
March/April 2024

FreeBSD Kernel
Development Workflow

KDE CI and FreeBSD

More Modern Kernel
Debugging Tools

ZFS Images from Scratch,
or makefs -t zfs

Development Workflow and CI

Nov/Dec 2019 57

November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2024 Editorial Calendar
•	Networking

(January-February)

•	Development Workflow and CI (March-April)

•	Configuration Management Showdown

(May-June)

•	Storage and File Systems (July-August)

•	To come (September-October)

•	To come (November-December)

https://freebsdfoundation.org/journal

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
	 John Baldwin •	 Member of the FreeBSD Core Team and
		 Chair of FreeBSD Journal Editorial Board

	 Tom Jones •	FreeBSD Developer, Internet Engineer
		 and Researcher at the University of
		 Aberdeen

	 Ed Maste •	 Senior Director of Technology,
		 FreeBSD Foundation and Member
		 of the FreeBSD Core Team

	 Benedict Reuschling •	 FreeBSD Documentation Committer
		 and Member of the FreeBSD Core Team

	 Mariusz Zaborski •	 FreeBSD Developer

Advisory Board
	 Anne Dickison •	 Marketing Director, FreeBSD Foundation

	 Justin Gibbs •	 Founder of the FreeBSD Foundation,
		 President and Treasurer of the FreeBSD
		 Foundation Board

	 Allan Jude •	 CTO at Klara Inc., the global FreeBSD
		 Professional Services and Support
		 company

	 Dru Lavigne •	 Author of BSD Hacks and
		 The Best of FreeBSD Basics

	 Michael W Lucas •	 Author of more than 40 books including
		 Absolute FreeBSD, the FreeBSD
		 Mastery series, and git commit murder

	 Kirk McKusick •	 Lead author of The Design and
		 Implementation book series

	 George Neville-Neil •	 Past President of the FreeBSD Foundation
		 Board, and co-author of The Design
		 and Implementation of the FreeBSD
		 Operating System

	 Hiroki Sato •	 Director of the FreeBSD Foundation
		 Board, Chair of AsiaBSDCon,
		 and Assistant Professor at Tokyo
		 Institute of Technology

	Robert N. M. Watson •	 Director of the FreeBSD Foundation
		 Board, Founder of the TrustedBSD
		 Project, and University Senior Lecturer
		 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

	 Editor-at-Large •	James Maurer
		 maurer.jim@gmail.com

	Design & Production •	Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2024 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written

permission from the publisher.

3FreeBSD Journal • March/April 2024

Welcome to the March/April issue of the
FreeBSD Journal! This issue is all about
development, whether of FreeBSD itself

or using FreeBSD as a platform for developing other
software. We open with a practical guide to FreeBSD
kernel development from Navdeep Parhar. Navdeep
describes a flexible and robust setup featuring virtual
machines and the use of PCI passthrough for device
driver development. Next, Ben Cooksley pulls back
the curtain on KDE’s CI system outlining how the KDE
project tests changes on FreeBSD. Tom Jones covers
kernel debugging support in LLVM’s debugger (lldb).
Specifically, Tom provides an example of extending
lldb with new commands written in lua. Finally, Mark
Johnston narrates the story of ZFS support in the
makefs tool. While this is a useful feature for both
users and developers, Mark used FreeBSD’s unique
development environment to implement it.

One of the best places to swap development stories
is at conferences whether in the hallway track between
talks or over evening dinners. Olivier Certner provides
a detailed glimpse into EuroBSDCon 2023 held at
Coimbra, Portugal. A full slate of BSD conferences
are planned this year including AsiaBSDCon (just
completed), BSDCan May/June in Ottawa, Canada, and
EuroBSDCon in September in Dublin, Ireland.

As always, we love to hear from readers. If you have
feedback on any of our articles, suggestions for topics
for a future article, or are interested in writing an article,
please email us at info@freebsdjournal.com.

John Baldwin
Chair of the FreeBSD Journal Editorial Board

mailto:info@freebsdjournal.com

4FreeBSD Journal • March/April 2024

March/April 2024

8	 �FreeBSD Kernel Development
Workflow
By Navdeep Parhar

21	 �KDE CI and FreeBSD
By Ben Cooksley

26	� More Modern Kernel
Debugging Tools
By Tom Jones

38	 �ZFS Images from Scratch,
or makefs -t zfs
By Mark Johnston

3	 Foundation Letter
By John Baldwin

5	 We Get Letters
by Michael W. Lucas

	 46	 Practical Ports:
		Enhance Your Git Experience

By Benedict Reuschling

54	 Conference Report: EuroBSDCon 2023
By Olivier Certner

62	 Events Calendar
By Anne Dickison

Development Workflow and CI

Oh, bloviating BSD-er,

I work for a wonderful small company with smart,
kind leaders that let the IT group do its job. We’ve
built all our infrastructure according to carefully
designed plans that scale to meet our needs. Our
network is meticulously segmented to isolate
risky services from vital data, our servers are
automatically patched, and we spend most of our
time smoothing our tiny kinks. I just learned that
we’re being bought by a multinational corporation
that’s constantly in the news for security breaches
and often mentioned as a place where competent
people used to work. Is there any way that we can
save what we’ve built?

	 —�Worried and Raging

Dear WAR,
While “no” is sufficient answer to your question, the Journal editors insist that I respond in

more depth so that they’re not left with blank pages. I don’t understand why they don’t sim-
ply cover that space with advertising, especially as I was not officially informed that the sales
department is on a week-long gelato cruise that I was not invited to, but I suppose amateurs
and hobbyists have a right to develop their meager skills without my presence highlighting
their inferiority. (The trick is to eat through the dairy coma until your pancreas transcurses
its fleshly limits and understanding that water breaks are not only for cleansing the palate. If
your undisciplined palate can still differentiate flavors after the day’s third hogshead, that is.)

Your problem distills to finances. Once you involve business, everything distills to financ-
es. Those cozy leaders you worked for? Their kindness was either a ploy or weakness. Build-
ing a small company into something profitable enough to sell for a small fortune means
attracting skilled people, and kindness is the bait—especially when businesses define “kind-
ness” as “torture them less.” If they’re honestly kind, well, that’s pure weakness and finan-
ciers can sniff out weakness like trash pandas honing in on yesterday’s tuna salad, with sim-
ilar results. Sure, the new owners might talk about “good will” and promise that nobody will
lose their job but that job is already lost, transparently replaced by some churning monstros-
ity that constricts an inch every day. Take a deep breath now. That air has to last you the rest
of this job.

1 of 3

5FreeBSD Journal • March/April 2024

by Michael W Lucas

The real problem is that you care about your work. Designing and deploying systems that
work well proves you care, when a thick layer of impact-absorbent apathy solves most prob-
lems encountered at work. If you must care, though, the easy solution is to ignore directives
coming from the new owners. If they’re incompetent, they won’t notice. Maybe they tell
you to install a few servers running infamously insecure operating systems. Your network is
well-segmented, so put them somewhere that the inevitable breaches will have no impact
on the important work. Maintain and use your existing services until the new owners can
provide equivalent replacements, which will arrive on Saint Never’s Day.

This presumes that something in your infrastructure is worth saving. —Is it?
Perhaps you have extensive monitoring and log analysis, all meticulously tuned to in-

form you of every little wobble. You can identify the host spewing stray packets with a sin-
gle netflow query and know how many times a second a hopeful spambot flings garbage
at xmlrpc.php. Your mail server sneers at spam. You’ve even taught fail2ban manners with-
out resorting to a spiked club. You have all
this, right? Or do you merely have plans for
all these? Plans offer the greatest gift, which
is Hope, but hope and a good swift kick to
the teeth will get you a minuscule stash of
legal narcotics and a substantial dentist bill.
Are you protecting the dream or the reali-
ty? Dreams can be moved. Whatever you’re
planning to do can be planned just as well
elsewhere, and always remember Rule of
System Administration #15: Today’s plans
address yesterday’s failures. Failure is a re-
newable resource, granting you endless op-
portunity to brew new plans.

Or perhaps the new owners are one of
those giant tech firms whose major product
is buyouts. They have a team dedicated to
managing vermin like you. The day the buyout is announced two tech goons arrive—special
goons chosen for their innate ability to ignore your worth, wearing camouflaging Unix con-
ference T-shirts and conversant with the language of competence but carrying a Windows
server and a router with the console port pins snipped off for the corporate dark fiber being
installed tomorrow. They might even buy pizza as a gesture of friendship and cooperation.
Eat the pizza and show your teeth. The goons will mistake it for a smile.

Hope might be the greatest of gifts, but it is also the most treacherous. The company’s
new owners will let you hope things will stay the same. When everything shifts, they’ll let
you hope for improvement, relying on your hope to keep you in place as they extract every-
thing worthwhile from their new asset. Buyouts, like blackmail, work on hope. Logic declares
that the only possible end of a rousing game of blackmail is the death of a participant and
that if you didn’t start the game, your first move is choosing between victory and victim-
hood—again, like buyouts.

Steel your soul, and immediately contact everyone who owes you a favor. You need a
new employer before those goons return with wire cutters to snip the power cables on all
your existing servers.

2 of 3

Designing and deploying
systems that work well
proves you care.

6FreeBSD Journal • March/April 2024

The good news is that predatory financiers can buy your company, but they can’t buy
the things that make your company profitable. They have the company contracts, but they
don’t have the relationships and expertise that made you successful. When you overcome
that hideous hope and depart for a firm that sucks less, you take that with you.

And that’s what you save. The connections with your coworkers and customers. What’s
in your head. Configuring that perfect computing environment will go much more quickly
next time, except it won’t be perfectly adapted to your new employer and you’ll need fresh
plans.

This time, you might even implement them. Probably not. But you’ll hope, and that’s
a gift.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is the author of a bunch of BSD-related books and articles. After years
of requests, he finally put up a complete bibliography at https://mwl.io so that people have
a better chance of avoiding his work. He also owes the esteemed Terry Pratchett a sincere
and heartfelt apology.

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

Contents 7FreeBSD Journal • March/April 2024

freebsdjournal.org

https://mwl.io
https://mwl.io

8FreeBSD Journal • March/April 2024

1 of 13

T he kernel is like any other software and is developed with the typical workflow of
clone, edit, build, test, debug, commit. But unlike userspace software, kernel develop-
ment necessarily involves repeated reboots (and lockups, and panics) and is inconve-

nient without a dedicated test system. This article describes a practical setup for kernel de-
velopment that uses virtual machines for testing and debugging.

