a new GitHub account. Since many people already have
a GitHub account for other reasons, we’ll skip delving into the details.

The next step is forking FreeBSD’s repository into your account. Using the Github web
interface is the easiest way to create a fork and to explain since you will only need to do
this once. Changes to your fork do not affect FreeBSD’s repo. Users can fork repositories
by clicking the “Fork’’ button as shown in Figure 1. You will want to click on the highlighted
“Create a new fork” menu item. This will bring up a screen similar to Figure 2. From here,
click the green “Create Fork” button.

Figure 1: After clicking the down arrow next to Fork, you’ll see a pop-up for the create fork dialog.

Figure 2: Creating a Fork, part 2.

4 of 8

https://github.com/join

32FreeBSD Journal • May/June 2024

Once you click on “Create Fork,” the GUI will redirect to the newly forked repository. You
can copy the URL you need to clone the repository in the usual spot, shown in Figure 3.

Figure 3: Copying the URL to clone (I forked ages ago with old repo name)

This concludes the steps you’ll do with the GitHub web interface. The rest of these com-
mands will be done in a terminal window for a host running FreeBSD. For simplicity, the
screen shots have changed to the commands or the commands and the output produced
by those commands.

Clone your newly created repository using the commands below.

% git clone
Cloning into 'freebsd-src'...
remote: Enumerating objects: 3287614, done.
remote: Counting objects: 100% (993/993), done.
remote: Compressing objects: 100% (585/585), done.
remote: Total 3287614 (delta 412), reused 815 (delta 397), pack-reused 3286621
Receiving objects: 100% (3287614/3287614), 2.44 GiB | 22.06 MiB/s, done.
Resolving deltas: 100% (2414925/2414925), done.
Updating files: 100% (100972/100972), done.
% cd freebsd-src

5 of 8

33FreeBSD Journal • May/June 2024

Please note you should change “user” in the above command to your GitHub username.
The “-o github” will name this remote “github,” which will be used in the examples below.

The PR workflow generally requires a branch. We’ll assume you’ve followed something
like the following commands, though there are many ways to use a pre-existing branch that
are beyond the scope of this article.

% git checkout -b journal-demo
% # make changes, test them etc
% git commit

It is important that all the commits you make have your real name and email address as
the “Author” of the commit. Git has two configuration fields for this. user.name contains
your real name. And user.email has your email address. You can set them like so:

% git config --global user.name “Pat Bell”
% git config –global user.email “pbell@example.com”

In addition, please read our advice on Commit Log Messages and follow it when creating
commits.

Most changes we get via PRs are small, so we’ll move on to submitting them. However, if
you have large changes, please read the Evaluation Criteria below before submitting for a
smoother process.

Submitting Your Pull Request
The next step is to push the journal-demo branch to GitHub (as with the above, substi-

tute your GitHub username for “user” below:

% git push github
Enumerating objects: 24, done.
Counting objects: 100% (24/24), done.
Delta compression using up to 8 threads
Compressing objects: 100% (16/16), done.
Writing objects: 100% (16/16), 5.21 KiB | 1.74 MiB/s, done.
Total 16 (delta 13), reused 0 (delta 0), pack-reused 0
remote: Resolving deltas: 100% (13/13), completed with 8 local objects.
remote:
remote: Create a pull request for ‘journal-demo’ on GitHub by visiting:
remote: https://github.com/user/freebsd-src/pull/new/journal-demo
remote:
To github.com:user/freebsd-src.git
 * [new branch] journal-demo -> journal-demo

You’ll notice that GitHub helpfully tells you how to create a pull request. When you visit
the above URL, you’re presented with a blank form, as shown in Figure 4.

6 of 8

https://docs.freebsd.org/en/articles/committers-guide/#commit-log-message

34FreeBSD Journal • May/June 2024

Figure 4: Pull request submission form.

In the “Add a Title” field, add a brief description of your work that conveys the essence
of the changes. Keep this to about a dozen words, so it’s easy to read. If the branch has only
one commit, use the first line of the commit message for that change here. If it’s multiple
commits, you’ll need to summarize them into one short title.

In the “Add a Description” field, write a summary of your changes. If this is a branch with
just one commit, use the body of the commit message here. If there are multiple commits,
then create a brief summary which briefly describes the problem solved. Explain what you
changed and why, if it isn’t obvious.

The example in Figure 4 attempts to address a famous historical dispute between Bell
Labs and Berkeley. It is a good example of a contentious commit outlined below. It is a good
example of a contentious commit that should be socialized.

What to Expect
After your submission, the evaluation process begins. Several automated checkers will

run. These make sure that the format and style of your submission conform to our guide-
lines. They ensure that the proposed changes compile. They will provide feedback for
changes you should make before someone looks at it. Some of these tests take time, so
checking back a few hours after your submission is a good idea. Items flagged by the auto-
mated testing will be among the first things our volunteers will ask you to correct, so it saves
everybody time to proactively address them.

Replying to Feedback
Once you’ve received feedback, oftentimes code changes are required. Please make the

changes that were suggested. Usually this means that you’ll have to edit some subset of your
changes (either commit messages, or the commits themselves). GitLab has a good tutorial
on the mechanics of using git rebase.

7 of 8

https://docs.gitlab.com/ee/topics/git/git_rebase.html

35FreeBSD Journal • May/June 2024

Once you’re made your changes, you’ll need to push the changes back to your branch so
the PR updates and the feedback loop starts over:

% git push github --force-with-lease

Supply Chain Attacks
Recently, a bad actor attacked the xz source base to insert code that compromised sshd

on certain Linux systems. FreeBSD was unaffected by this attack due to a combination of
luck and process. Our process is designed to resist such attacks by having multiple layers of
protection. We review code before we allow it to be tested. We only run automated testing
when it’s clear there’s no obvious mischief in the submissions. Questions that might seem
unnecessary are often motivated by the increasingly hostile work environment with which
open source projects must cope.

