
46FreeBSD Journal • March/April 2024

Version control has been around for a long time. Having a way to keep a certain ver-
sion of a file in a state where it is retrieved is the start of our journey. After all, that’s
what backup software is for. Some people use version control systems (VCS) that

way, but that only scratches the surface. The valuable parts of VCS is to be able to review
what has changed in the file over its history. When using it with other people to keep im-
portant project files in sync with everyone else, features like blaming, diffing, branching and
merging become even more relevant. These features make collaboration on anything from
text, source code, configuration files, and anything worth sharing within a group possible
in the first place. Most big projects that have a large set of those files under version control
would simply be too tedious to maintain without
sophisticated tooling around it. Version control
systems have come and gone, both from com-
mercial and open source vendors. Many of them
implement a basic set of functionality that has
been established by the people using it, and in-
troducing a whole new set of terminology and
complicated tooling is often seen as a hindrance
to adoption.

Each code change in the long history of the
FreeBSD project has had a descriptive text, called
the commit message, attached to it. What may
seem like a nuisance for some is actually help-
ful when looking for problems that are rooted in the past. Why was a change made 15 years
ago? Who made that change, what other files were touched by the same commit, and what
are the actual lines of code that were affected? These are all questions that not only the
diffs that the VCS produces can relate, but also the commit message is a valuable help in
understanding what is going on in the code today. This often bridges the past to the future
since Unix systems have been around for a while and are running on hardware that people
who committed the changes in the past could not possibly conceive.

With FreeBSD being so old, preserving that rich history is important. Particularly when
there is a need to switch to a different version control system. Over time, FreeBSD has used
CVS, then migrated to Subversion, and now uses git. (I’m fairly sure there was also RCS in-
volved in the early days.) Each time such a migration took place, one primary goal was to
preserve every single change made, along with the commit message.

BY BENEDICT REUSCHLING

1 of 8

Enhance Your Git Experience

PRACTICAL

Each code change
in the long history
of the FreeBSD project
has had a descriptive
text attached to it.

47FreeBSD Journal • March/April 2024

Switching version control systems is sometimes necessary because a vendor goes out of
business or something better comes along that people find more appealing than the cur-
rent solution. The best is the enemy of the good. Git has become the de-facto standard for
version control these days, even if it has some rough edges and a bit of a learning curve. In
my view, both as a user/consumer of the FreeBSD project as well as a committer, it took a
while to get familiar again and to make git a tool that works for me and not the other way
around. I may still not totally grasp all of the inner workings, but luckily, I do not have to. De-
velopers working on the src and ports trees also use a lot more of the features like branch-
ing, merging, tagging, cherry-picking, rebasing, and others that are not required in the
documentation repository. Still, sometimes a typo fix in a ports description or a man page
requires people like me to also get at least a basic understanding of these concepts to do
the right thing.

It’s also a question of how often something is
used. If I use a feature only twice per year, I may
need to look it up again because the last time I
did was a while ago. The basics of cloning a fresh
tree, pulling updates, making changes, commit-
ting, and pushing them are all too familiar once
you’ve done it regularly. I compare it to basic vi
usage. I can open a document, make changes,
save, and exit just fine. But the other features that
a powerful editor like vi and friends provides may
stay hidden from me forever. Same with git: it has
a lot more under the hood which users do not
know about or even need. More often than not though, it makes life easier—even for the
basic cases—to have a bit of knowledge and configuration around these advanced features.
And this holds not only for a developer, but also for a user.

FreeBSD 14 deprecated the portsnap utility which a lot of people used to get a new or
updated version of the ports tree. Instruction in the handbook and other places now directs
people to check out the ports tree directly from git. The same is true when a user needs
a copy of the src tree, because they need to recompile the kernel module for VirtualBox.
These are all good use cases, but there is a catch: both the src and ports trees take a long
time to clone because of the long and rich history described above. Let’s see if we can add
some configuration and tools that speeds up the process. We’ll also learn about other neat
features that git provides, both for Joe random user as well as Jane developer.