A VM based setup for kernel development has a number of advantages:
•	Isolation. The host system is not affected by a VM reboot or crash.
•	Speed. A VM reboots much faster than a bare metal system.
•	Debuggability. VMs are easy to setup for live source-level kernel debugging.
•	Flexibility. VMs can be used to build a “network in a box” for working on networking

code without an actual physical network. eg. on a laptop in an airplane.
•	Manageability. VMs are easy to create, reconfigure,

clone, and move.

Overview
The system used to build the kernel also runs test

VMs, all of which are connected to an internal bridge.
The host provides DHCP, DNS, and other services to
the IP network configured on the bridge. The source
tree and build artifacts are all within a self-contained
work area on the host which is exported to this internal
network. The work area is mounted inside the test VM
and a new test kernel is installed from there. The VMs
have an extra serial port configured for remote kernel
debugging, with the gdb stub in the VM’s kernel con-
nected to the gdb client on the host system over a vir-
tual null modem cable.

The simplest way to set it up is to use a single system, typically a laptop or workstation,
for everything. This is the most portable development environment of all but the system
must have enough resources (CPU, memory, and storage) to build a FreeBSD source tree
and to run the VMs.

In work environments it is more common to have dedicated servers in the lab for devel-
opment and testing, separate from the developer’s workstation. Server class systems have
higher specs than desktops and are better suited for building source code and running VMs.
They also offer a wider variety of PCIe expansion slots and are suited for PCIe device driver
development.

BY NAVDEEP PARHAR

 FreeBSD
Kernel Development 	 Workflow

Unlike userspace software,
kernel development
necessarily involves
repeated reboots and
is inconvenient without
a dedicated test system.

9FreeBSD Journal • March/April 2024

desktop

Builder/VM host

src rsync

corporate network

lab test network

test connection
test connection

test connection

workspace
SoT

src trees

Internal bridge
(vmlan)

vmhost

DHCP, DNS, NFS, etc. services
Workspace (NFS exported):

src, obj, sysroot

VM0

NIC0

VM1

NIC1

VM2

NIC2

Configuration
The rest of this article assumes a two system setup and uses the hostnames ‘desktop’

and ‘builder’ to refer to them. The primary copy of the source code is on the desktop, where
it is edited by the user and then synced to the builder. The rest takes place on the builder, as
root. The builder is also known as ‘vmhost’ on its internal network.

WS=dev
DWSDIR=~/work/ws
WSDIR=/ws

All the checked out trees on the desktop are assumed to be in their own directory ${WS}
in a common parent directory ${DWSDIR}. The examples use the workspace ‘dev’ in the
‘~user/work/ws’ directory. The ${WSDIR} directory on the builder is the self-contained work
area with build configuration files, source trees, a shared obj directory, and a sysroot for gdb.
The examples use the location ‘/ws’ on the builder.

Desktop Setup

Source Tree
The FreeBSD source code is available in a git repository at https://git.FreeBSD.org/src.git.

New development takes place in the main branch and changes applicable to recent stable
branches are merged back from main after a soak-in period.

Create a local working copy by cloning a branch from the official repository or a mirror.

desktop# pkg install git

desktop$ git ls-remote https://git.freebsd.org/src.git heads/main heads/stable/*

desktop$ git clone --single-branch -b main ${REPO} ${DWSDIR}/${WS}
desktop$ git clone --single-branch -b main https://git.freebsd.org/src.git ~/work/ws/dev

2 of 13

https://git.FreeBSD.org/src.git

10FreeBSD Journal • March/April 2024

Custom KERNCONF for Development
Every kernel is built from a plain text kernel configuration (KERNCONF) file. Traditionally

a kernel’s ident string (the output of ‘uname -i’) matches the name of its configuration file.
eg. the GENERIC kernel is built from a file named GENERIC. There are a number of KERN-
CONF options for debugging and diagnostics and it is useful to have them enabled during
early development. The GENERIC configuration in the main branch already has a reason-
able subset enabled and is suitable for development work. However, modern compilers
seem to optimize away variables and other debug information aggressively, even at low op-
timization levels, and it is sometimes useful to build a kernel with all optimizations disabled.
Use the custom KERNCONF shown here, called DEBUG0, for this purpose. It is almost al-
ways simpler to include an existing configuration and use nooptions/options and nomake-
options/makeoptions to make adjustments, instead of writing one from scratch.

The DEBUG makeoptions is added to the compiler flags for both the kernel and the
modules. The stack size needs to be increased to accomodate the larger stack footprint of
unoptimized code.

desktop$ cat ${DWSDIR}/${WS}/sys/amd64/conf/DEBUG0
desktop$ cat ~/work/ws/dev/sys/amd64/conf/DEBUG0
include GENERIC
ident DEBUG0
nomakeoptions DEBUG
makeoptions DEBUG=”-g -O0”
options KSTACK_PAGES=16

Getting the Source Tree to the Builder
Copy the source tree to the builder, where it will be built as root. Remember to synchro-

nize the contents after making changes on the desktop but before building on the builder.

desktop# pkg install rsync

desktop$ rsync -azO --del --no-o --no-g ${DWSDIR}/${DWS} root@builder:${WSDIR}/src/
desktop$ rsync -azO --del --no-o --no-g ~/work/ws/dev root@builder:/ws/src/

Builder Setup

Build Configuration
Create make.conf and src.conf files in the workspace area on the builder instead of mod-

ifying the global configuration files in /etc. The obj directory is also in the workspace area
and not /usr/obj. Use meta mode for fast incremental rebuilds. Meta mode requires file-
mon. All the kernels in the KERNCONF= list will be built by default and the first one will be
installed by default. It is always possible to provide a KERNCONF on the command line and
override the default.

builder# kldload -n filemon
builder# sysrc kld_list+=”filemon”

builder# mkdir -p $WSDIR/src $WSDIR/obj $WSDIR/sysroot

3 of 13

11FreeBSD Journal • March/April 2024

builder# mkdir -p /ws/src /ws/obj /ws/sysroot

builder# cat $WSDIR/src/src-env.conf
builder# cat /ws/src/src-env.conf
MAKEOBJDIRPREFIX?=/ws/obj
WITH_META_MODE=”YES”

builder# cat /ws/src/make.conf
KERNCONF=DEBUG0 GENERIC-NODEBUG
INSTKERNNAME?=dev

builder# cat /ws/src/src.conf
WITHOUT_REPRODUCIBLE_BUILD=”YES”

Networking Configuration
Identify an unused network/mask for use as the internal network. The examples use

192.168.200.0/24. The first host (192.168.200.1) is always the VM host (the builder). Host num-
bers with two digits are reserved for known VMs. Host numbers with three digits 100 are
handed out by the DHCP server to unknown VMs.

1.	Create a bridge interface for use as a virtual switch that connects all the VMs and the
host. Assign a fixed IP address and hostname to the bridge.

builder# echo ‘192.168.200.1 vmhost’ >> /etc/hosts
builder# sysrc cloned_interfaces=”bridge0”
builder# sysrc ifconfig_bridge0=”inet vmhost/24 up”
builder# service netif start bridge0

2.	Configure the host to perform IP forwarding and NAT for its VMs. This is strictly option-
al and should be done if and only if the VMs need access to the external network. The
public interface is igb1 in the example here.

builder# cat /etc/pf.conf
ext_if=”igb1”
int_if=”bridge0”
set skip on lo
scrub in
nat on $ext_if inet from !($ext_if) -> ($ext_if)
pass out
builder# sysrc pf_enable=”YES”
builder# sysrc gateway_enable=”YES”

3.	Start ntpd on the host. The DHCP server will offer itself as an ntp server to the VMs.

builder# sysrc ntpd_enable=”YES”
builder# service ntpd start

4 of 13

12FreeBSD Journal • March/April 2024

4.	DHCP and DNS.
Install dnsmasq and configure it as a DHCP and DNS server for the internal network.

builder# pkg install dnsmasq
builder# cat /usr/local/etc/dnsmasq.conf
no-poll
interface=bridge0
domain=vmlan,192.168.200.0/24,local
host-record=vmhost,vmhost.vmlan,192.168.200.1
synth-domain=vmlan,192.168.200.100,192.168.200.199,anon-vm*
dhcp-range=192.168.200.100,192.168.200.199,255.255.255.0
dhcp-option=option:domain-search,vmlan
dhcp-option=option:ntp-server,192.168.200.1
dhcp-hostsfile=/ws/vm-dhcp.conf

Add it as the first nameserver in the local resolv.conf. The dnsmasq resolver will service
queries from the internal network and the builder’s loopback interface only.

builder# sysrc dnsmasq_enable=”YES”
builder# service dnsmasq start
builder# head /etc/resolv.conf
search corp-net.example.com
nameserver 127.0.0.1
...

5.	Export the entire work area to the internal network.

builder# cat /etc/exports
V4: /ws
/ws -ro -mapall=root -network 192.168.200.0/24
builder# sysrc nfs_server_enable=”YES”
builder# sysrc nfsv4_server_only=”YES”
builder# service nfsd start

vm-bhyve (bhyve Frontend)
vm-bhyve is an easy to use frontend for bhyve.
Identify a ZFS pool for use with the VMs and create a dataset for vm-bhyve on the pool.

Specify the name of this pool and dataset in vm_dir in rc.conf. Initialize vm-bhyve once vm_
dir is set properly.

builder# kldload -n vmm
builder# kldload -n nmdm
builder# sysrc kld_list+=”vmm nmdm”
builder# pkg install vm-bhyve
builder# zfs create rpool/vm
builder# sysrc vm_dir=”zfs:rpool/vm”
builder# vm init

5 of 13

13FreeBSD Journal • March/April 2024

builder# sysrc vm_enable=”YES”
builder# service vm start

All the VMs will use a serial console in text mode, accessible using tmux.

builder# pkg install tmux
builder# vm set console=tmux

Add the previously created bridge interface as a vm-bhyve switch.

builder# vm switch create -t manual -b bridge0 vmlan

Establish reasonable defaults for new VMs. Edit the default template at $vm_dir/.tem-
plates/default.conf as needed. Specify at least 2 serial ports—one for the serial console and
one for remote debugging. Connect all new VMs to the vmlan switch.

builder# vim /rpool/vm/.templates/default.conf
loader=”uefi”
cpu=2
memory=2G
comports=”com1 com2”
network0_type=”virtio-net”
network0_switch=”vmlan”
disk0_size=”20G”
disk0_type=”virtio-blk”
disk0_name=”disk0.img”

Seed Images
The easiest way to have FreeBSD up and running in a new VM is to seed it with a disk im-

age that has it preinstalled. The VM will boot its default kernel or a dev kernel and its user-
space needs to work with both so it is best to use the same version of FreeBSD in the VM as
the dev tree.