Wrapping up
Whether you are a casual user that has an occasional tweak to make FreeBSD better, or

a more intense developer who submits so many changes that you’ll earn a commit bit, the
Project welcomes your submissions. This article tries to cover the basics of doing this, but is
more geared to the causal user. The online resources will help for situations beyond the ba-
sics.

WARNER LOSH has been contributing to open source since before the FreeBSD project
existed or the term “open source” was formally defined. He’s recently been delving into the
early history of Unix to discover its rich, hidden legacy. He lives in Colorado with his wife and
daughter in a strawbale house heated by the sun, a small boiler, and the occasional antique
computer.

8 of 8

Contents

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

https://www.freebsdfoundation.org/donate

37FreeBSD Journal • May/June 2024

I’ve been using FreeBSD for almost 3 decades now. I first installed FreeBSD in the early
1990s because the package system made it really easy to install versions of the free CAD
software I was using at the time to build my first silicon chips in 2 micron (2000nm, that’s

not a typo). Not having to figure out how to configure and compile 3 or 4 packages myself
meant I could install the system in an evening and literally do chip design in my basement.
Before that I would have to drive all the way to the university and spend hours each day
working late into the night on the expensive Sun workstations. Not only could I do every-
thing at home, but the tools also ran faster to boot! While I can program, I’ve always used
FreeBSD as a base on which to do computing. I never developed for the community. Now, I
want to build something with FreeBSD, not simply use FreeBSD to get my work done.

There is a plethora of small, embedded boards on the market — some with great mind-
share. The raspberry pi in all its incarnations is a wonderful example. For me the most inter-
esting thing about these small, embedded boards is their ability to interface with the outside
world. Many of these small boards have GPIO pins
that you can toggle from the CPU and thus in-
terface to all sorts of real-world things. But I’m a
hardware engineer at heart; I really want to build
hardware. While I’ve done well in my career, I still
don’t have the spare $10 Billion dollars I’d need
to build my own fab or the millions of dollars I’d
need to buy EDA (Electronic Design Automation)
software to design my own chips. There are some
interesting projects out there now if you want to
build your own silicon, but I started this journey
before I found those. I always thought to myself,
yes, I could buy an rpi or any of the other great
boards out there like the Arduino, but what would I do with them? So, I continued to read
about these board but never dipped my toe in. Finally, I found the board for me.

Xilinx, now AMD, produces an inexpensive set of chips they call Zynq. These chips have
single or dual AMD Coretex A9 CPUs complete with MMUs and a host of peripherals built
into them. These chips, while not open source, are well documented from a hardware per-
spective. Most importantly someone (Thomas Skibo) had already done all the hard work to
port FreeBSD to them. Like I said, I’m a hardware engineer at heart, and while I like writing
software, porting FreeBSD from scratch was just a bigger project than I wanted to chew on
at that point. There are a variety of boards with this chip (ZYBO, ZEDBOARD, ARTYZ7) at

BY CHRISTOPHER R. BOWMAN

1 of 4

Breadcrumbs

There is a plethora of
small, embedded boards
on the market — some
with great mindshare.

https://developers.google.com/silicon
https://www.xilinx.com/
https://digilent.com/shop/zybo-z7-zynq-7000-arm-fpga-soc-development-board/
https://digilent.com/shop/arty-z7-zynq-7000-soc-development-board/
https://digilent.com/shop/zedboard-zynq-7000-arm-fpga-soc-development-board/

38FreeBSD Journal • May/June 2024

varying price points — some as low as around $200. But the most import thing for me as a
hardware engineer was that these chips have an FPGA fabric built into them and connected
to the CPU.

For those of you who don’t know what FPGAs are, you can think of them as the halfway
house between CPUs and full custom chips (ASICs). FPGA is an acronym for Field Program-
mable Gate Arrays. In their basic incarnation they are a large array of gates that can be inter-
connected to form a circuit. You’ll often hear this array of gates and their interconnect net-
work referred to as a fabric. FPGA circuits are usually designed in a language called Verilog
(or VHDL) which is the same language that is used in the design of full-custom silicon ASICs.
The flow of tools used to build FPGA designs is very similar to ASIC design. It’s very flexi-
ble but can also be very complex. And while Verilog looks much like C, it’s really a different
mindset altogether.

One of the advantages of using the Xilinx/AMD Zynq chips is that Xilinx provides a basic
set of tools to target the Zynq fabric free of charge. The downside is it only runs under Win-
dows or Linux. In the context of full-custom ASIC design, these tools could cost millions.

For me, this presents a wonderful starting point. I can buy a relatively cheap board with a
Zynq chip. It is fairly well documented from a hardware perspective. It already runs FreeBSD.
Tools to do designs in the fabric are free. I can concentrate on what’s really interesting to
me: designing hardware and building the drivers and software to talk to it. There is an amaz-
ing number of possibilities.

The figure shows a block diagram of the processor subsystem of the Zynq chip. As you
can see it comes complete with a variety of hardware blocks to interface to the outside
world including i2C, SPI, CAN, UART, USB, and Gigabit Ethernet. All these blocks are there
out of the box without any programming of the fabric and make the Arty Z7 a fine board to
use even without designing any hardware.

Zynq Z7000-20 processor subsystem block diagram

2 of 4

39FreeBSD Journal • May/June 2024

While there are many Zynq boards the one I chose is the Digilent Arty Z7-20, not to be
confused with the Digilent Arty A7 which uses a different chip that is all fabric and no pro-
cessor subsystem. The Arty Z7-20 has dual ARM Cortex A9 processors (the Z7-10 has only
one core) which I would guess are about as powerful as the Pentium Pros I ran decades ago,
but hey what do you want in an embedded board? These cores are fully supported under
LLVM running on FreeBSD. Also included is 512MB of DDR3 memory running over a 16-bit
bus at 1050 MBps. The board has an Arduino/chipKIT Shield connector which allows you to
easily connect any Arduino shield. It also has a couple of PMOD ports which like the Ardui-
no shield connector is a standardized connector for external peripherals. There is a wide va-
riety of PMOD devices listed on the Digilent site
that you can buy cheaply and easily. The board in-
cludes a pair of HDMI ports, one in and one out,
connected to the fabric. It also has a gigabit eth-
ernet port that functions under FreeBSD. There
are USB ports (that I’ve never tried) and a variety
of LEDS, switches and buttons all connected to
the fabric. The Zynq chip itself also contains dual
ADCs (Analog to Digital Converters) allowing you
to sample external signals. System storage is a
standard MicroSD card up to 32 Gigabytes in size.
If you never touched the fabric, you’d have a fair-
ly complete and capable embedded board. Heck
it’s better than what I was running FreeBSD on
when I started in the 1990s!