Faster Cloning
First, install git on FreeBSD by running pkg install git. Since we do not have a ports

tree yet and there is no more portsnap, that can turn into a chicken and egg problem on
a system that does not have direct access to the FreeBSD mirrors. A poudriere machine in
your local network may be the solution here, or download the file on a different machine,
copy over the binary, and use pkg install ./<packagename> to install it.

Note that the git port itself contains a good amount of configurable options. Since we’re
starting out, we ignore that for now and revisit some of these when we feel more experi-
enced. If you discover something useful, then consider blogging about it or write an article
for the FreeBSD Journal. After all, why do I have to do all the writing work?

2 of 8

If I use a feature
only twice per year,
I may need to look
it up again.

48FreeBSD Journal • March/April 2024

Once git is available, we can return to our use case above: downloading a copy of the
ports tree. The FreeBSD Handbook Chapter 4 tells us that we can either get the HEAD
branch (the latest and greatest) or be a bit less on the bleeding edge and get the quarter-
ly branch. Whichever we chose, we get presented with the all too familiar git clone com-
mand. That’s all fine and good, but it takes a long time to finish downloading all those files
and directories. Let’s look at the quarterly branch at the time of writing this article. I’ll use
the time(1) command to measure the download time.

$ time git clone https://git.FreeBSD.org/ports.git -b 2024Q1 /usr/ports
Cloning into '/usr/ports'...
remote: Enumerating objects: 6125935, done.
remote: Counting objects: 100% (960/960), done.
remote: Compressing objects: 100% (142/142), done.
Receiving objects: 100% (6125935/6125935), 1.20 GiB | 36.28 MiB/s, done.
remote: Total 6125935 (delta 925), reused 833 (delta 818), pack-reused 6124975
Resolving deltas: 100% (3700108/3700108), done.
Updating files: 100% (158490/158490), done.
git clone https://git.FreeBSD.org/ports.git /usr/ports
0.00s user 0.03s system 0% cpu 3:34.48 total

Bandwidth aside, this 3:34 is too long for me. We can do better than this. Since we do not
need all the history and just the latest version of files, a shallow clone using --depth-1 is
much faster.

time git clone --depth=1 https://git.FreeBSD.org/ports.git /usr/ports
Cloning into '/usr/ports'...
remote: Enumerating objects: 194509, done.
remote: Counting objects: 100% (194509/194509), done.
remote: Compressing objects: 100% (182218/182218), done.
remote: Total 194509 (delta 11904), reused 120301 (delta 5787), pack-reused 0
Receiving objects: 100% (194509/194509), 85.40 MiB | 10.48 MiB/s, done.
Resolving deltas: 100% (11904/11904), done.
Updating files: 100% (158490/158490), done.
git clone --depth=1 https://git.FreeBSD.org/ports.git /usr/ports
0.01s user 0.01s system 0% cpu 28.709 total

Much faster indeed (29s) and I get exactly what I want. What if I need the full history be-
cause I’m working on a bug? Then I can use a filter function to first get the whole commit
history, but not the history. The latter may come as a separate step. I’m looking to reduce
the time to download, so let’s try this:

time git clone --filter=blob:none https://git.FreeBSD.org/ports.git /usr/ports
Cloning into '/usr/ports'...
remote: Enumerating objects: 3706789, done.
remote: Counting objects: 100% (794/794), done.
remote: Compressing objects: 100% (82/82), done.
remote: Total 3706789 (delta 771), reused 721 (delta 712), pack-reused 3705995
Receiving objects: 100% (3706789/3706789), 704.87 MiB | 48.79 MiB/s, done.
Resolving deltas: 100% (2043361/2043361), done.
remote: Enumerating objects: 152073, done.
remote: Counting objects: 100% (63494/63494), done.
remote: Compressing objects: 100% (61224/61224), done.