Disk images for releases and for recent snapshots of the main and stable branches are
available from FreeBSD.org.

fetch https://download.freebsd.org/releases/VM-IMAGES/14.0-RELEASE/amd64/Latest/FreeBSD-
14.0-RELEASE-amd64.raw.xz
fetch https://download.freebsd.org/snapshots/VM-IMAGES/15.0-CURRENT/amd64/Latest/FreeBSD-
15.0-CURRENT-amd64.raw.xz

unxz -c FreeBSD-14.0-RELEASE-amd64.raw.xz > seed-14_0.img
unxz -c FreeBSD-15.0-CURRENT-amd64.raw.xz > seed-main.img
du -Ash seed-main.img; du -sh seed-main.img
6.0G seed-main.img
1.6G seed-main.img

Disk images can also be generated from a source tree. This example shows how to build
an image with a non-debug kernel and some other space-saving options.

cd /usr/src

6 of 13

14FreeBSD Journal • March/April 2024

make -j1C KERNCONF=GENERIC-NODEBUG buildworld buildkernel
make -j1C -C release WITH_VMIMAGES=1 clean obj
make -j1C -C release WITHOUT_KERNEL_SYMBOLS=1 WITHOUT_DEBUG_FILES=1 \
 NOPORTS=1 NOSRC=1 WITH_VMIMAGES=1 VMFORMATS=raw VMSIZE=4g SWAPSIZE=2g \
 KERNCONF=GENERIC-NODEBUG vm-image

cp /usr/obj/usr/src/amd64.amd64/release/vm.ufs.raw seed-main.img
du -Ash seed-main.img; du -sh seed-main.img
6.0G seed-main.img
626M seed-main.img

Modify the vanilla image for use as a test VM on the internal network.
Create a memory disk from the image and mount the UFS partition. This will be the pre-

installed OS’s root partition when it boots inside the VM.

mdconfig -af seed-main.img
md0
gpart show -p md0
mount /dev/md0p4 /mnt

Remove hostname from rc.conf to force the one provided by the DHCP server to be used.

sysrc -R /mnt -x hostname
sysrc -R /mnt -x ifconfig_DEFAULT
sysrc -R /mnt ifconfig_vtnet0=”SYNCDHCP”
sysrc -R /mnt ntpd_enable=”YES”
sysrc -R /mnt ntpd_sync_on_start=”YES”
sysrc -R /mnt kld_list+=”filemon”

Enable ssh access to the VM out of the box. Note that this is a development environment
inside a lab network and there are no concerns about operating as root or reusing the same
host keys. Copy the host keys and root’s .ssh to the correct locations. It is convenient to use
the same keys on all the VMs. Update the sshd configuration to allow root to login and en-
able the service.

cp -a .../vm-ssh-hostkeys/ssh_host_*key* /mnt/etc/ssh/
cp -a .../vm-root-dotssh /mnt/root/.ssh
vim /mnt/etc/sshd_config
PermitRootLogin yes
sysrc -R /mnt sshd_enable=”YES”

Configure the first serial port as a potential console and the second one for remote ker-
nel debugging.

vim /mnt/boot/loader.conf
kern.msgbuf_show_timestamp=”2”
hint.uart.0.flags=”0x10”
hint.uart.1.flags=”0x80”

Create the mount point for the work area and add an entry in fstab to mount it on boot.
/dev/fd and /proc are useful in general.

7 of 13

15FreeBSD Journal • March/April 2024

mkdir -p /mnt/ws
vim /mnt/etc/fstab
...
fdesc /dev/fd fdescfs rw 0 0
proc /proc procfs rw 0 0
vmhost:/ /ws nfs ro,nfsv4 0 0

All done. Unmount and destroy the md.

umount /mnt
mdconfig -du 0

seed-main.img file is ready for use.

New Test VM
Create a new VM and note its auto-generated MAC address. Update the configuration

so that the DHCP service provides the assigned hostname and IP address to known VMs.
These statically assigned addresses must not overlap with the dhcp-range. The convention
in this article is to use 2 digit host numbers for known VMs and 3 digit host numbers for dy-
namic dhcp-range.

Create a ‘dhcp-host’ entry with the hostname assigned to the VM, its MAC address, and
a fixed IP that is not from the dynamic range. Then reload the resolver.

builder# vm create vm0
builder# vm info vm0 | grep fixed-mac-address
builder# echo ‘vm0,58:9c:fc:03:40:dc,192.168.200.10’ >> /ws/vm-dhcp.conf
builder# service dnsmasq reload

Replace the disk0.img file with a copy of the seed image and increase its size to the de-
sired disk size for the VM. A VM’s disk image can be resized this way any time the VM is not
running. Run “service growfs onestart” in the VM the first time it boots with a resized disk.

builder# cp seed-main.img /rpool/vm/vm0/disk0.img
builder# truncate -s 30G /rpool/vm/vm0/disk0.img

First Boot
Review the VM’s configuration before first boot.

builder# vm configure vm0

Start the VM with its console in the foreground, or start it in the background and then at-
tach to its console. The console is just a tmux session named after the VM.

builder# vm start -i vm0

builder# vm start vm0
builder# vm console vm0

8 of 13

16FreeBSD Journal • March/April 2024

Verify the following the first time a VM boots:
•	The VM’s hostname is the one assigned by the DHCP server. The hostname and tty are

visible on the console in the login prompt.

FreeBSD/amd64 (vm0) (ttyu0)
login:

•	The VM’s uart0 is the console and uart1 is for remote debugging.

vm0# dmesg | grep uart
[1.002244] uart0: console (115200,n,8,1)
...
[1.002252] uart1: debug port (115200,n,8,1)

•	The work area is mounted at the expected location.

vm0# mount | grep nfs
vmhost:/ on /ws (nfs, read-only, nfsv4acls)
vm0# ls /ws
...

•	The VM is reachable over ssh from the host and from the desktop (using the VM host
as the jump host).

builder# ssh root@vm0

desktop$ ssh -J root@builder root@vm0

PCIe Device Driver Development in a VM
PCI passthrough allows the host to export (pass through) PCIe devices to a VM, giving it

direct access to the PCIe device. This makes it possible to do device driver development for
real PCIe hardware inside a VM.

The device is claimed by the ppt driver on the host and appears inside the VM as if con-
nected to the VM’s PCIe root complex. The PCIe devices on a system are identified with a
BSF (or BDF) 3-tuple and it may be different inside the VM.

Use pciconf or vm-bhye to get a list of PCIe devices on the system and note the BSF tu-
ple for the ones to pass through. Note that the pciconf selector ends with BSF separated by
colons whereas bhyve/vmm/ppt use B/S/F (separted by forward slash) to identify a device.
eg. the PCIe device with the selector “none193@pci0:136:0:4” is “136/0/4” in the bhyve/ppt
notation.

builder# pciconf -ll
builder# vm passthru

Have the ppt driver claim the devices that will be passed through. This prevents the nor-
mal driver from attaching to the device.

9 of 13

17FreeBSD Journal • March/April 2024

builder# vim /boot/loader.conf
pptdevs=”136/0/4 137/0/4”

Reboot so that the loader.conf changes take effect, or try to detach the device from its
driver and attach it to ppt while the system is running.

builder# devctl detach pci0:136:0:4
builder# devctl clear driver pci0:136:0:4
builder# devctl set driver pci0:136:0:4 ppt
(repeat for 137)

Verify that the ppt driver attached to the devices and vm-bhyve is ready to use them.

builder# pciconf -ll | grep ppt
ppt0@pci0:136:0:4: 020000 00 00 1425 640d 1425 0000
ppt1@pci0:137:0:4: 020000 00 00 1425 640d 1425 0000
builder# vm passthru | awk ‘NR == 1 || $3 != “No” {print}’
DEVICE BHYVE ID READY DESCRIPTION
ppt0 136/0/4 Yes T62100-CR Unified Wire Ethernet Controller
ppt1 137/0/4 Yes T62100-CR Unified Wire Ethernet Controller

Reconfigure the test VM and list the devices that should be passed through to that VM.

builder# vm configure vm0
passthru0=”136/0/4”
passthru1=”137/0/4”

Start the test VM and verify that the PCIe devices are visible. Note that the BSFs in the
VM are different from the actual hardware BSFs in the host.

vm0# pciconf -ll
...
none0@pci0:0:6:0: 020000 00 00 1425 640d 1425 0000
none1@pci0:0:7:0: 020000 00 00 1425 640d 1425 0000
...

Main Workflow Loop (edit, build, install, test, repeat)

Edit
Edit the source tree on the desktop and sent it to the builder.

desktop$ cd ~/work/ws/dev
desktop$ gvim sys/foo/bar.c
...
desktop$ rsync -azO --del --no-o --no-g ~/work/ws/dev root@builder:/ws/src/

Build

builder# alias wsmake=’__MAKE_CONF=${WSDIR}/src/make.conf SRC_ENV_CONF=${WSDIR}/src/src-
env.conf SRCCONF=${WSDIR}/src/src.conf make -j1C’

10 of 13

18FreeBSD Journal • March/April 2024

builder# alias wsmake=’__MAKE_CONF=/ws/src/make.conf SRC_ENV_CONF=/ws/src/src-env.conf SRC-
CONF=/ws/src/src.conf make -j1C’

builder# cd ${WSDIR}/src/${WS}
builder# cd /ws/src/dev
builder# wsmake kernel-toolchain (one time)
builder# wsmake buildkernel

Install
1.	Install kernel in the VM. INSTKERNNAME is set in make.conf so the test kernel in /

boot/${INSTKERNNAME} will not interfere with the stock kernel in /boot/kernel, which
is the safe fallback if there are problems with the test kernel. It can be specified explicitly
on the command line too.

vm0# alias wsmake=’__MAKE_CONF=${WSDIR}/src/make.conf SRC_ENV_CONF=${WSDIR}/src/src-
env.conf SRCCONF=${WSDIR}/src/src.conf make -j1C’
vm0# alias wsmake=’__MAKE_CONF=/ws/src/make.conf SRC_ENV_CONF=/ws/src/src-env.conf
SRCCONF=/ws/src/src.conf make -j1C’

vm0# cd ${WSDIR}/src/${WS}
vm0# cd /ws/src/dev
vm0# wsmake installkernel

2.	Install to the builder’s sysroot too if gdb on the builder will be used for source level de-
bugging. Use the same INSTKERNNAME and KERNCONF as in the VM.

builder# cd /ws/src/dev
builder# wsmake installkernel DESTDIR=/ws/sysroot

Test
Select the test kernel for the next reboot only, or permanently.

vm0# nextboot -k ${WS}
vm0# nextboot -k dev
vm0# shutdown -r now

vm0# sysrc -f /boot/loader.conf kernel=”${WS}”
vm0# sysrc -f /boot/loader.conf kernel=”dev”
vm0# shutdown -r now

It is a good practice to use a debug KERNCONF (eg. the custom DEBUG0 shown earlier
or the GENERIC in main) for initial testing and later switch to a release kernel (eg. the GE-
NERIC-NODEBUG in main).

