
38FreeBSD Journal • March/April 2024

1 of 7

For a long time, the FreeBSD project has made virtual machine (VM) disk images available
on its download site: just go to https://download.freebsd.org/snapshots/VM-IMAGES to
find a selection of pre-built images for download. These come in a variety of formats

recognized by common hypervisors such as QEMU, VirtualBox, VMWare and bhyve. The
FreeBSD project similarly distributes images for various cloud platforms, such as EC2, Azure
and GCP. As a FreeBSD user, all you need to do is select the image and create an instance,
and within a few seconds a fully installed FreeBSD system will be available.

For many users, the pre-built images are sufficient, but you might have special require-
ments that are not met by those images. In particular, until recently, all of the FreeBSD proj-
ect’s official images used UFS for the root filesystem. Of course, it was still possible to use
ZFS in a VM by one of several strategies:

1. Keep the root filesystem on UFS but add extra disks and use them to back a ZFS pool.
2. Boot the FreeBSD installation media in a VM and use it to install FreeBSD on a virtual

disk with ZFS as the root filesystem. The resulting VM image can be cloned and used as
a template for other images.

3. Manually create an image by setting up a md(4) disk and then creating and importing
a ZFS pool on top of that disk, into which FreeBSD can be installed. poudriere image
currently works this way, for example.

While these strategies work, they all come with caveats:
• option 1) makes it difficult to use boot environments;
• option 2) requires manual effort to create and customize the template image;
• option 3) requires root privileges and cannot be done at all from within a jail (currently

ZFS pool creation is forbidden in jails).
For a long time, I had wanted to build ZFS-based VM images locally so that I could run

the FreeBSD regression test suite on both UFS and ZFS, so in 2022, I started looking at how
difficult it would be to extend the tools we already use to make UFS images (i.e., makefs(8))
to support ZFS in some form.

makefs(8)
The FreeBSD project builds official VM images using makefs(8), a utility originating from

NetBSD. It takes one or more paths as input and generates a single file containing a filesys-
tem image populated with the contents of those paths.

makefs supports several filesystems, including UFS, FAT and ISO9660. The basic idea be-
hind its use here is to install FreeBSD to a temporary directory (e.g., with make install-
world), and then point makefs at that directory. The result is a file containing a filesystem
image whose root directory contains the FreeBSD installation.

BY MARK JOHNSTON

ZFS Images From Scratch,
or makefs -t zfs

https://download.freebsd.org/snapshots/VM-IMAGES

39FreeBSD Journal • March/April 2024

For users familiar with building FreeBSD from source, the following example might pro-
vide a clearer picture:

make installworld installkernel distribution DESTDIR=/tmp/foo
makefs -t ffs fs.img /tmp/foo
mdconfig -f fs.img
md0
mount /dev/md0 /mnt
ls /mnt/bin/sh
/mnt/bin/sh

This installs a pre-built copy of a FreeBSD distribution to /tmp/foo and then uses makefs
to generate a filesystem image in fs.img. This image can be mounted by using mdcon-
fig(8) to create a character device backed by the file. Attributes of the files in /tmp/foo,
such as mode bits and timestamps, are preserved in the resulting image.

In contrast, a traditional “live” installation of FreeBSD might look more like this:

truncate -s 50g fs.img
mdconfig -f fs.img
md0
newfs /dev/md0
/dev/md0: 51200.0MB (104857600 sectors) ...
mount /dev/md0 /mnt
cd /usr/src
make installworld installkernel distribution DESTDIR=/mnt
umount /mnt

Here, we use the newfs(8) utility to initialize an empty filesystem on the target device,
then copy files onto it. While this works, of course, it has downsides similar to the problems
with creating ZFS pools that I mentioned earlier: newfs(8) requires root privileges, and the
resulting image is not reproducible. That is, if two images are created this way from the
same pre-built FreeBSD distribution, they will not be byte-for-byte identical, for example,
because the file access and modification times will be slightly different between the two im-
ages. Reproducibility is an important security property of build systems since it makes it eas-
ier to detect malicious tampering of build outputs.

I was already familiar with makefs from writing scripts to create VM images for my own
use. As mentioned, I had wanted to be able to similarly build ZFS images, and I was not
alone; a common user complaint was that all of FreeBSD’s official cloud images were UFS-
based, even though ZFS is a very popular choice for the root filesystem on FreeBSD. So, I
spent some time thinking about how makefs-generated ZFS images might look.

makefs(8) Meets ZFS
So what does makefs actually do? A technical answer to this question requires some

knowledge of filesystem internals, but briefly: makefs initializes some global filesystem
metadata, such as a UFS/FFS superblock, and then traverses the input directory tree(s),
copying their contents into the image and adding metadata, such as directory entries, which
point to file data. Whereas one traditionally starts with an empty filesystem and then asks
the kernel to add data to it via utilities such as cp(1), makefs generates a populated filesys-

2 of 7

40FreeBSD Journal • March/April 2024

tem in a single operation. So while this means that makefs needs to know about how a
filesystem’s data and metadata is arranged on disk, it can be considerably simpler than the
kernel’s implementation of the filesystem.

makefs never needs to look up a file by name, handle out-of-space conditions, perform
buffer caching, or delete files, for example.