Booting the Arty Z7 board is simple. I use dd to copy a prebuilt image (you can find my
14.1 RELEASE one HERE) to a MicroSD card using a cheap USB to SD card adaptor. Note that
cards larger than 32 gigabytes aren’t supported. When a card is inserted into my system, a de-
vice /dev/da0 shows up. This may be slightly different on your system if you already have a /
dev/da0 device. You can easily see which device to use by listing the da devices in /dev before
and after inserting a card. The following copies over an image:

dd if=FreeBSD-armv7-14.1R-ARTY_Z7-49874af3.img \
of=/dev/da0 bs=1m status=progress

Meanwhile, I plug one end of a USB cable into the Arty micro-B USB connector and the
other end into my FreeBSD machine. Then fire up a serial terminal program, connect to the
appropriate device and set it for 115kpbs 8-N-1.

cu -s 115200 -l /dev/ttyU1

When the image copy is complete, I insert the SD card into the Arty board and press the
reset button. Make sure you setup the serial terminal before you hit reset so that you get to
enjoy the entire FreeBSD boot sequence. Within seconds, I have a tiny but fully functional
Unix host sitting on the network ready to start my quest for world domination!

Since the image I use comes preconfigured with DHCP on the ethernet port and with
a preconfigured user account and ssh keys, I can simply connect the board to my ethernet
switch, add the board’s MAC to my DHCP, create a DNS entry and SSH into the board using
its DNS name.

3 of 4

While there are
many Zynq boards
the one I chose is the
Digilent Arty Z7-20.

https://digilent.com/shop/arty-z7-zynq-7000-soc-development-board/
https://digilent.com/shop/boards-and-components/system-board-expansion-modules/pmods/
http://www.chrisbowman.com/crb/ArtyZ7/images/FreeBSD-armv7-14.1R-ARTY_Z7-10e31f09.img
https://www.amazon.com/Reader-uni-Adapter-Aluminum-Memory/dp/B08P1T8R46/ref=sr_1_12_sspa?crid=1KGY0ZDEUJ5TV&keywords=usb%2Bsd%2Bcard%2Breader&qid=1695264050&sprefix=usb%2Bsd%2Caps%2C140&sr=8-12-spons&sp_csd=d2lkZ2V0TmFtZT1zcF9tdGY&th=1
https://digilent.com/shop/arty-z7-zynq-7000-soc-development-board/

40FreeBSD Journal • May/June 2024

Right there it’s a small, relatively cheap, full-fledged Unix host. You could host services like
DHCP/DNS/NTP. You could use it for network intrusion. Possibilities are endless, but we ha-
ven’t even scratched the surface yet, as we haven’t even talked about using the external pins
or the fabric. And that will be the focus of a future column.

Are you using these boards? Which one? What are you using it for. I’d love to hear your
comments and feedback.

CHRISTOPHER R. BOWMAN first used BSD back in 1989 on a VAX 11/785 while working
2 floors below ground level at the Johns Hopkins University Applied Physics Laborato-
ry. He later used FreeBSD in the mid 90’s to design his first 2 Micron CMOS chip at the
University of Maryland. He’s been a FreeBSD user ever since and is interested in hard-
ware design and the software that drives it. He has worked in the semiconductor design
automation industry for the last 20 years.

4 of 4

Contents

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

http://www.freebsdfoundation.org

41FreeBSD Journal • May/June 2024

1 of 7

Evolution of TCP Logging in FreeBSD
4.2 BSD was released in 1983 and included the first TCP implementation in BSD. This ver-

sion also added support for a facility to debug the TCP implementation. The kernel part,
controlled by the kernel option TCP_DEBUG (disabled by default), provides a global ring buf-
fer of TCP_NDEBUG (default 100) elements and routines to add an entry to the ring buffer
whenever a TCP segment is sent or received, a TCP timer expires, or a TCP related proto-
col user request is processed. These events are only added for sockets, for which the SOL_
SOCKET-level socket option SO_DEBUG was enabled. 4.2 BSD also provided the command
line utility trpt (transliterate protocol trace), which can read
the ring buffer from a live system or core file and print it.
It not only prints the TCP header of the sent and received
TCP segments, but also the most important parameters of
the TCP endpoint when TCP segments are sent or received,
TCP timers expire or a TCP related protocol user request is
processed. It is important to note, that in case of a panic, the
contents of the ring buffer might provide enough informa-
tion to figure out why the system ended up in the bad state.
However, since this facility does not match today’s usage of
TCP anymore, it was removed in FreeBSD 14. In earlier ver-
sions of FreeBSD, building a kernel with a non-default con-
figuration was required.