11 of 13

19FreeBSD Journal • March/April 2024

Debugging the Test Kernel
Verify that the test kernel is running currently.

vm0# uname -i
DEBUG0
vm0# sysctl kern.bootfile
kern.bootfile: /boot/dev/kernel

Backends
There are two debugger backends available and the current backend can be changed on

the fly.

vm0# sysctl debug.kdb.available
vm0# sysctl debug.kdb.current

vm0# sysctl debug.kdb.current=ddb
vm0# sysctl debug.kdb.current=gdb

Breaking into the Debugger
1.	Automatically, on a panic. If this sysctl is set the kernel will enter the debugger (instead

of rebooting) on panic.

vm0# sysctl debug.debugger_on_panic

2.	Manually, from inside the VM.

vm0# sysctl debug.kdb.enter=1

3.	Manually, from the VM host. Inject an NMI into the VM if it is locked up and not re-
sponding.

builder# bhyvectl --vm=vm0 --inject-nmi

Source Level Debugging with gdb
Source level debugging requires the source code, binaries, and debug files, all of which

are available on both the host and the VMs, but at different locations.

Live Remote Debugging
Make sure that the debug backend is set to gdb. If the VM has already entered the de-

bugger with the ddb backend, switch to the gdb backend interactively.

vm0# sysctl debug.kdb.current=gdb

db> gdb

The remote gdb stub in the kernel is active when the kernel enters the debugger. Con-
nect to the gdb stub from the host. The connection takes place over a virtual null modem
cable connected to the VM’s second serial port (uart1 inside the VM).

12 of 13

20FreeBSD Journal • March/April 2024

builder# gdb -iex ‘set sysroot ${WSDIR}/sysroot’ -ex ‘target remote /dev/nmdm-${VM}.2B’
${WSDIR}/sysroot/boot/${INSTKERNNAME}/kernel
builder# gdb -iex ‘set sysroot /ws/sysroot’ -ex ‘target remote /dev/nmdm-vm0.2B’ /ws/sys-
root/boot/dev/kernel

Core Dump Analysis
Same as live debug except the target is a vmcore instead of remote.

builder# gdb -iex ‘set sysroot ${WSDIR}/sysroot’ -ex ‘target vmcore ${VMCORE}’ ${WSDIR}/
sysroot/boot/${INSTKERNNAME}/kernel

builder# scp root@vm0:/var/crash/vmcore.0 /ws/tmp/
builder# gdb -iex ‘set sysroot /ws/sysroot’ -ex ‘target vmcore /ws/tmp/vmcore.0’ /ws/sys-
root/boot/dev/kernel

NAVDEEP PARHAR has been a FreeBSD user for 20+ years and a FreeBSD developer since
2009. He is employed by Chelsio Communications to work on FreeBSD software for Chel-
sio Terminator family of NICs. He’s the author and maintainer of the cxgbe(4) driver and
his areas of interest include the networking stack, device drivers, general kernel debug and
analysis.

13 of 13

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

Contents

https://freebsdfoundation.org

21FreeBSD Journal • March/April 2024

1 of 5

C ontinuous Integration (CI) is something KDE has worked on improving now for some
years, with the first implementation of CI for KDE software starting back in August
2011. Since then, the system has evolved substantially, picking up support not only for

multiple versions of Qt (the toolkit used to write most KDE software) but also support for
multiple platforms.

Running all these builds reliably and consistently, across the multiple operating systems
involved, is something that is only possible thanks to containers, which are increasingly ubiq-
uitous across all platforms. To understand the challenges containers solve, as well as other
challenges in building scalable CI systems though, we
must go back to the beginning of KDE CI.

When the system first started life, it was a relative-
ly simple Jenkins setup—with builds performed on the
same server that hosted Jenkins. This made life quite
simple, however it also had limitations. As demand for
builds increased with more projects onboarding to
the system, it soon became clear that more machines
would be needed.

This presented a bit of a conundrum though, as
KDE software tends to require other KDE libraries in
order to be built, and not just any version either—usual-
ly the most recent version. This meant that it wouldn’t
just be a case of increasing the number of builders, we
would also need to ensure that the latest version of de-
pendencies were still available.

Due to the amount of time needed to build the full chain of dependencies for our appli-
cations, the concept of just building everything each time was quickly ruled out—meaning it
would be necessary to share the binaries resulting from those builds. After a quick review of
our options, rsync was quickly selected as our preferred choice, and once again all was well.

Enter FreeBSD
By 2017, the system encountered it’s next set of growing pains, as it became desirable to

start adding support for new platforms, which is where FreeBSD enters the picture for the
first time.

This initial implementation of FreeBSD support within our CI system was relatively simple,
and made use of virtual machines running on our Linux CI workers. These machines were

BY BEN COOKSLEY

KDE CI
and FreeBSD

The system has evolved
substantially, picking
up support not only for
multiple versions of Qt
but also support
for multiple platforms.

22FreeBSD Journal • March/April 2024

individually set up with help from the KDE on FreeBSD team, and much like our Linux builds
at the time, included everything needed to build KDE software.

This approach however did have its downsides. While we did ensure that all of the build-
ers made use of the same custom FreeBSD repository that had all the necessary depen-
dencies in it to build our software, each of the machines was still built individually. This made
scaling the system non-trivial, as any changes had to be applied to each builder one by one.

It did succeed, however, in ensuring that KDE software could be reliably built on FreeBSD,
and ensured dependencies were packaged in advance of KDE software starting to make
use of them—improving the experience for the KDE on FreeBSD team substantially.

At the same time as we added support for FreeBSD, we also adopted something that
was still fairly new at the time for our Linux builds—Docker. For the first time, we were able
to produce a single master setup that could be distributed across all our builders, making
it easy to roll out changes across the CI system without having to manually apply them to
each machine. The golden age of container-based
builds had begun its arrival. The only downside was that
it was Linux only, so the question remained of how to
replicate this on other platforms.

Before we could tackle that though, all of this
growth in build capability had resulted in some new,
and slightly unexpected problems starting to show up.
From time to time builds would randomly fail, with logs
indicating that files were missing or symlinks broken.
Later checks would show that the files were there, and
subsequent runs completed successfully. The problem?
Atomicity.

Up to now, we only had a small handful of build
nodes, which had certain limitations on their perfor-
mance. The new setup however had much more capa-
ble hardware, and as such was completing builds fast-
er—meaning it was increasingly likely that rsync would be mid-upload when another build
went to download build artifacts. This is why we were seeing missing files and broken sym-
links in some builds as the unfortunate build happened to start at the same time one of its
dependencies happened to be syncing build results.

Thankfully, the answer once again was fairly simple—moving to using tarballs of build ar-
tifacts. This let us publish the full set of files from a build in one fluid atomic operation, and
in addition to a change of protocol over to SFTP (to accommodate platforms without rsync)
meant that the CI system was once again operating smoothly—with quite a bit more re-
source power, and supporting quite a few more platforms.

The issue of having to maintain machines individually by hand, however, did not go away.
The migration to Gitlab and Gitlab CI made this issue more apparent than ever, as build
nodes began to run out of disk space due to accumulated code checkouts and other build
artifacts would quickly fill disk space. We also battled problems with leftover processes from
tests chewing up CPU time (sometimes entire cores even)—all things that did not exist at all
on our Docker based Linux builds.

Many options and solutions were discussed on this, including improvements to Gitlab
Runner and how it handles the “shell” executor, cronjobs to perform cleanup of build arti-

2 of 5

We also adopted
something that was still
fairly new at the time for
our Linux builds—Dockers.

23FreeBSD Journal • March/April 2024

facts and code checkouts, as well as building something on top of FreeBSD Jails. None of
these, however, would replicate the same experience we had on Linux with Docker.

Finding Podman
So it was one morning while looking at FreeBSD containerization options that we stum-

bled across Podman and its companion ocijail support. This promised us all the things we
were used to enjoying with our Docker-based Linux setups, but on FreeBSD.

Significantly, it would mean that the issues we had been experiencing with stray pro-
cesses and leftover build artifacts that we had to clean up manually would be solved. And it
would also let us make use of a standard Open Container Initiative registry (such as Gitlab’s
built-in Container Registry) to distribute images of FreeBSD to all our builders—solving our
issue of having to maintain the machines individually.

Getting a working image built would be our first challenge. For Linux systems, Docker
and Podman are quite well established with detailed documentation on the available base
images and what those base images contain. With the
appropriate FreeBSD base image found though, we
thought it would be a simple case of adding our nor-
mal FreeBSD package repository and installing every-
thing we would normally need.

We would soon find our first bump on the road, as,
unexpectedly, CMake indicated on our first build run
in a container that it was unable to find a compiler. We
thought this quite odd, as usually FreeBSD systems
ship with a compiler installed. After a bit of digging,
we found the first major difference between FreeBSD
containers and a normal FreeBSD system—namely,
that they are significantly stripped down, and therefore don’t include a compiler.

After a couple of iterations, we ended up adding in a compiler and C library development
headers—which allowed our very first piece of KDE software to be built in a FreeBSD con-
tainer. Thinking we now had everything sorted, we pressed ahead—only for subsequent bits
of KDE software to fail as additional development packages were needed. Many iterations
later (including installing a bunch more development and non-development FreeBSD-* pack-
ages) we were finally presented with a completed build for a number of key KDE packages.

With this sorted, attention now turned to what Gitlab Runner calls a “helper image”,
which is something it uses to perform Git operations and upload artifacts from builds to
Gitlab itself among other things. While we could have made use of FreeBSD’s support to
run Linux binaries, that would have been an imperfect solution. So we naturally set out to
build this natively for FreeBSD as well. After replicating what had been done by Gitlab them-
selves to build the images, but in FreeBSD, we soon had what we thought would be the final
piece ready.

It was now that the fun part of the adventure began, and a deep dive into the inner work-
ings of Gitlab Runner and Podman began. The first hurdle thrown was moments after we
connected Gitlab Runner to Podman (using it’s Docker compatibility option), when our first
build was met with the message of “unsupported os type: freebsd”.

A quick search of the Gitlab Runner codebase revealed that for Docker it checked the
operating system of the remote Docker (or in our case: Podman) host. A quick patch and re-

3 of 5

Getting a working
image built would be
our first challenge.