3 of 8

49FreeBSD Journal • March/April 2024

remote: Total 152073 (delta 7810), reused 2276 (delta 2270), pack-reused 88579
Receiving objects: 100% (152073/152073), 78.98 MiB | 10.93 MiB/s, done.
Resolving deltas: 100% (11301/11301), done.
Updating files: 100% (158490/158490), done.
git clone --filter=blob:none https://git.FreeBSD.org/ports.git /usr/ports
 0.00s user 0.03s system 0% cpu 1:51.29 total

Git divided the work into two parts: first, all blobs (think files here) get filtered out and
fetches history at first. In the second step, the blobs followed. This was faster than a full
clone, but slower than the shallow copy. There was also a difference in the retrieved sizes,
which contributed to the speedup. In the regular clone, we received 1.20 GB. The two-step
process of the blobless clone let git receive 704.87 MB of history followed by 78.98 MB. This
benefit comes with a drawback though: when I have found the bug and I want to know
when this was introduced, the git blame operation needs to fetch those revisions from
the server first. If I’m on the road without network access, I’m out of luck. The full clone
could give me the information, as it has all the history already retrieved. Again, for non-de-
velopers interested in getting the files themselves, this does not matter much and the ben-
efit is a better download time.

Scaling Up
Imagine you were working on the man pages, which reside in the src tree. Download-

ing the whole kernel, userland, tools, and everything in between is a lot for the initial clone.
What if you only occasionally work on those man pages? Surely there are changes made by
others, which we need to be aware of. Wouldn’t it be nice if our system would fetch those
changes for us, so that our local copy does not drift too far away from the top of the tree?
The scalar tool that is part of git solves it: fast downloads of a big repository and retriev-
ing changes from upstream in regular intervals. This puts the local clone into maintenance
mode, which is a fancy word for this functionality. Here is how to use it: replace git with
scalar, the rest of the command is identical.

time scalar clone https://git.FreeBSD.org/src.git /usr/src
Initialized empty Git repository in /usr/src/src/src/.git/
remote: Enumerating objects: 2386494, done.
remote: Counting objects: 100% (258756/258756), done.
remote: Compressing objects: 100% (16493/16493), done.
remote: Total 2386494 (delta 253705), reused 244654 (delta 242263), pack-reused 2127738
warning: fetch normally indicates which branches had a forced update,
but that check has been disabled; to re-enable, use '--show-forced-updates'
flag or run 'git config fetch.showForcedUpdates true'
warning: fetch normally indicates which branches had a forced update,
but that check has been disabled; to re-enable, use '--show-forced-updates'
flag or run 'git config fetch.showForcedUpdates true'
remote: Enumerating objects: 20, done.
remote: Counting objects: 100% (17/17), done.
remote: Compressing objects: 100% (17/17), done.
remote: Total 20 (delta 0), reused 0 (delta 0), pack-reused 3
Receiving objects: 100% (20/20), 196.11 KiB | 16.34 MiB/s, done.
warning: fetch normally indicates which branches had a forced update,
but that check has been disabled; to re-enable, use '--show-forced-updates'
flag or run 'git config fetch.showForcedUpdates true'

4 of 8

50FreeBSD Journal • March/April 2024

branch 'main' set up to track 'origin/main'.
Switched to a new branch 'main'
Your branch is up to date with 'origin/main'.
crontab: no crontab for root
scalar clone https://git.FreeBSD.org/src.git
0.01s user 0.00s system 0% cpu 31.971 total

Ignore those warnings for now, the process finishes nonetheless. There is something
about crontab(1) here, responsible for fetching updates in regular intervals. To convert an ex-
isting repository to use scalar, no need to clone it again: run scalar register in the root
of your repository and it will convert the local copy to use it. Neat! The scalar command will
set up a crontab entry. If you do not have a user-specific crontab (like I have here for the
root user), then run crontab -e to set it up. If all went well, git adds an entry for scalar to
run:

BEGIN GIT MAINTENANCE SCHEDULE
The following schedule was created by Git
Any edits made in this region might be
replaced in the future by a Git command.