In 2010, the siftr (statistical information for TCP re-
search) kernel module was added to FreeBSD. No chang-
es to the FreeBSD kernel are required, just loading the module to use it. siftr is only con-
trolled via sysctl-variables. When enabled, controlled by the sysctl-variable net.inet.
siftr.enabled, siftr writes its output to a file, controlled by the sysctl variable net.
inet.siftr.logfile (default /var/log/siftr.log). The entries, except for the first and
last, correspond to a sent or received TCP segment and provide information about the di-
rection, IP addresses and TCP port numbers and internal TCP state. Since it is envisioned to
be used in combination with a packet capturing tool like tcpdump, no additional information
about the TCP segments (for example the TCP header) is stored. Every n-th TCP segment
will be logged for each TCP connection, seperately for the sent and receive direction. n is
controlled by the sysctl-variable net.inet.siftr.ppl. A TCP port filter controlled by the
sysctl-variable net.inet.siftr.port_filter can be applied to focus on specific TCP
connections. All information is stored in ASCII, therefore no additional userland tool is re-

BY RANDALL STEWART AND MICHAEL TÜXEN

TCP Black Box Logging

4.2 BSD was released
in 1983 and included
the first TCP implementation
in BSD.

42FreeBSD Journal • May/June 2024

quired to access the information. In the default configuration, only TCP/IPv4 is supported.
Adding support for TCP/IPv6 requires a re-compilation of the siftr kernel module.

In 2015, a facility was added to the kernel, which is controlled by the kernel option
TCP_PCAP (disabled by default). If enabled on a non-default kernel, each TCP endpoint con-
tains two ring buffers: one for sent and one for received TCP segments. It should be not-
ed that no additional information, not even the time when a TCP segment was sent or re-
ceived, is stored. The maximum number of TCP segments in each ring buffer is controlled
by the IPPROTO_TCP-level socket options TCP_PCAP_OUT and TCP_PCAP_IN. The default val-
ue is controlled by the sysctl-variable net.inet.tcp.tcp_pcap_packets. Since there is no
userland utility to extract the contents of the ring buffers, the use of this feature is limited
to analyzing core files. It should be noted that also the TCP payload is logged, which might
make it hard to share core files containing such information due to privacy aspects. Support
of this facility is planned to be removed in the upcoming
version FreeBSD 15.

The latest TCP logging facility, the TCP BBLog (TCP black
box logging) was added in 2018. It was initially called TCP
BBR (black box recorder), but to avoid confusion with the
TCP congestion control called BBR (bottleneck bandwidth
and round trip propagation time), it is now called BBLog.
BBLog is enabled on all 64-bit platforms of all production
releases of FreeBSD. It combines the advantages of TCP_
DEBUG and TCP_PCAP without their disadvantages. There-
fore, it is intended to replace both of them. BBLog can be
controlled via the sysctl-interface and the socket API as
described later in this column.

Introduction to BBLog
BBLog is controlled by the kernel option TCP_BLACKBOX (enabled by default on all 64-

bit platforms) and the kernel source code is in sys/netinet/tcp_log_buf.c and its corre-
sponding header file sys/netinet/tcp_log_buf.h. On a BBLog enabled kernel, there is
a device (/dev/tcp_log) for providing BBLog information to userland tools, and each TCP
endpoint contains a list of BBLog events.

Each event contains a standard set of important TCP state information as well as (option-
ally) a block of event-specific data. These events are collected to a set limit and when the
limit is reached these events may be sent over to a /dev/tcp_log which, if open, relays the
information to the reading process(s) for recording. Note that if no process has the device
open then the data is discarded.

tcplog_dumper, from the FreeBSD ports collection, can be used to read from /dev/tcp_
log as described below.

All FreeBSD TCP stacks have been instrumented with a minimum of the following event
types:

• TCP_LOG_IN — Generated when a TCP segment arrives.
• TCP_LOG_OUT — Generated when a TCP segment is sent.
• TCP_RTO — Generated when a timer expires.
• TCP_LOG_PRU — Generated when a PRU event is called into the stack.
The TCP RACK and BBR stack generate many other logs; there are currently 72 event

2 of 7

BBLog is enabled on
all 64-bit platforms
of all production releases
of FreeBSD.

43FreeBSD Journal • May/June 2024

types defined in netinet/tcp_log_buf.h. These logs instrument a wide variety of con-
ditions and both the TCP BBR and RACK stack even have a verbose mode that can be
used when debugging the stack. These verbose options are set through stack specific sy-
sctl-variables net.inet.tcp.rack.misc.verbose and net.inet.tcp.bbr.bb_verbose.

Each TCP endpoint can be in one of the following BBLog states:
• TCP_LOG_STATE_OFF (0) — BBLog is disabled.
• TCP_LOG_STATE_TAIL (1) — Log only the last events on the connection. Each connec-

tion is allotted a finite number (default 5000) of log entries. When the last entry is hit,
reuse the first entry overwriting it.

• TCP_LOG_STATE_HEAD (2) — Log only the first events processed on the connection up
to the limit.

• TCP_LOG_STATE_HEAD_AUTO (3) — Log the first events processed on a connection and
when you reach the limit dump the data out to the log dumping system for collection.

• TCP_LOG_STATE_CONTINUAL (4) — Log all events and when you hit the maximum col-
lected number of events send the data out the log dumping system and start allocating
new events.

• TCP_LOG_STATE_TAIL_AUTO (5) — Log all events at the
tail of a connection and when you hit the limit send the
data out to the log dumping system.

Note for general debugging the BBLog state TCP_LOG_
STATE_CONTINUAL is often used. However in some specif-
ic instances (debugging a panic) it is preferable to use the
BBLog state TCP_LOG_STATE_TAIL such that the last BBLog
events are recorded inside the panic dump.

BBLog states can be set when the TCP connection is es-
tablished or via the socket API. In addition to that, they can
be set when a TCP connection fulfills a particular condition.
This is called a trace point and they are specified for particu-
lar TCP stacks and are identified by a number. One example
of a tracepoint is getting ENOBUF when the TCP stack calls the IP output routine.

The contents of each event consists of three parts:
1. A BBLog header containing the IP addresses and TCP port numbers of the TCP con-

nection, the time of the event, an identifier, a reason, and a tag.
2. A set of mandatory state variables of the TCP connection including the TCP connec-

tion state and various sequence number variables.
3. A set of optional data like information about send and receive buffer occupancy, TCP

header information and further event specific information.
Note that TCP payload information is not contained in any BBLog event, but information

about IP addresses and TCP port numbers is included in every BBLog event.