24FreeBSD Journal • March/April 2024

build of Gitlab Runner later, and we had a very similar, but not quite identical error: “unsup-
ported OSType: freebsd”. More patching to Gitlab Runner followed only for a third much
more ominous error to be returned, especially given Gitlab Runner is written in Go:

ERROR: Job failed (system failure): prepare environment:
Error response from daemon: runtime error: invalid memory address or nil pointer
dereference(docker.go:624:0s.
Check https://docs.gitlab.com/runner/shells/index.html#shell-profile-loading for more
information.

With this it became apparent that much more work would be required to get this work-
ing, however, given the promise of what containerized builds could deliver, we persisted and
started looking into where this was failing. After some research through the Gitlab Runner
codebase, we found code that didn’t seem to be doing anything too special:

inspect, err := e.client.ContainerInspect(e.Context, resp.ID)

And so began many hours of debugging, searching for why this one line of code failed on
FreeBSD yet worked absolutely fine on Linux (regardless of whether it was Podman or Dock-
er). Eventually, however, we stumbled on the cause: the Podman daemon itself was falling
over and abandoning the request. With this informa-
tion in hand, the issue was soon easily reproduced by
trying to run “podman inspect” against a running con-
tainer, resulting in the expected crash we wanted
to see. Success!

Having searched through Gitlab Runner, focus
now turned to Podman itself. Before long the cause
had been narrowed down to code that was specifi-
cally called for “inspect” operations, and soon after
that a specific line was identified that tried to interact
with Linux specific constructs no matter the platform.
Yet, another patch later, we had a “podman inspect”
that did not crash, and then shortly after that, our first
FreeBSD build starting successfully.

Running Builds on FreeBSD
That first build may have failed (due to known issues with Git and the way Gitlab Run-

ner interacts with containers that run as builds as users other than root), but the important
thing was we had running builds on FreeBSD.

At this point, you may have thought we were home free and could begin to roll out
FreeBSD based containerized builds to all KDE projects. Final testing, however, revealed
one final issue: that network speeds in our FreeBSD containers appeared to be quite a
bit slower than we had expected, being significantly slower than what the FreeBSD hosts
were capable of.

Thankfully, this was not a new issue, was something that others had run into before, and
was something we had anticipated we would encounter. This particular issue has been well
written up by Tara Stella in the past, in their experiences diving into the world of Podman
and FreeBSD containers, and is caused by Large Receive Offload or LRO. One quick config-

4 of 5

It became apparent
that much more work
would be required
to get this working.

https://docs.gitlab.com/runner/shells/index.html#shell-profile-loading

25FreeBSD Journal • March/April 2024

uration change later and we had the performance we expected—and were finally ready to
go live.

Today, KDE runs FreeBSD CI builds using Podman and ocijail-based containers exclusive-
ly, with 5 FreeBSD host systems handling the build requests. These builds are performed us-
ing two different CI images—one for each of the two supported versions of Qt (being Qt 5
and Qt 6) ensuring that KDE software can be cleanly built from scratch and, optionally, has
fully passing unit test results.

Since migrating over from FreeBSD dedicated virtual machines to FreeBSD containerized
builds, we have gone from receiving complaints from developers due to broken builders
and having to undertake maintenance on our builders several times a week (and sometimes
even daily), to receiving no complaints in several weeks and only needing to undertake peri-
odic maintenance.

The patches that we wrote (just a couple of lines for both Podman and Gitlab Runner)
have been successfully upstreamed and should now be available for all to use and enjoy in
building out their own CI setups.

The benefits of switching to containers—especially for Continuous Integration systems –
cannot be understated and are something any team that maintains a system should consid-
er investigating, as the returns are well worth the initial cost of migration.

BEN COOKSLEY is an accountant and also a computer scientist known for his contribu-
tions to the KDE community, particularly in system administration and infrastructure. His
interest in sysadmin work stems from a curiosity about how systems operate and integrate.

5 of 5

Contents

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

mailto:maurer.jim@gmail.com

26FreeBSD Journal • March/April 2024

1 of 12

Panic is a truly wonderful word! It succinct-
ly describes an incredibly complex emotional
event. We can say “the soldiers panicked,” and

we know how a battle went. We can use it to give
weight to a small oversight, and it explains what ex-
actly went though our mind when we stepped onto
a plane and discovered doubt about the current
state of the oven.

Surely I turned it off.
It might just be my favourite term to see on the

cover of a book: “Panic! Unix System Crash Dump
Analysis”—wow! I’ve gotta have that. Any author
using a title like that will have written a great book,
even if it is an old Sun OS/Solaris technical manual.

Great book titles are more timeless than techni-
cal treatises, and the first material to expire is ven-
dor-level documentation for existing systems. In 2024, I find it remarkably hard to find any-
thing written recently about debugging approaches for operating systems. Looking at the
works published, you wouldn’t be blamed if you thought we’d perfected operating systems
in 2004. I haven’t ever used either SunOS or Solaris, but “Panic!” gave me the introduction
to crash analysis I have always wanted.

I will admit I’d always wondered why people wanted core dumps so badly—what more
can we really get than from a stack trace I would wonder. But from “Panic!” I was able to
take my first real steps into practically doing crash analysis, and it took me on a journey that
tried bleeding edge kernel debugging tools on FreeBSD. Let me show you what I learned.
Don’t worry, we won’t have to wait around for lemon-soaked, paper napkins.

Getting a Kernel Dump
I’m going to be up front, I know you will not try to do kernel dump analysis until you really

need to. When you have a hung machine. On that path lies a life of printf debugging.
Getting a core to play with isn’t hard—your system needs to be set up to take crash

dumps (see dumpon(8)) and then to enter the debugger. Normally, the system will help you
by panicking, assisting you in your journey to reach the debugger. FreeBSD helpfully offers
the ability to panic a kernel even when nothing has gone wrong yet. Setting debug.kdb.pan-
ic sysctl to 1 on a test system will drop you to a debug prompt:

sysctl debug.kdb.panic=1

If you ran that on your desktop or a vital work machine in the cloud, you might be in a bit
of trouble (and if it was your desktop, this article might have vanished). I would recommend

BY TOM JONES

More Modern
Kernel Debugging Tools

27FreeBSD Journal • March/April 2024

learning about kernel debugging on a virtual machine, or at least something that won’t
cause too much trouble continually crashing.

Additionally, FreeBSD virtual machine images come configured by default to run
savecore on boot and save out your crash dump file.

Once you set the debug.kdb.panic, you will be dropped to a ddb(4) prompt. ddb is a full
fledged live system debugger—it can be a great analysis tool, but it isn’t what we want today.

From ddb we can dump the running kernel with the dump command.

ddb> dump
Dumping 925 out of 16047 MB:..2%..11%..21%..32%..42%..51%..61%..71%..82%..92%

Panicking makes the system unusable, so you need to reboot to continue.

ddb> reboot

As your VM comes back up, there will be a message from savecore about extracting and
saving your core file.

The core will be placed in /var/crash a long with some other files.

$ ls /var/crash
bounds core.txt.0 info.0 info.last minfree
vmcore.0 vmcore.last

The core file from our test is vmcore.0, and it comes with matching info.0 and core.txt.0.
The info file is a summary of the host and dump, and the core.txt is a summary of the
dump file, any unread portions of the message buffer, and the panic string and stack trace if
there is one.

Dump header from device: /dev/nvd0p3
 Architecture: amd64
 Architecture Version: 2
 Dump Length: 970199040
 Blocksize: 512
 Compression: none
 Dumptime: 2023-05-17 14:07:58 +0100
 Hostname: displacementactivity
 Magic: FreeBSD Kernel Dump
 Version String: FreeBSD 14.0-CURRENT #2 main-n261806-d3a49f62a284: Mon Mar 27 16:15:25
UTC 2023
 tj@displacementactivity:/usr/obj/usr/src/amd64.amd64/sys/GENERIC
 Panic String: Duplicate free of 0xfffff80339ef3000 from zone 0xfffffe001ec2ea00(mal-
loc-2048) slab 0xfffff80325789168(0)
 Dump Parity: 3958266970
 Bounds: 0
 Dump Status: good

The bounds file lets the dumper know the next coredump will be called vmcore.1 and
right now bounds on this machine:

cat /var/crash/bounds
1

2 of 12

28FreeBSD Journal • March/April 2024

Finally, vmcore.last is a link to the most recent coredump file, in case you are having an in-
teresting week and have lost track of the most recent crash.

Symbols
The second thing we need to along with the coredump are the kernel symbols. Kernel

symbols for releases are available from the kernel-dbg package and are installed to /usr/
lib/debug/ or can be pulled out of your kernel build directory.

Looking at a Core with gdb (first)
First lets look at a core very quickly with kgdb to give ourselves a point of comparison for

how far along lldb crash dump debugging is.

$ kgdb kernel.debug vmcore.0

Unread portion of the kernel message buffer:
panic: Assertion !tcp_in_hpts(tp) failed at /usr/src/sys/netinet/tcp_subr.c:2432
cpuid = 2
time = 1706644478
KDB: stack backtrace:
db_trace_self_wrapper() at db_trace_self_wrapper+0x2b/frame 0xfffffe0047d2f480
vpanic() at vpanic+0x132/frame 0xfffffe0047d2f5b0
panic() at panic+0x43/frame 0xfffffe0047d2f610
tcp_discardcb() at tcp_discardcb+0x25b/frame 0xfffffe0047d2f660
tcp_usr_detach() at tcp_usr_detach+0x51/frame 0xfffffe0047d2f680
sorele_locked() at sorele_locked+0xf7/frame 0xfffffe0047d2f6b0
tcp_close() at tcp_close+0x155/frame 0xfffffe0047d2f6e0
rack_check_data_after_close() at rack_check_data_after_close+0x8a/frame 0xfffffe0047d2f720
rack_do_fin_wait_1() at rack_do_fin_wait_1+0x141/frame 0xfffffe0047d2f7a0
rack_do_segment_nounlock() at rack_do_segment_nounlock+0x243b/frame 0xfffffe0047d2f9a0
rack_do_segment() at rack_do_segment+0xda/frame 0xfffffe0047d2fa00
tcp_input_with_port() at tcp_input_with_port+0x1157/frame 0xfffffe0047d2fb50
tcp_input() at tcp_input+0xb/frame 0xfffffe0047d2fb60
ip_input() at ip_input+0x2ab/frame 0xfffffe0047d2fbc0
netisr_dispatch_src() at netisr_dispatch_src+0xad/frame 0xfffffe0047d2fc20
ether_demux() at ether_demux+0x17a/frame 0xfffffe0047d2fc50
ether_nh_input() at ether_nh_input+0x39f/frame 0xfffffe0047d2fca0
netisr_dispatch_src() at netisr_dispatch_src+0xad/frame 0xfffffe0047d2fd00
ether_input() at ether_input+0xd9/frame 0xfffffe0047d2fd60
vtnet_rxq_eof() at vtnet_rxq_eof+0x73e/frame 0xfffffe0047d2fe20
vtnet_rx_vq_process() at vtnet_rx_vq_process+0x9c/frame 0xfffffe0047d2fe60
ithread_loop() at ithread_loop+0x266/frame 0xfffffe0047d2fef0
fork_exit() at fork_exit+0x82/frame 0xfffffe0047d2ff30
fork_trampoline() at fork_trampoline+0xe/frame 0xfffffe0047d2ff30
--- trap 0, rip = 0, rsp = 0, rbp = 0 ---
KDB: enter: panic

Reading symbols from /boot/kernel/zfs.ko...