29 1-23 * * * “/usr/local/libexec/git-core/git” --exec-path=”/usr/local/libexec/git-
core” for-each-repo --config=maintenance.repo maintenance run --schedule=hourly
29 0 * * 1-6 “/usr/local/libexec/git-core/git” --exec-path=”/usr/local/libexec/git-core”
for-each-repo --config=maintenance.repo maintenance run --schedule=daily
29 0 * * 0 “/usr/local/libexec/git-core/git” --exec-path=”/usr/local/libexec/git-core”
for-each-repo --config=maintenance.repo maintenance run --schedule=weekly
END GIT MAINTENANCE SCHEDULE

Adjust those entries to your own needs or leave them as they are. If the machine has a
proper mail setup, you’ll receive messages containing the fetched revisions when the cron-
jobs have run. Another thing that scalar clone and the associated maintenance jobs do
is add an entry to your git configuration file, aptly named .gitconfig.

[scalar]
repo = /usr/src
[maintenance]
repo = /usr/src

This brings us right into git’s configuration file.

Create Your (commit) History Everyday
Chances are that you are working on multiple repositories over time: one for work, an-

other for a private project, and contributing to your favorite open source project. The con-
figuration for those cloned repositories may be different. For example, you may use your
corporate email to identify yourself in your commits, which may not be appropriate or even
allowed when committing to a private project. As such, we can have a project-specific .git/
config as part of the repo and a global one that applies to any and all repositories you’re
working on.

The global .gitconfig is in your home directory. You can either directly edit that file (if
you know what you are doing) or use git to manage the contents of the file and set proper
values. The latter uses this syntax:

5 of 8

51FreeBSD Journal • March/April 2024

git config --global NAME VALUE

For example, to register my name for commits, I run:

git config --global user.name Benedict Reuschling

This results in an entry like this in .gitconfig:

[user]
 name = Benedict Reuschling

You can see that there are categories in brackets for entries like user (email is under there
and you better set it, too). Others are commit, diff, or branch.

Changing Commit Behavior
Torches and pitchforks aside, I do not like to use nano to write my commit messages. To

define your own editor, execute this command:

git config --global core.editor nvim

You almost always want to set this as a global option. Having this in a project .git/con-
fig and committing it will cause productivity to fall sharply as your other contributors will
start another holy editor war resulting in a lot of changes in the repo with nothing but try-
ing to change it to their own personal favorite. “Well done”, is what you will remember as the
last words of your sarcastic boss as he closes the company door behind you forever on the
same day.

There are other configuration settings that (more positively) affect your commit experi-
ence. There are too many to list here and the defaults are fine. Fiddling with some options
can change your git experience somewhat and may remove some personal annoyances
(see below). See git-config(1) for details.

How about being a bit more sophisticated and defining aliases for common but tedious
to type commands? That’s were the alias section comes in handy. I have these defined:

[alias]
 last = last -1 HEAD
 lg = log --graph --all --pretty=format:'%Cred%h -%C(yellow)%d%Creset %s %Cgreen(%ci)
%C(bold blue)<%an (%ae)>'

Similarly, when looking at the log, I’d like to see at least these fields: commit, the author,
the date the author made the change, plus the commit and its date. This is achieved by
looking at git-log(1) and figuring out that the option is called fuller:

git config --global format.pretty fuller

In my repository, I can run git last to run the equivalent of git last -1 HEAD. Get-
ting totally fancy with colors and all, I like the command git lg even more when thinking
about how few keystrokes it requires now. Try it out for yourself and thank me later.