ZFS is large and complex, but per the observation above, a hypothetical makefs -t zfs
can ignore a lot of the details. This was important for me: I was and am currently not a ZFS
expert, and at the time, had little understanding of its on-disk format, so simplicity was the
name of the game. At this point we can ask: what exactly should makefs -t zfs do?

My goal was to support creation of VM images with ZFS as the root filesystem. More
specifically, makefs would need to:

1. Create a ZFS pool that has a single disk vdev. There is no
need to support RAID or mirroring layouts, since for a
VM image the extra redundancy is not very useful.

2. Create at least one dataset in the pool. The dataset
needs to be mountable as the root filesystem. In prac-
tice, a FreeBSD-on-ZFS installation comes with a dozen
or so datasets pre-created, but an initial proof-of-con-
cept can ignore this for simplicity’s sake.

3. Populate the dataset with the contents of the input
directory trees.More specifically, for each input file,
makefs needs to allocate a dnode and copy the file into
the image somewhere. It also needs to copy attributes,
such as file permissions, of the input files.

In particular, quite a few ZFS features which affect on-
disk layout can simply be ignored. There is no need for
makefs to bother with compression or snapshots, for example. So while the task still
seemed somewhat daunting, by excluding all but the minimum necessary features, it
seemed quite doable.

Attempt #1: libzpool
As a FreeBSD kernel developer I already had some experience with OpenZFS internals,

but ZFS is a complex beast. The code is partitioned into quite a few different subsystems,
most of which have no knowledge of how data actually gets laid out on disk, and I had no
experience with the ones that do. However, it turns out that one can compile the OpenZFS
kernel module into a userspace library: libzpool.so. This is used primarily for testing the
OpenZFS code itself, but seemed like an excellent starting point for my project: libzpool.
so knows all about the ZFS on-disk layout, so I thought I could avoid learning too much
about it and instead write code that used high-level operations, similar to how commands
like zpool create simply ask the kernel to create a pool on a set of vdevs.

Without going into too much detail, this approach ended up yielding a working proto-
type, but turned out to be a dead end. A few of the reasons:

• libzpool.so is really not suitable for “production” applications: it has no stable inter-
face, and my prototype was effectively making use of undocumented kernel APIs. If I
were to press on with this approach, the result would be fragile and difficult to maintain.

• The code in libzpool.so is mostly unmodified kernel code, and thus creates lots of

3 of 7

ZFS is large
and complex,
but a hypothetical
makefs -t zfs
can ignore a lot
of the details

41FreeBSD Journal • March/April 2024

threads and caches file data in the ARC, all of which is unnecessary for makefs’s purpos-
es. A consequence of this is that the prototype was very slow and would consume gobs
of system memory, sometimes triggering the out-of-memory killer.

• The result was not reproducible. If I ran the prototype twice with identical inputs, the
output would not be byte-for-byte identical.

While I had to throw away most of the prototype, writing it was a useful learning experi-
ence and helped motivate me to try a different approach.

At this point, it seemed I would have to get my hands dirty and learn about the ZFS on-
disk layout. I realized that the FreeBSD boot loader would have a similar problem: in order to
boot FreeBSD from a ZFS pool, the loader needs to be able to find the kernel file and load
it into memory. The boot loader runs in a constrained environment and thus cannot use the
kernel’s ZFS code, so clearly other people had already solved similar problems.

Attempt #2: ZFS From Scratch
Fortunately, there is a ZFS on-disk layout specification floating around the Internet; it is

rather incomplete and outdated, but it was much better than nothing. On top of that, I had
the boot loader code to look at. In some sense it solves the inverse problem that makefs
does: it just opens and reads data from a ZFS pool without writing anything, whereas
makefs creates a new pool but does not need to be able to read existing pools.