3 of 12

29FreeBSD Journal • March/April 2024

Reading symbols from /usr/lib/debug//boot/kernel/zfs.ko.debug...
Reading symbols from /boot/kernel/tcp_rack.ko...
Reading symbols from /usr/lib/debug//boot/kernel/tcp_rack.ko.debug...
Reading symbols from /boot/kernel/tcphpts.ko...
Reading symbols from /usr/lib/debug//boot/kernel/tcphpts.ko.debug...
__curthread () at /usr/src/sys/amd64/include/pcpu_aux.h:57
57 __asm(“movq %%gs:%P1,%0” : “=r” (td) : “n” (offsetof(struct pcpu,
(kgdb)

kgdb starts up by showing its license (removed), and then printing out the final parts of
the message buffer which is a handy addition from kgdb. The final part of the message buf-
fer tells us the panic message, info and a stack trace.

With the kgdb bt (backtrace) command, we can get a stack track, and with the frames
command, we can move around the stack to see what was happening at the time of the
panic.

(kgdb) bt
...
#10 0xffffffff80b51233 in vpanic (fmt=0xffffffff811f87ca “Assertion %s failed at %s:%d”,
ap=ap@entry=0xfffffe0047d2f5f0) at /usr/src/sys/kern/kern_shutdown.c:953
#11 0xffffffff80b51013 in panic (fmt=0xffffffff81980420 <cnputs_mtx> “\371\023\025\201\377\
377\377\377”) at /usr/src/sys/kern/kern_shutdown.c:889
#12 0xffffffff80d5483b in tcp_discardcb (tp=tp@entry=0xfffff80008584a80) at /usr/src/sys/
netinet/tcp_subr.c:2432
#13 0xffffffff80d60f71 in tcp_usr_detach (so=0xfffff800100b6b40) at /usr/src/sys/netinet/
tcp_usrreq.c:215
#14 0xffffffff80c01357 in sofree (so=0xfffff800100b6b40) at /usr/src/sys/kern/uipc_sock-
et.c:1209
#15 sorele_locked (so=so@entry=0xfffff800100b6b40) at /usr/src/sys/kern/uipc_socket.c:1236
#16 0xffffffff80d545b5 in tcp_close (tp=<optimized out>) at /usr/src/sys/netinet/tcp_
subr.c:2539
#17 0xffffffff82e37e0a in tcp_tv_to_usectick (sv=0xfffffe0047d2f698) at /usr/src/sys/neti-
net/tcp_hpts.h:177
#18 tcp_get_usecs (tv=0xfffffe0047d2f698) at /usr/src/sys/netinet/tcp_hpts.h:232
...
(kgdb) frame 12
#12 0xffffffff80d5483b in tcp_discardcb (tp=tp@entry=0xfffff80008584a80) at /usr/src/sys/
netinet/tcp_subr.c:2432
warning: Source file is more recent than executable.
2432
(kgdb) list
2427 #endif
2428
2429 CC_ALGO(tp) = NULL;
2430 if ((m = STAILQ_FIRST(&tp->t_inqueue)) != NULL) {
2431 struct mbuf *prev;
2432

4 of 12

30FreeBSD Journal • March/April 2024

2433 STAILQ_INIT(&tp->t_inqueue);
2434 STAILQ_FOREACH_FROM_SAFE(m, &tp->t_inqueue, m_stailqpkt, prev)
2435 m_freem(m);
2436 }

To review, I have listed the backtrace which led up to the panic, identified the call to pan-
ic around frame number #11, and asked kgdb to move to frame #12 (the code which lead to
the panic itself), then listed the code there. Further investigation from here would help us
determine whatever led to the panic in this crash dump I had lying around.

These are the basic steps in kernel debugging, looking at what was going on and inter-
rogating the crash dump to find out what values variables held. lldb needs to be able to do
these tasks, for it to be useful in a kernel context.

lldb
FreeBSD has been moving to the more freeely licensed

llvm/clang toolchain for the last decade. One missing piece
for a while has been debugging, but in 2024 there are
enough pieces in place that FreeBSD kernel debugging is
possible with lldb.

lldb is able to import FreeBSD kernel dumps as core files
and can move through stack frames.

lldb was developed by Apple. I remember when they
changed the default debugger in gdb to lldb and I suffered
severe culture shock. All of the debugging commands I had
won from the cryptic documentation-less gnu world were gone, replaced with other weird
commands.

lldb isn’t really meant to be used as a command line interface, rather it is meant to be
driven by software via an API. This shows in the verbosity of many commands. Thankful-
ly, lldb has grown support for more gdb-like commands in its command line, meaning that
more of the command interfaces match. Base commands such as printing now have com-
patible syntax, but many other options are different, and either better or much worse.

Poking Around with lldb
lldb doesn’t need special configuration to analyze a kernel dump. Loading a crash dump

in lldb is the same as kgdb just with the arguments swapped around a little:

$ lldb --core <corefile> path/to/kernel/symbols

For the examples that works out as:

$ lldb --core ../gdb/coredump/vmcore.0 ../gdb/coredump/kernel-debug/kernel.debug
(lldb) target create “../gdb/coredump/kernel-debug/kernel.debug” --core “../gdb/coredump/
vmcore.0”
Core file '/home/tj/code/scripts/gdb/coredump/vmcore.0' (x86_64) was loaded.
(lldb)

That is much quieter than the start up kgdb, which is nice, but it is also missing out on
some important context from our crash dump. What exactly led to this being dumped?

5 of 12

In 2024 there are
enough pieces in place
that FreeBSD kernel
debugging is possible
with lldb.

31FreeBSD Journal • March/April 2024

kgdb isn’t able to perform any magic (if so it would have a ‘fix’ command to match the
‘break’ command). All it is doing is looking for well-known symbols in the crash dump and
printing them for us on start up.

We can do that ourselves.
First, the panic message in the kernel is stored in the string panicstr and is set by vpanic

(in kern/kern_shutdown.c). We can easily extract this from the dump from lldb:

(lldb) p panicstr
(const char *) 0xffffffff819c1a00 “Assertion !tcp_in_hpts(tp) failed at /usr/src/sys/neti-
net/tcp_subr.c:2432”

This might be enough for someone to start debugging. I also like stack traces which we
can get with bt in lldb:

(lldb) bt
* thread #1, name = '(pid 1025) tcplog_dumper'
 * frame #0: 0xffffffff80b83d2a kernel.debug`sched_switch(td=0xfffff800174be740,
flags=259) at sched_ule.c:2297:26
 frame #1: 0xffffffff80b5e9e3 kernel.debug`mi_switch(flags=259) at kern_synch.c:546:2
 frame #2: 0xffffffff80bb0dc4 kernel.debug`sleepq_switch(wchan=0xffffffff817e1448,
pri=0) at subr_sleepqueue.c:607:2
 frame #3: 0xffffffff80bb11a6 kernel.debug`sleepq_catch_signals(wchan=0xffffffff817e1448,
pri=0) at subr_sleepqueue.c:523:3
 frame #4: 0xffffffff80bb0ef9 kernel.debug`sleepq_wait_sig(wchan=<unavailable>,
pri=<unavailable>) at subr_sleepqueue.c:670:11
 frame #5: 0xffffffff80b5df3c kernel.debug`_sleep(ident=0xffffffff817e1448,
lock=0xffffffff817e1428, priority=256, wmesg=”tcplogdev”, sbt=0, pr=0, flags=256) at kern_
synch.c:219:10
 frame #6: 0xffffffff8091190e kernel.debug`tcp_log_dev_read(dev=<unavailable>,
uio=0xfffffe0079b4ada0, flags=0) at tcp_log_dev.c:303:9
 frame #7: 0xffffffff809d99ce kernel.debug`devfs_read_f(fp=0xfffff80012857870,
uio=0xfffffe0079b4ada0, cred=<unavailable>, flags=0, td=0xfffff800174be740) at devfs_vn-
ops.c:1413:10
 frame #8: 0xffffffff80bc9bc6 kernel.debug`dofileread [inlined] fo_read(f-
p=0xfffff80012857870, uio=0xfffffe0079b4ada0, active_cred=<unavailable>, flags=<unavail-
able>, td=0xfffff800174be740) at file.h:340:10
 frame #9: 0xffffffff80bc9bb4 kernel.debug`dofileread(td=0xfffff800174be740, fd=3,
fp=0xfffff80012857870, auio=0xfffffe0079b4ada0, offset=-1, flags=0) at sys_generic.c:365:15
 frame #10: 0xffffffff80bc9712 kernel.debug`sys_read [inlined] kern_readv(td=0xfffff-
800174be740, fd=3, auio=0xfffffe0079b4ada0) at sys_generic.c:286:10
 frame #11: 0xffffffff80bc96dc kernel.debug`sys_read(td=0xfffff800174be740, ua-
p=<unavailable>) at sys_generic.c:202:10
 frame #12: 0xffffffff810556a3 kernel.debug`amd64_syscall [inlined] syscallenter(t-
d=0xfffff800174be740) at subr_syscall.c:186:11
 frame #13: 0xffffffff81055581 kernel.debug`amd64_syscall(td=0xfffff800174be740,
traced=0) at trap.c:1192:2
 frame #14: 0xffffffff8102781b kernel.debug`fast_syscall_common at exception.S:578

6 of 12

32FreeBSD Journal • March/April 2024

We can pick an interesting frame to look at from lldb too:

(lldb) frame select 12
frame #12: 0xffffffff810556a3 kernel.debug`amd64_syscall [inlined] syscallenter(td=0xfffff-
800174be740) at subr_syscall.c:186:11
 183 if (!sy_thr_static)
 184 syscall_thread_exit(td, se);
 185 } else {
-> 186 error = (se->sy_call)(td, sa->args);
 187 /* Save the latest error return value. */
 188 if (__predict_false((td->td_pflags & TDP_NERRNO) != 0))
 189 td->td_pflags &= ~TDP_NERRNO;

Getting the Kernel Buffer
Printing stuff and moving around the stack is most of what we need for kernel crash

dump debugging. The start-up message from gdb is quite nice though, showing us the last
part of the kernel message buffer as if it had come directly off the local console.

lldb doesn’t yet offer a nice start-up command like that. Thankfully, “Panic!” gives us
some hints as to how we might pull out this information ourselves. “Panic!” uses a macro
called “msgbuf” to print the kernel message buffer from a struct msgbuf.