Configuration of BBLog
There are basically two ways of configuring BBLog. The general configuration is done via

the sysctl-interface and the TCP connection specific configuration is done via the socket API.

Generic Configuration via the sysctl-Interface
This is the list of BBog related sysctl-variables, which are all under net.inet.tcp.bb:

3 of 7

BBLog states can be set
when the TCP connection
is established or via
the socket API.

44FreeBSD Journal • May/June 2024

[rrs]$ sysctl net.inet.tcp.bb
net.inet.tcp.bb.pcb_ids_tot: 0
net.inet.tcp.bb.pcb_ids_cur: 0
net.inet.tcp.bb.log_auto_all: 1
net.inet.tcp.bb.log_auto_mode: 4
net.inet.tcp.bb.log_auto_ratio: 1
net.inet.tcp.bb.disable_all: 0
net.inet.tcp.bb.log_version: 9
net.inet.tcp.bb.log_id_tcpcb_entries: 0
net.inet.tcp.bb.log_id_tcpcb_limit: 0
net.inet.tcp.bb.log_id_entries: 0
net.inet.tcp.bb.log_id_limit: 0
net.inet.tcp.bb.log_global_entries: 5016
net.inet.tcp.bb.log_global_limit: 5000000
net.inet.tcp.bb.log_session_limit: 5000
net.inet.tcp.bb.log_verbose: 0
net.inet.tcp.bb.tp.count: 0
net.inet.tcp.bb.tp.bbmode: 4
net.inet.tcp.bb.tp.number: 0

Using the sysctl-interface, BBLog can be enabled for TCP connections. The key
sysctl-variables for this are net.inet.tcp.bb.log_auto_all, net.inet.tcp.bb.log_
auto_mode and net.inet.tcp.bb.log_auto_ratio.

The first sysctl-variable to consider is net.inet.tcp.bb.log_auto_all. If this variable
is set to 1 all connections will be considered for the BBLog ratio. If this value is set to zero,
then only connections that have had a TCP_LOGID set (see below) will get the BBLog ratio
applied to them. In most cases, where the sysctl-method is used to enable BBLog, the ap-
plication probably does not have set a TCP_LOGID, so setting net.inet.tcp.bb.log_auto_
all to 1 assures that every connection will be considered.

The next sysctl-variable to set is the net.inet.tcp.bb.log_auto_ratio. This value de-
termines 1 in n (where n is the value provided by setting net.inet.tcp.bb.log_auto_ra-
tio) connections will have BBLog enablement applied to them. So, for example, if net.
inet.tcp.bb.log_auto_ratio is set to 100 then 1 in every 100 connections will have BBLog
enabled upon them. If BBLog needs to be enabled for every connection net.inet.tcp.
bb.log_auto_ratio needs to be set to 1.

The final sysctl-variablel to consider is net.inet.tcp.bb.log_auto_mode. The value is
the numeric constant for the BBLog state. For TCP development, the default could be set
to 4 for TCP_LOG_STATE_CONTINUAL to log every event that is generated by any connection
for debugging purposes.

Some of the other items in the sysctl-variable can also be useful, the net.inet.tcp.
bb.log_session_limit controls how many BBLog events a connection can collect before
it has to do something with the data, i.e., either send it off to the collection system or recy-
cle (overwrite) the events. The net.inet.tcp.bb.log_global_limit enforces a global sys-
tem limit on how many total BBLog events the operating system will allow to be allocated.

The last three sysctl-variables are related to trace points. net.inet.tcp.bb.tp.bbmode
specifies the BBLog state to be used if the trace point is triggered. net.inet.tcp.bb.tp.

4 of 7

45FreeBSD Journal • May/June 2024

count is the number of connections that are allowed to have the specified trace point trig-
gered. For example, if set to 4, then 4 connections can trigger the trace point and after that
no others will trigger that specific point (this is to limit the amount of BBLog events generat-
ed). net.inet.tcp.bb.tp.number specifies the trace point to be enabled.

TCP Connection Specific Configuration via the Socket API
The following IPPROTO_TCP-level socket options that can be used to control BBLog on

an individual connection:
• TCP_LOG — This option sets the BBLog state on a connection. Any use of this socket op-

tion overrides any previous setting.
• TCP_LOGID — This option is passed a string that when set will be used to name the files

generated by the tcplog_dumper. It associates the string as an “ID” to be associated
with the connection. Note that multiple connections may use the same “ID” string. This
is possible because the tcplog_dumper also incorporates the IP address and ports in
the filename generated.

• TCP_LOGBUF — This socket option can be used to read data from the current connec-
tions logging buffer. Normally this is not used and instead /dev/tcp_log is read from
by a general purpose tool such as the tcplog_dumper (which reads and stores the
BBLogs). But this, as an alternative, allows a user process to collect a number of logs.

• TCP_LOGDUMP — This socket option directs the BBLog system to dump any records that
are in queue on the connection to /dev/tcp_log. If no dump reason or ID has been
given then the system default for the type of logging underway is used in any “reason”
field inside the dump file.

• TCP_LOGDUMPID — This socket option, like TCP_LOGDUMP, directs the BBLog system to
dump out any records to /dev/tcp_log, but in addition it specifies a specific user given
“reason” for the output which will be included in the BBlog “reason” field.

• TCP_LOG_TAG — This option associates an additional “tag” in the form of a string with all
BBLog records for this connection.

For example, if access to the source code of the program using a TCP connection is avail-
able, the BBLog state of the connection can be set to TCP_LOG_STATE_CONTINUAL using the
TCP_LOG socket option:

#include <netinet/tcp_log_buf.h>

int err;
int log_state = TCP_LOG_STATE_CONTINUAL;
err = setsockopt(sd, IPPROTO_TCP, TCP_LOG, &log_state, sizeof(int));

This code can also be used for any other BBLog state mentioned earlier.
If no access to the source code is available, one can use with root privileges

tcpsso -i id TCP_LOG 4

where id is the inp_gencnt, which can be determined by running sockstat -iPtcp. 4
is the numeric value of TCP_LOG_STATE_CONTINUAL.