When I do the actual commit, I want to see what gets committed. Git displays the diff
between the head revision and my own changes below the text area for the commit mes-
sage with this setting:

git config --global commit.verbose true

6 of 8

52FreeBSD Journal • March/April 2024

Your Signature, Please
Speaking of commits, why don’t you sign your commits? “Well, the GPG/PGP setup is

too complicated” may be an answer. There is a solution for that: use SSH instead. On ser-
vices such as GitHub or your corporate (or private) GitLab instance, you have already up-
loaded a public key to pull repositories over SSH. Signing your commits with the same key
gives your changes some extra credit. This is often honored with a “signed” icon or label
next to the commit on those platforms. The setup is so easy, I wonder why this is not the
default by now. Here’s how:

git config --global gpg.format ssh
git config --global user.signingKey ‘ssh-ed25519 AAAAC3(...)34rve user@host’

It’s debatable if you want to use the same SSH key everywhere. If not, remove the
--global option from the last line above and make that change for each repo with its own
key.

Commits can now go like this:

git commit -S

To always sign, make it the default:

git config --global commit.gpgsign true

But what is this? When running git show --show-signature does not show our sig-
nature, but displays an error message instead. Not cool! Good for us, the message also tells
us what to change: gpg.ssh.allowedSignersFile is the option we need to change.

Git complains because SSH does not build a web of trust that signs keys by others. In-
stead, we need to tell git which keys we are trusting. A separate file contains all trusted SSH
signatures. Since we are orderly people, let’s put this file in ~/.config/git/allowed_sign-
ers (create the paths if they don’t exist by now).

The content of allowed_signers is as follows:

email ssh-ed25519 ssh_public_key comment

Keen eyes will recognize it as the same format that ssh-keygen(1) uses. We need to at
least trust our own SSH key, so put it there. Repeat this for all the other people in your circle
who contribute to the repo and sign their commits, too. To teach git about this file, add yet
another configuration option (the one the error message complained about earlier):

git config --global gpg.ssh.allowedSignersFile “~/.config/git/allowed_signers”

Retry the git show --show-signature command (and create an alias for it) to see
the error message replaced by the git signature.

Fixing Minor Annoyances
To update your local copy, it’s suggested that you run git pull --ff-only, which is

the default behavior. If you keep forgetting to add the parameter, then set it as the default
pull behavior like this:

git config --global pull.ff only

Of course, you could create an alias for it. This is one of those “fire-and-forget” settings
you do not need to revisit in the future.

7 of 8

53FreeBSD Journal • March/April 2024

When looking at diffs, I always wondered why git uses a/ and b/ to distinguish the files
from each other. I do not need those, the filenames speak for themselves. I found that dis-
abling this behavior is possible with this option:

git config --global diff.noprefix true

Speaking of diffs, I would like to see at least 5 lines of context around my changes. That is
a personal preference, but anyone can set it to their liking with this option:

git config --global diff.context 5

Working on an international project like FreeBSD has taught me that there are multiple
ways to write a date. The default display that git uses is Fri Mar 01 12:34:56 2024. All
fine with that, but I’m used to the following way: 2024-03-01 12:34:56. This option sets it
exactly how I like it:

git config --global log.date iso

Another thing that I found odd was the order in which git lists branches when running
git branch. I would like to have the branch with the most recent commit at the top and
not some other (random?) order. To change this, my .gitconfig contains this:

git config --global branch.sort -committerdate

Now I see exactly which branch received the most recent changes. Time to merge!

Conclusion
My configuration will probably grow over time as I discover other useful options. Git is

flexible in its configuration. The defaults are fine for most people and changes are easy to
make. This article should get you started writing your own config and ideally reduce some
of the teeth grinding involved when working with git.

References:
https://blog.gitbutler.com/git-tips-and-tricks/
https://jvns.ca/blog/2024/02/16/popular-git-config-options/
https://blog.dbrgn.ch/2021/11/16/git-ssh-signatures/

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project
and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

8 of 8

Contents

https://blog.gitbutler.com/git-tips-and-tricks/
https://jvns.ca/blog/2024/02/16/popular-git-config-options/
https://blog.dbrgn.ch/2021/11/16/git-ssh-signatures/
https://www.bsdnow.tv/