Some poking in the FreeBSD source, and we have something similar available:

(lldb) p *msgbufp
(msgbuf) {
 msg_ptr = 0xfffff8001ffe8000 “---<<BOOT>>---\nCopyright (c) 1992-2023 The FreeBSD
Project.\nCopyright (c) 1979, 1980, 1983, 1986, 1988, 1989, 1991, 1992, 1993, 1994\n\
tThe Regents of the University of California. All rights reserved.\nFreeBSD is a reg-
istered trademark of The FreeBSD Foundation.\nFreeBSD 15.0-CURRENT #0 main-272a40604:
Wed Nov 29 13:42:38 UTC 2023\n tj@vpp:/usr/obj/usr/src/amd64.amd64/sys/GENERIC amd64\
nFreeBSD clang version 16.0.6 (https://github.com/llvm/llvm-project.git llvmorg-16.0.6-
0-g7cbf1a259152)\nWARNING: WITNESS option enabled, expect reduced performance.\nVT:
init without driver.\nCPU: 12th Gen Intel(R) Core(TM) i7-1260P (2500.00-MHz K8-class
CPU)\n Origin=\”GenuineIntel\” Id=0x906a3 Family=0x6 Model=0x9a Stepping=3\n Fea-
tures=0x9f83fbff<FPU,VME,DE,PSE,TSC,MSR,PAE,MCE,CX8,APIC,SEP,MTRR,PGE,MCA,CMOV,PAT,PSE36,M-
MX,FXSR,SSE,SSE2,SS,HTT,PBE>\n Features2=0xfeda7a17<SSE3,PCLMULQDQ,DTES64,DS_CPL,SSSE3,SD-
BG,FMA,CX16,xTPR,PCID,SSE4.1,SSE4.2,MOVBE,POPCNT,AESNI,XSAVE,OSXSAVE,AVX,F16C,RDRAND,HV>\n
AMD Features=0x2c100800<SYSCALL,”...
 msg_magic = 405602
 msg_size = 98232
 msg_wseq = 16777
 msg_rseq = 15001
 msg_cksum = 1421737
 msg_seqmod = 1571712
 msg_lastpri = -1
 msg_flags = 0
 msg_lock = {
 lock_object = {

7 of 12

33FreeBSD Journal • March/April 2024

 lo_name = 0xffffffff81230bcc “msgbuf”
 lo_flags = 196608
 lo_data = 0
 lo_witness = NULL
 }
 mtx_lock = 0
 }
}

We have a struct msgbuf globally visible in the kernel implementing the kernel’s message
buffer. lldb shows us the start of the buffer. The fields msg_wseq and msg_rseq tell us
where we have written to and where we have read from.

Reading out the unread portion of the message buffer is easy:

(lldb) p msgbufp->msg_ptr+msgbufp->msg_rseq
(char *) 0xfffff8001ffeba99 “panic: Assertion !tcp_in_hpts(tp) failed at /usr/src/sys/ne-
tinet/tcp_subr.c:2432\ncpuid = 2\ntime = 1706644478\nKDB: stack backtrace:\ndb_trace_self_
wrapper() at db_trace_self_wrapper+0x2b/frame 0xfffffe0047d2f480\nvpanic() at vpanic+0x132/
frame 0xfffffe0047d2f5b0\npanic() at panic+0x43/frame 0xfffffe0047d2f610\ntcp_discardcb()
at tcp_discardcb+0x25b/frame 0xfffffe0047d2f660\ntcp_usr_detach() at tcp_usr_detach+0x51/
frame 0xfffffe0047d2f680\nsorele_locked() at sorele_locked+0xf7/frame 0xfffffe0047d2f6b0\
ntcp_close() at tcp_close+0x155/frame 0xfffffe0047d2f6e0\nrack_check_data_after_close() at
rack_check_data_after_close+0x8a/frame 0xfffffe0047d2f720\nrack_do_fin_wait_1() at rack_
do_fin_wait_1+0x141/frame 0xfffffe0047d2f7a0\nrack_do_segment_nounlock() at rack_do_seg-
ment_nounlock+0x243b/frame 0xfffffe0047d2f9a0\nrack_do_segment() at rack_do_segment+0x-
da/frame 0xfffffe0047d2fa00\ntcp_input_with_port() at tcp_input_with_port+0x1157/frame
0xfffffe0047d2fb50\ntcp_input() at tcp_input+0xb/frame 0xfffffe0047d2fb60\nip_input() at
ip_in”...

The output isn’t formatted in a very friendly way, control characters are just printed out,
but we can read out the kernel message buffer. The output is truncated before the full
backtrace is available. Let’s try some other commands:

(lldb) x/b msgbufp->msg_ptr+msgbufp->msg_rseq
0xfffff8001ffeba99: “panic: Assertion !tcp_in_hpts(tp) failed at /usr/src/sys/netinet/
tcp_subr.c:2432\ncpuid = 2\ntime = 1706644478\nKDB: stack backtrace:\ndb_trace_self_wrap-
per() at db_trace_self_wrapper+0x2b/frame 0xfffffe0047d2f480\nvpanic() at vpanic+0x132/
frame 0xfffffe0047d2f5b0\npanic() at panic+0x43/frame 0xfffffe0047d2f610\ntcp_discardcb()
at tcp_discardcb+0x25b/frame 0xfffffe0047d2f660\ntcp_usr_detach() at tcp_usr_detach+0x51/
frame 0xfffffe0047d2f680\nsorele_locked() at sorele_locked+0xf7/frame 0xfffffe0047d2f6b0\
ntcp_close() at tcp_close+0x155/frame 0xfffffe0047d2f6e0\nrack_check_data_after_close() at
rack_check_data_after_close+0x8a/frame 0xfffffe0047d2f720\nrack_do_fin_wait_1() at rack_
do_fin_wait_1+0x141/frame 0xfffffe0047d2f7a0\nrack_do_segment_nounlock() at rack_do_seg-
ment_nounlock+0x243b/frame 0xfffffe0047d2f9a0\nrack_do_segment() at rack_do_segment+0x-
da/frame 0xfffffe0047d2fa00\ntcp_input_with_port() at tcp_input_with_port+0x1157/frame
0xfffffe0047d2fb50\ntcp_input() at tcp_input+0xb/frame 0xfffffe0047d2fb60\nip_input() at
ip_i”
warning: unable to find a NULL terminated string at 0xfffff8001ffeba99. Consider increasing

8 of 12

34FreeBSD Journal • March/April 2024

the maximum read length.
(lldb) x/2048b msgbufp->msg_ptr+msgbufp->msg_rseq
error: Normally, ‘memory read’ will not read over 1024 bytes of data.
error: Please use --force to override this restriction just once.
error: or set target.max-memory-read-size if you will often need a larger limit.

We hit a printing limit, and try as I might, I can’t convince lldb to go further. Time for a
higher tool.

Some Help From the Moon
lldb also offers a scripting interface for control, which explains why many of the com-

mands are incredibly verbose to type out. Currently, lldb supports scripting with C++, Py-
thon and has experimental support for Lua. FreeBSD ships Lua in base, and the FreeBSD
builds of lldb in 2024 include Lua support by default.

We can simply try this out with the following:

(lldb) script
>>> print(“hello esteemed FreeBSD Journal readers!”)
hello esteemed FreeBSD Journal readers!
>>> quit

With the >>> prompt indicating that we have moved into the Lua interpreter.
From “Panic!” we learn that adb the SunOS/Solaris debugger had a handy and

easy-to-understand macro for finding and printing the message buffer:

msgbuf/”magic”16t”size”16t”bufx”16t”bufr”n4X
+,(*msgbuf+0t8)-*(msgbuf+0t12)))&80000000$<msgbuf.wrap
.+*(msgbuf+0t12),(*(msgbuf+0t8)-*(msfbuf+0t12))/c

Implementing a similar mechanism with Lua should be no problem at all with that as an
example.

The lldb lua interface is generated from swig bindings, this is a C++ format for describing
interfaces between libraries. The Python and Lua bindings are generated the same way. For
any questions you have about the API or how to use it, you can figure it out from working
from the Python API documentation which is available from the lldb project. This is a very
clunky way to do things, but it is possible.

I quickly get sick of running commands in the interpreter and, considering the length of
some of them, they can be annoying to try. lldb can load your Lua script from a file once the
interpreter has been run once. From a fresh session:

$ lldb --core coredump/vmcore.1 coredump/kernel-debug/kernel.debug
(lldb) target create “coredump/kernel-debug/kernel.debug” --core “coredump/vmcore.1”
Core file ‘/home/tj/code/scripts/gdb/coredump/vmcore.1’ (x86_64) was loaded.
(lldb) script
>>> print(“hello”)
hello
>>> quit
(lldb) command script import ./hello.lua
hello from the script hello.lua

9 of 12

35FreeBSD Journal • March/April 2024

Assuming the file hello.lua contains:

print(“hello from the script hello.lua”)

The lldb Lua environment provides a lldb variable with members enabling access to the
target, debugger, frame, process, and thread. These objects map to ones described in the
Python API.

I’m not really a fan of the lldb api, it can be quite clunky to write and difficult to under-
stand if you are having a problem with your choice of function or how variables are laid out
in memory.

Once you have some experience, it gets easier to understand what it wants from you.
Let me illustrate how to use the lldb Lua bindings with an example of printing out the

message buffer from a crash dump.
From the lldb Lua variable we can access files in the dump image. A big block for me

when I first started doing core dump analysis was understanding how to locate things in
memory. There are various kernel global variables that you can access as starting points, and
most subsystems have something you can build from.

As we saw before, msgbufp is a global instance of the kernels message buffer. From lldb
Lua we can access this with:

msgbuf = lldb.target:FindFirstGlobalVariable(“msgbufp”)

This gives us an instance of a SBValue representing this instance of the struct in the
memory from the core dump. We can access the child members of the struct with the
GetChildMemberWithName method and a name such as msg_rseq.

The lldb.process object gives us the ability to read out memory from our kernel dump.
Sometimes it can take a bit of juggling to get together the correct references, addresses
and values to perform the operations you want.