The duality with the boot loader was very useful: I could write code to create a pool, and
then test it by trying to use the boot loader to read a file (the kernel) from the pool. More
specifically, I would first install a FreeBSD kernel to a temporary directory:

$ cd /usr/src
$ make buildkernel
$ make installkernel DESTDIR=/tmp/test -DNO_ROOT

Then I can create a ZFS image and try to load it using the legacy bhyve loader:

$ makefs -t zfs -o poolname=zroot zfs.img /tmp/test
$ sudo bhyveload -c stdio -d zfs.img test

Here, bhyveload is using /boot/userboot.so, which is a copy of the FreeBSD boot load-
er that is compiled to run in userspace. It has most of the functionality of the real boot load-
er, but rather than using, say, BIOS calls or EFI boot services to read data from disk, it uses
the familiar read(2) system call to fetch data from the image file, zfs.img.

The initial goal was to get userboot.so to find and load the kernel located at /boot/
kernel/kernel in zfs.img. This was a very convenient test harness since I could easily at-
tach a debugger to bhyveload or add print statements to the loader and recompile user-
boot.so. My first milestone was to get vdev_probe() to recognize the image as a valid ZFS
pool.

vdev Labels and the uberblock
vdev_probe() looks at a disk to see if it belongs to a ZFS pool; that is, it determines

whether the disk appears to be a vdev, and if so, starts loading more metadata:

/*
 * Ok, we are happy with the pool so far. Lets find
 * the best uberblock and then we can actually access

4 of 7

https://people.freebsd.org/~markj/Zfs_ondiskformat.pdf
https://cgit.freebsd.org/src/tree/stand/libsa/zfs/zfsimpl.c?h=release/14.0.0#n2008

42FreeBSD Journal • March/April 2024

 * the contents of the pool.
 */
vdev_uberblock_load(vdev, spa->spa_uberblock);

Chapter 1 of the ZFS on-disk specification describes vdev labels and uberblocks in a
good amount of detail. The summary is that a vdev contains a block of metadata, the vdev
label, which contains metadata describing the pool to which the vdev belongs, as well as
copies of the “uberblock”, which points to the root of the vdev’s metadata tree. So, in order
to get userboot.so to find my pool, I wrote code which adds vdev labels to the output im-
age file.

At this point makefs was already making use of ZFS-specific data structures, such as
vdev_label_t and uberblock_t. Rather than duplicating the definitions used by the boot
loader, makefs shares with it a large header that contains many useful on-disk data structure
definitions.

Object Sets and the MOS
Once the loader was able to probe and recognize makefs-generated images, the next

step was to get it to mount a dataset from within the image. The loader code that handles
this is mostly contained in zfs_get_root().

To understand the implementation of zfs_get_root(), it is worth reading chapter three
of the ZFS on-disk specification, which describes object sets. While the specification quickly
gets into the gory details, it is worth reviewing the high-level
structures that are used to represent data in ZFS.

ZFS has “block pointers”, which really just refer to the
physical location of a block of data on a vdev (from makefs’s
perspective, this is just an offset into the output image file).
A ZFS metadata object, of which there are several dozen
types, is represented by a 512-byte “dnode”. A dnode con-
tains various bits of metadata about the object, such as its
type and size, and may also contain block pointers referring
to additional data. For example, a file stored in a ZFS data-
set is represented by a dnode (of type DMU_OT_PLAIN_FILE_
CONTENTS), much like an inode in a traditional Unix filesys-
tem. Finally, an “object set” is a structure which contains an
array of dnodes; a dnode is uniquely identified by the object
set to which it belongs and its index in the array.

A ZAP (ZFS Attribute Processor) is a dnode which contains a set of key-value pairs. ZAPs
are used to represent many higher-level ZFS metadata structures. For example, a Unix direc-
tory is represented by a ZAP whose keys are filenames and values are dnode IDs for the cor-
responding files.

The MOS (meta object set) is the root object set of the pool. The uberblock contains a
pointer to the MOS, and from the MOS it is possible to reach all other metadata (and thus,
data) in the pool. With this information, it is a bit easier to understand zfs_get_root(): it
takes the dnode with ID 1 (which it expects to be a ZAP object), uses it to find a ZAP object
containing pool properties and looks up the value of the “bootfs” property, which is used to
find the dnode of the root dataset.

5 of 7

The next step was
to get it to mount
a dataset from within
the image.

https://cgit.freebsd.org/src/tree/usr.sbin/makefs/zfs/vdev.c?h=release/14.0.0#n163
https://cgit.freebsd.org/src/tree/sys/cddl/boot/zfs/zfsimpl.h?h=release/14.0.0#n947
https://cgit.freebsd.org/src/tree/stand/libsa/zfs/zfsimpl.c?h=release/14.0.0#n3334

43FreeBSD Journal • March/April 2024

When creating a pool, makefs allocates and begins populating the MOS in
pool_init(). Once userboot.so was able to process the MOS, it became possible to im-
port a makefs-generated pool, at which point I started using zdb(8) to inspect the generat-
ed pool. zdb’s command-line usage is rather obscure, but simple invocations like

zdb -dddd zroot 1

which dumps dnode 1 from the MOS, were very useful for figuring out what OpenZFS ex-
pects to see when importing a pool. For example, when dumping a ZAP object, zdb can
print all of the key-value pairs in the ZAP. Many configuration ZAP keys have values which
are dnode IDs, so zdb can easily be used to inspect different “layers” of the pool and dataset
configuration.