Generating BBLog Files
Before enabling BBLog on a specific TCP connection one needs to first make sure

that the collection of BBLogs is taking place. FreeBSD has a tool designed for that called

5 of 7

46FreeBSD Journal • May/June 2024

tcplog_dumper which is available in the ports tree (net/tcplog_dumper). It can be in-
stalled by running with root privileges:

pkg install tcplog_dumper

Adding

tcplog_dumper_enable=”YES”

to the file /etc/rc.conf will start the daemon automatically after the next reboot. It can
also be started a daemon by manually running with root privileges:

tcplog_dumper -d

By default tcplog_dumper will collect BBLog’s in the directory /var/log/tcplog_dumps.
There are several other options which are supported including:

• -J — This option will cause the tcplog_dumper to output compressed files with xz.
• -D directory path — Store the files collected in the directory path specified, not the

default. This can also be controlled by the rc.conf variable tcplog_dumper_basedir.
The tcplog_dumper will output pcapng (pcap next generation) files. pcapng supports

storing meta information in addition to packet information. For TCP_LOG_IN and TCP_LOG_
OUT events, tcplog_dumper generates an IP header from the event (so except for the
source and destination IP address, the fields in the IP header might not be as they have
been on the wire), uses the TCP header from the event (which means it is as the segment
was on the wire) and adds a dummy payload of the correct length. For each TCP connec-
tion, tcplog_dumper creates a series of files and will put roughly 5000 BBLog events in
each file numbered in sequence .0, .1, .2 etc. The following is an example of a series of 7 files
for a single TCP connection::

[rrs]$ ls /var/log/tcplog_dumps/
UNKNOWN_18262_10.1.1.1_9999.0.pcapng UNKNOWN_18262_10.1.1.1_9999.4.pcapng
UNKNOWN_18262_10.1.1.1_9999.1.pcapng UNKNOWN_18262_10.1.1.1_9999.5.pcapng
UNKNOWN_18262_10.1.1.1_9999.2.pcapng UNKNOWN_18262_10.1.1.1_9999.6.pcapng
UNKNOWN_18262_10.1.1.1_9999.3.pcapng records

So the TCP_LOGID was not set on the connection, one of the TCP ports was 18262, the
other TCP port 9999 and the remote IPv4 address is 10.1.1.1.

Generating BBLog files from a core dump is currently being worked on. A debugger will
be used to extract the information and provide it to tcplog_dumper for actually writing the
BBLog files.

Reading BBLog Files
There are two easily accessible tools that can read BBLog files.These are read_bbrlog

and wireshark, both available as ports or packages.

read_bbrlog
read_bbrlog is a small program that will read a series of BBLog files and display each log

entry in text form. It needs to be given the prefix of the BBLog files as the input source and it
finds all of the files associated with that tcp connection and prints out to stdout each event
in text form. Note that there is also an option to redirect the output to a file (highly recom-
mended since lots of data will be displayed). Here is an example on how to run read_bbrlog:

6 of 7

47FreeBSD Journal • May/June 2024

[rrs]$ read_bbrlog -i UNKNOWN_18262_10.1.1.1_9999 -o
my_output_file.txt -e Files:7 Processed 30964 records Saw
30964 records from stackid:3 total_missed:0 dups:0

In this case three options are used: -i input where the input argument is the base con-
nection id, i.e., the text displayed by ls minus the .X.pcapng. The -o outfile to redirect
output to the output file my_output_file.txt and finally the -e option which is typically
used to put out “extended” output which is more verbose.

Here is a small clip from the file my_output_file.txt to give a flavor of the data present-
ed. Note due to the large line length some of the data for display has been truncated off:

106565924 0 rack [50] PKT_OUT Sent(0) 763046978:5 (PUS|ACK fas:0 bas:1) bw:208.00 bps(26)
 avail:5 cw:14480 scw:14480 rw:65535 flt:0 (spo:64 ip:0)
106565979 0 rack [55] TCP_HYSTART -- New round begins round:1 ends:763046983 cwnd:14480
106565982 0 rack [3] BBR_PACING_CALC Old rack burst mitigation len:5 slot:0 trperms:369
106565985 0 rack [3] TIMERSTAR type:TLP(timer:4) srtt:39001 (rttvar:17063 * 4) rttmin:30000
106565986 0 rack [1] USERSEND avail:5 pending:5 snd_una:763046978 snd_max:763046983 out:5
106565986 0 rack [0] TCP_LOG_PRU pru_method:SEND (9) err:0
106607480 0 rack [2] IN Ack:Normal 5 (PUS|ACK) off:32 out:5 lenin:5 avail:5 cw:14480
 rw:4000512 una:763046978 ack:763046983

This shows that a 5 byte packet was sent at timemark 106565924 and sequence number
763046978. The congestion window at the time was 14480 bytes and the flight size (flt) was
0. No pacing was engaged. About 41 milliseconds (41,494 i.e. 106604046 - 106607480) an ac-
knowledgement was received for those bytes.

Wireshark
wireshark and tshark can also be used to display BBLog files. They only operate on

individual files, not on a file series as read_bbrlog does. Currently no event specific infor-
mation will be displayed. For TCP_LOG_IN and TCP_LOG_OUT events the BBLog information
is shown in the Frame Information. For all other events, the BBLog information is directly
shown.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer since 2006. He specializes in Transports including TCP
and SCTP but has also been known to poke into other areas of the operating system. He is
currently an independent consultant.

MICHAEL TÜXEN (tuexen@freebsd.org) is a professor at the Münster University of Applied
Sciences, a part-time contractor for Netflix, and a FreeBSD source committer since 2009.
His focus is on transport protocols like SCTP and TCP, their standardization at the IETF and
their implementation in FreeBSD.

7 of 7

Contents

mailto:rrs@freebsd.org
mailto:tuexen@freebsd.org

48FreeBSD Journal • May/June 2024

Ansible offers a lot of different modules and a typical user makes use of them with-
out the need to ever write their own due to the sheer size of available modules. Even
if the necessary functionality is not available in the ansible.builtin modules, the

Ansible Galaxy offers plenty of third party modules from enthusiasts that extend the mod-
ule count even more.

When the desired functionality is not covered
by a single module or a combination of them,
then you have to develop your own. Developers
can chose to keep custom models local without
having to publish them on the Internet or without
Ansible Galaxy using them. Modules are com-
monly developed in Python, but other program-
ming languages are possible when the module is
not planned for submission into the official Ansi-
ble ecosystem.

To test the module, install the ansible-core
package, which helps by providing common code
that Ansible uses internally. The custom module can then piggy-back onto much of the core
Ansible functionality that existing modules use and is both reliable and stable.

Example Module Using Shell Programming
We’ll start with a simple example to understand the basics. Later, we will extend it to use

Python for more functionality.
Description of our custom module: Our custom module called touch checks for a file in

/tmp called BSD.txt. If it exists, the module returns true (state unchanged). If it does not
exist, it creates that (empty) file and returns state: changed.

Custom modules are in a library directory next to the playbook that uses the module.
Create that directory using mkdir:

mkdir library

BY BENEDICT REUSCHLING

1 of 8

Developing
Custom Ansible Modules

PRACTICAL

Developers can chose to
keep custom models local
without having to publish
them on the Internet or
without Ansible Galaxy
using them.

49FreeBSD Journal • May/June 2024

Create a shell script in library that holds the module code:

touch library/touch

Enter the following code in library/touch as the module logic:

 1 FILENAME=/tmp/BSD.txt
 2 changed=false
 3 msg=''
 4 if [! -f ${FILENAME}]; then
 5 touch ${FILENAME}
 6 msg=”${FILENAME} created”
 7 changed=true
 8 fi
 9 printf ‘{“changed”: “%s”, “msg”: “%s”}’ “$changed” “$msg”

First, we define some variables and set some default values. Line 4 checks if the file does
not exist. If that is the case, we let the module create the file and update the msg variable.
We need to notify Ansible about the changed state, so we return a variable called changed
along with the updated message in line.

Create a playbook called touch.yml at the same location as the library directory. It
looks like this:

- hosts: localhost
 gather_facts: false
 tasks:
 - name: Run our custom touch module
 touch:
 register: result

 - debug: var=result

Note: We could execute the custom module against any remote nodes, not localhost
alone. It’s easier to test against localhost first during development.

Run the playbook like any other we’ve written before:

ansible-playbook touch.yml

Running the Example Module
When the file /tmp/BSD.txt does not exist, the playbook output is:

PLAY [localhost] ***

TASK [Run our custom touch module] ***********************
changed: [localhost]

TASK [debug] ***
ok: [localhost] => {
 “changed”: true,
 “result”: {
 “failed”: false,

2 of 8

50FreeBSD Journal • May/June 2024

 “msg”: “/tmp/BSD.txt created”
 }
}

When the file /tmp/BSD.txt exists (from a previous run), the output is:

PLAY [localhost] ***

TASK [Run our custom touch module] ***********************
ok: [localhost]

TASK [debug] ***
ok: [localhost] => {
 “result”: {
 “changed”: false,
 “failed”: false,
 “msg”: “”
 }
}

Custom Modules in Python
What are the benefits of writing a module in Python, like the rest of the ansible.

builtin modules? One benefit is that we can use the existing parsing library for the mod-
ule parameters without having to reinvent our own. It’s difficult in shell to define the name
of each parameter in our own module. In Python, we can teach the module to accept some
parameters as optional and require others as mandatory. Data types define what kind of in-
puts the module user must provide for each parameter. For example, a dest: parameter
should be a path data type rather than an inte-
ger. Ansible provides some handy functionality to
include in our script so that we can focus on our
module’s core functionality.

The Ansiballz Framework
Modern Ansible modules use the Ansiballz

framework. Unlike the Module Replacer, which
were used by Ansible versions before 2.1, it uses
real Python imports from ansible/module_
utils instead of preprocessing the module.

Module Functionality: Ansiballz constructs a
zip file. Contents:

• the module file
• ansible/module_utils files imported by the module
• boilerplate for the module parameters
The zip file is Base64 encoded and wrapped into a small Python script for decoding it.

Next, Ansible copies it into the temp directory of the target node. When executing, the An-
sible module script extracts the zip file and places itself in the temp dir, too. It then sets the
PTHONPATH to find Python modules inside the zip and imports the Ansible module under
the special name. Python then thinks it executes a regular script rather than importing a

3 of 8

If I use a feature
only twice per year,
I may need to look
it up again.

51FreeBSD Journal • May/June 2024

module. This allows Ansible to run both the wrapper script and the module’s code in a single
Python copy on the target host.

Creating the Python Module
To create a module, use a venv or virtualenv for the development part. We start like

before with a library directory where we create a new hello.py module with this content:

#!/usr/bin/env python3

from ansible.module_utils.basic import *

def main():
 module = AnsibleModule(argument_spec={})
 response = {“hello”: “world!”}
 module.exit_json(changed=False, meta=response)

if name == “__main__”:
 main()

import imports the Ansiballz framework to construct modules. It includes code con-
structs like argument parsing, file operations, and formatting return values as JSON.

Executing the Python Module from a Playbook

- hosts: localhost
 gather_facts: false
 tasks:
 - name: Testing the Python module
 hello:
 register: result

 - debug: var=result

Again, we run the playbook like this: ansible-playbook hello.yml

PLAY [localhost] ***

TASK [Testing the Python module] *************************
ok: [localhost]

TASK [debug] ***
ok: [localhost] => {
 “result”: {
 “changed”: false,
 “failed”: false,
 “meta”: {
 “hello”: “world!”
 }
 }
}

4 of 8

52FreeBSD Journal • May/June 2024

Defining Module Parameters
The modules we used had taken parameters like path:, src:, or dest: to control the be-

havior of the module. Some of these parameters are essential for the module to function
properly, while others were optional. In our own module, we want to control what parame-
ters we take overall and which are required. Defining the data type makes our module ro-
bust against incorrect inputs.