Datasets and Files
ZFS datasets have names and are organized into a tree. The root dataset is named after

the pool itself (e.g., “zroot”), and names of child datasets are prefixed by the parent’s name.
While my initial prototype of ZFS support for makefs auto-
matically placed all files in the root dataset, this was not suf-
ficient to be able to create root-on-ZFS VM images:
bsdinstall and other FreeBSD installers automatically cre-
ate a number of child datasets. Some, such as zroot/var,
are never mounted but only exist to provide settings which
are inherited by child datasets, such as zroot/var/log. My
goal was for makefs to be able to create a tree of datasets
which matches the layout provided by bsdinstall.

The release image-building script demonstrates the syn-
tax for creating multiple datasets. Each dataset is described
by a -o fs option which contains the dataset name and a
semicolon-separated list of properties. Only a small number
of properties - as described in the
zfsprops(8) manual page — are currently supported.

When makefs -t zfs finishes initializing various struc-
tures, it begins to process the input directory trees. Each input file is represented by a fsno-
de structure, and these structures are organized into a tree which represents the file tree.
First, makefs determines which fsnode corresponds to the root of each mounted dataset.
Then, it traverses the tree of fsnodes, allocating a dnode for each file; this happens in the
context of a dataset which determines the object set from which the dnode is allocated.

To copy a regular file makefs allocates a dnode from the current object set and, in a loop,
allocates blocks of space from the output file, and copies data from the input file into the
allocations. ZFS supports power-of-2 block sizes ranging from 4KB to 128KB, so smaller files
do not create excessive internal fragmentation. All allocated blocks in the image are tracked
using a bitmap which is updated by the vdev_space_alloc() function.

Allocated space tracked by the bitmap must be recorded in the output image; ZFS uses
a central data structure, the “space map,” to track which regions of a vdev are currently al-
located. makefs uses the bitmap as an internal representation of all block allocations, and
uses it to generate the space map as one of the final steps of image generation, once all
block allocations have been done.

6 of 7

The root dataset
is named after the pool
itself and names
of child datasets
are prefixed by
the parent’s name.

https://cgit.freebsd.org/src/tree/usr.sbin/makefs/zfs.c?h=release/14.0.0#n544
https://cgit.freebsd.org/src/tree/release/tools/vmimage.subr?h=release/14.0.0#n190
https://cgit.freebsd.org/src/tree/usr.sbin/makefs/zfs/fs.c?h=release/14.0.0#n1048
https://cgit.freebsd.org/src/tree/usr.sbin/makefs/zfs/fs.c?h=release/14.0.0#n548
https://cgit.freebsd.org/src/tree/usr.sbin/makefs/zfs/vdev.c?h=release/14.0.0#n235

44FreeBSD Journal • March/April 2024

Conclusion
Adding ZFS support to makefs took a fair bit of effort but ultimately resulted in an imple-

mentation that I believe will be useful to many FreeBSD users, while avoiding a large main-
tenance burden. There is rougly 2,600 lines of ZFS-specific code in makefs (out of 15,000
lines in total), which is reasonably small. There is also a regression test suite which provides a
good amount of coverage.

Of those 2,600 lines, over 100 are calls to assert() and so simply verify invariants. These
assertions were very useful during development, since a lot of code was written in an in-
complete manner just to get the boot loader working, and fleshed out more fully later on;
they served to document the limitations of various functions and helped catch many bugs
as I added more and more functionality.

Now that FreeBSD 14.0 has shipped and root-on-ZFS VM images are available, I hope
that many users are taking advantage of this new feature. A number of bugs were found
and fixed during the release cycle, so at least some users have been trying it out. Currently
there are no enhancements planned for makefs -t zfs but this may change in response
to feedback — please submit a bug report if you see any room for improvement.

MARK JOHNSTON is a software developer and FreeBSD src developer living in Toronto,
Ontario, Canada. When not sitting in front of a computer he enjoys playing in a city dodge-
ball league with friends.

7 of 7

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

Contents

https://cgit.freebsd.org/src/tree/usr.sbin/makefs/tests/makefs_zfs_tests.sh?h=release/14.0.0