The argument_spec provided to AnsibleModule defines the supported module argu-
ments, as well as their type, defaults, and more.

Example parameter definition:

parameters = {
 'name': {“required”: True, “type”: 'str'},
 'age': {“required”: False, “type”: 'int', “default”: 0},
 'homedir': {“required”: False, “type”: 'path'}
}

The required parameter name is of type string. Both age (an integer) and homedir (a
path) are optional and if not defined, sets age to 0 by default. A new module that uses these
parameter definitions calculates the result from passing two numbers and an optional math
operator. When not provided, we assume an addition as default parameter. Create a new
python file in library called calc.py:

#!/usr/bin/env python3
from ansible.module_utils.basic import AnsibleModule

def main():
 parameters = {
 “number1”: {“required”: True, “type”: “int”},
 “number2”: {“required”: True, “type”: “int”},
 “math_op”: {“required”: False, “type”: “str”, “default”: “+”},
 }

 module = AnsibleModule(argument_spec=parameters)

 number1 = module.params[“number1”]
 number2 = module.params[“number2”]
 math_op = module.params[“math_op”]

 if math_op == “+”:
 result = number1 + number2

 output = {
 “result”: result,
 }

 module.exit_json(changed=False, **output)

if __name__ == “__main__”:
 main()

5 of 8

53FreeBSD Journal • May/June 2024

The Playbook for the Module

- hosts: localhost
 gather_facts: false
 tasks:
 - name: Testing the calc module
 calc:
 number1: 4
 number2: 3
 register: result

 - debug: var=result

The calc module optionally takes a parameter math_op, but since we defined a default
action (+) for it, the user can omit it in the playbook or on the commandline. The task that
runs the module must specify the required parameters or the playbook will fail to execute.

Running the calccalc Module
The relevant output of the playbook execution is below:

ok: [localhost] => {
 “result”: {
 “changed”: false,
 “failed”: false,
 “result”: 7
 }
}

We extend the example to properly handle +, -, *, /. The module returns false when it
gets a math_op that is is different from the ones defined. Also, handling division by zero by
returning “Invalid Operation” is a classic assignment for students since the dawn of time. I
need to properly learn Python one day, but until then, my solution looks like this:

#!/usr/bin/env python3
 from ansible.module_utils.basic import AnsibleModule

def main():
 parameters = {
 “number1”: {“required”: True, “type”: “int”},
 “number2”: {“required”: True, “type”: “int”},
 “operation”: {“required”: False, “type”: “str”, “default”: “+”},
}

 module = AnsibleModule(argument_spec=parameters)

 number1 = module.params[“number1”]
 number2 = module.params[“number2”]
 operation = module.params[“operation”]
 result = “”

6 of 8

54FreeBSD Journal • May/June 2024

 if operation == “+”:
 result = number1 + number2
 elif operation == “-”:
 result = number1 - number2
 elif operation == “*”:
 result = number1 * number2
 elif operation == “/”:
 if number2 == 0:
 module.fail_json(msg=”Invalid Operation”)
 else:
 result = number1 / number2
 else:
 result = False

 output = {
 “result”: result,
 }

 module.exit_json(changed=False, **output)

if __name__ == “__main__”:
 main()

Testing our extended module is straightforward. Here is the test for division by zero:

- hosts: localhost
 gather_facts: false
 tasks:
 - name: Testing the calc module
 calc:
 number1: 4
 number2: 0
 map_op: ‘/’
 register: result

 - debug: var=result

Which results in the following expected output:

TASK [Testing the calc module] **
fatal: [localhost]: FAILED! => {“changed”: false, “msg”: “Invalid Operation”}

Conclusion
With these basics, its easy to get started on a custom module. Bear in mind that these

modules need to run on different operating systems. Add extra checks to find out the avail-
ability of certain commands or let your module outright refuse to run in certain environ-
ments. Be as compatible as possible to increase the module’s popularity and usefulness.
There are not a lot of BSD-specific modules available. How about adding a bhyve module,
or one that manages boot environments, the pf firewall or rc.conf entries? Plenty of op-
tions await the intrepid developer with a background in both Ansible and Python.

7 of 8

55FreeBSD Journal • May/June 2024

References:
• Ansible module architecture

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project
and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

8 of 8

Contents

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://docs.ansible.com/ansible/latest/dev_guide/developing_program_flow_modules.html#ansiballz
https://www.bsdnow.tv/
https://www.freebsdfoundation.org

BSD Events taking place through October 2024
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

Contents 56FreeBSD Journal • May/June 2024

EuroBSDCon 2024
September 19-22, 2024
Dublin, Ireland
https://2024.eurobsdcon.org/

EuroBSDCon is the International annual technical conference held in a different European
country each year. It focuses on gathering users and developers working on and with 4.4BSD
(Berkeley Software Distribution) based operating systems family and related projects. The
FreeBSD Foundation is pleased to again be a Silver Sponsor.

EuroBSDCon FreeBSD Developer Summit
September 19-20, 2024
Dublin, Ireland
https://wiki.freebsd.org/DevSummit/202409

Join us for talks and discussion groups on day 1, followed by a hackathon on day 2.

All Things Open
October 27-29, 2024
Raleigh, NC
https://2024.allthingsopen.org/

All Things Open is the largest open source/open tech/open web conference on the East
Coast and one of the largest in the United States. It regularly hosts some of the most well-
known experts in the world, as well as nearly every major technology company. FreeBSD is
proud to be a non-profit partner for this year’s All Things Open.

mailto:freebsd-doc@FreeBSD.org
https://2024.eurobsdcon.org/
https://wiki.freebsd.org/DevSummit/202409
https://2024.allthingsopen.org/