With these methods, we can assemble a point to the start of the message buffer,
read it out of the core dump, and print it using Lua. I’ve put all of this into a script called
msgbuf.lua:

msgbuf = lldb.target:FindFirstGlobalVariable(“msgbufp”)

msgbuf_start = msgbuf:GetChildMemberWithName(“msg_rseq”):GetValue()
msgbuf_end = msgbuf:GetChildMemberWithName(“msg_wseq”):GetValue()
unread_len = msgbuf_end - msgbuf_start

msgbuf_addr = msgbuf:GetChildMemberWithName(“msg_ptr”)
 :Dereference()
 :GetLoadAddress() + msgbuf_start
msgbuf_ptr = lldb.process:ReadMemory(msgbuf_addr, unread_len, lldb.SBError())

print(“Unread portion of the kernel message buffer:”)
print(msgbuf_ptr)

If we run this from our lldb session we get the following output:

10 of 12

36FreeBSD Journal • March/April 2024

(lldb) command script import ./msgbuf.lua
Unread portion of the kernel message buffer:
panic: Assertion !tcp_in_hpts(tp) failed at /usr/src/sys/netinet/tcp_subr.c:2432
cpuid = 2
time = 1706644478
KDB: stack backtrace:
db_trace_self_wrapper() at db_trace_self_wrapper+0x2b/frame 0xfffffe0047d2f480
vpanic() at vpanic+0x132/frame 0xfffffe0047d2f5b0
panic() at panic+0x43/frame 0xfffffe0047d2f610
tcp_discardcb() at tcp_discardcb+0x25b/frame 0xfffffe0047d2f660
tcp_usr_detach() at tcp_usr_detach+0x51/frame 0xfffffe0047d2f680
sorele_locked() at sorele_locked+0xf7/frame 0xfffffe0047d2f6b0
tcp_close() at tcp_close+0x155/frame 0xfffffe0047d2f6e0
rack_check_data_after_close() at rack_check_data_after_close+0x8a/frame 0xfffffe0047d2f720
rack_do_fin_wait_1() at rack_do_fin_wait_1+0x141/frame 0xfffffe0047d2f7a0
rack_do_segment_nounlock() at rack_do_segment_nounlock+0x243b/frame 0xfffffe0047d2f9a0
rack_do_segment() at rack_do_segment+0xda/frame 0xfffffe0047d2fa00
tcp_input_with_port() at tcp_input_with_port+0x1157/frame 0xfffffe0047d2fb50
tcp_input() at tcp_input+0xb/frame 0xfffffe0047d2fb60
ip_input() at ip_input+0x2ab/frame 0xfffffe0047d2fbc0
netisr_dispatch_src() at netisr_dispatch_src+0xad/frame 0xfffffe0047d2fc20
ether_demux() at ether_demux+0x17a/frame 0xfffffe0047d2fc50
ether_nh_input() at ether_nh_input+0x39f/frame 0xfffffe0047d2fca0
netisr_dispatch_src() at netisr_dispatch_src+0xad/frame 0xfffffe0047d2fd00
ether_input() at ether_input+0xd9/frame 0xfffffe0047d2fd60
vtnet_rxq_eof() at vtnet_rxq_eof+0x73e/frame 0xfffffe0047d2fe20
vtnet_rx_vq_process() at vtnet_rx_vq_process+0x9c/frame 0xfffffe0047d2fe60
ithread_loop() at ithread_loop+0x266/frame 0xfffffe0047d2fef0
fork_exit() at fork_exit+0x82/frame 0xfffffe0047d2ff30
fork_trampoline() at fork_trampoline+0xe/frame 0xfffffe0047d2ff30
--- trap 0, rip = 0, rsp = 0, rbp = 0 ---
KDB: enter: panic

Lua has kindly expanded the control characters in the buffer for us giving us nice format-
ted output from the message buffer.

Better Debugging Possibilities
lldb is new on the block when it comes to kernel debugging and there are still many fea-

tures not available in the Lua environment, but it has enough functionality to be a useful
tool. Old timer gdb users might be struggling to see the value of these examples, after all
lldb adds a much more complicated syntax and it might seem like change for changes sake.

A big value that lldb and its built-in lua brings is shipping in the release FreeBSD images.
lldb Lua is freely licensed and is compatible with FreeBSD, and from the start of 2024, it was
enabled by default in CURRENT builds. This allows kernel developers and trouble shooters
to write scripts in lldb Lua and provide them to users for analysis.

kgdb has had support for gdb script for a long time, but it isn’t the most pleasant script-
ing language to program. Lua, on the other hand, while a little weird, is commonly used in

11 of 12

37FreeBSD Journal • March/April 2024

many environments and is part of the FreeBSD boot loader. I have written a tool to extract
TCP log files from crashed kernel images--the major headaches were figuring out how to
get the memory. Once I had the data, creating and writing these to files was an easy job.

Kernel dumps have everything in them and can contain sensitive information. A reason-
able scripting language makes it possible for developers to provide scripts to extract further
debugging information from a kernel image without the need to move around large core
dumps, and without needing to handle the worries of trusting a stranger with possibly sensi-
tive information.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

12 of 12

Contents

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

https://freebsdfoundation.org

38FreeBSD Journal • March/April 2024

1 of 7

For a long time, the FreeBSD project has made virtual machine (VM) disk images available
on its download site: just go to https://download.freebsd.org/snapshots/VM-IMAGES to
find a selection of pre-built images for download. These come in a variety of formats

recognized by common hypervisors such as QEMU, VirtualBox, VMWare and bhyve. The
FreeBSD project similarly distributes images for various cloud platforms, such as EC2, Azure
and GCP. As a FreeBSD user, all you need to do is select the image and create an instance,
and within a few seconds a fully installed FreeBSD system will be available.

For many users, the pre-built images are sufficient, but you might have special require-
ments that are not met by those images. In particular, until recently, all of the FreeBSD proj-
ect’s official images used UFS for the root filesystem. Of course, it was still possible to use
ZFS in a VM by one of several strategies:

1.	Keep the root filesystem on UFS but add extra disks and use them to back a ZFS pool.
2.	Boot the FreeBSD installation media in a VM and use it to install FreeBSD on a virtual

disk with ZFS as the root filesystem. The resulting VM image can be cloned and used as
a template for other images.

3.	Manually create an image by setting up a md(4) disk and then creating and importing
a ZFS pool on top of that disk, into which FreeBSD can be installed. poudriere image
currently works this way, for example.

While these strategies work, they all come with caveats:
•	option 1) makes it difficult to use boot environments;
•	option 2) requires manual effort to create and customize the template image;
•	option 3) requires root privileges and cannot be done at all from within a jail (currently

ZFS pool creation is forbidden in jails).
For a long time, I had wanted to build ZFS-based VM images locally so that I could run

the FreeBSD regression test suite on both UFS and ZFS, so in 2022, I started looking at how
difficult it would be to extend the tools we already use to make UFS images (i.e., makefs(8))
to support ZFS in some form.

makefs(8)
The FreeBSD project builds official VM images using makefs(8), a utility originating from

NetBSD. It takes one or more paths as input and generates a single file containing a filesys-
tem image populated with the contents of those paths.

makefs supports several filesystems, including UFS, FAT and ISO9660. The basic idea be-
hind its use here is to install FreeBSD to a temporary directory (e.g., with make install-
world), and then point makefs at that directory. The result is a file containing a filesystem
image whose root directory contains the FreeBSD installation.

BY MARK JOHNSTON

ZFS Images From Scratch,
or makefs -t zfs

https://download.freebsd.org/snapshots/VM-IMAGES

39FreeBSD Journal • March/April 2024

For users familiar with building FreeBSD from source, the following example might pro-
vide a clearer picture:

make installworld installkernel distribution DESTDIR=/tmp/foo
makefs -t ffs fs.img /tmp/foo
mdconfig -f fs.img
md0
mount /dev/md0 /mnt
ls /mnt/bin/sh
/mnt/bin/sh

This installs a pre-built copy of a FreeBSD distribution to /tmp/foo and then uses makefs
to generate a filesystem image in fs.img. This image can be mounted by using mdcon-
fig(8) to create a character device backed by the file. Attributes of the files in /tmp/foo,
such as mode bits and timestamps, are preserved in the resulting image.

In contrast, a traditional “live” installation of FreeBSD might look more like this:

truncate -s 50g fs.img
mdconfig -f fs.img
md0
newfs /dev/md0
/dev/md0: 51200.0MB (104857600 sectors) ...
mount /dev/md0 /mnt
cd /usr/src
make installworld installkernel distribution DESTDIR=/mnt
umount /mnt

Here, we use the newfs(8) utility to initialize an empty filesystem on the target device,
then copy files onto it. While this works, of course, it has downsides similar to the problems
with creating ZFS pools that I mentioned earlier: newfs(8) requires root privileges, and the
resulting image is not reproducible. That is, if two images are created this way from the
same pre-built FreeBSD distribution, they will not be byte-for-byte identical, for example,
because the file access and modification times will be slightly different between the two im-
ages. Reproducibility is an important security property of build systems since it makes it eas-
ier to detect malicious tampering of build outputs.

I was already familiar with makefs from writing scripts to create VM images for my own
use. As mentioned, I had wanted to be able to similarly build ZFS images, and I was not
alone; a common user complaint was that all of FreeBSD’s official cloud images were UFS-
based, even though ZFS is a very popular choice for the root filesystem on FreeBSD. So, I
spent some time thinking about how makefs-generated ZFS images might look.

makefs(8) Meets ZFS
So what does makefs actually do? A technical answer to this question requires some

knowledge of filesystem internals, but briefly: makefs initializes some global filesystem
metadata, such as a UFS/FFS superblock, and then traverses the input directory tree(s),
copying their contents into the image and adding metadata, such as directory entries, which
point to file data. Whereas one traditionally starts with an empty filesystem and then asks
the kernel to add data to it via utilities such as cp(1), makefs generates a populated filesys-

2 of 7

40FreeBSD Journal • March/April 2024

tem in a single operation. So while this means that makefs needs to know about how a
filesystem’s data and metadata is arranged on disk, it can be considerably simpler than the
kernel’s implementation of the filesystem.

makefs never needs to look up a file by name, handle out-of-space conditions, perform
buffer caching, or delete files, for example.

ZFS is large and complex, but per the observation above, a hypothetical makefs -t zfs
can ignore a lot of the details. This was important for me: I was and am currently not a ZFS
expert, and at the time, had little understanding of its on-disk format, so simplicity was the
name of the game. At this point we can ask: what exactly should makefs -t zfs do?

My goal was to support creation of VM images with ZFS as the root filesystem. More
specifically, makefs would need to:

1.	Create a ZFS pool that has a single disk vdev. There is no
need to support RAID or mirroring layouts, since for a
VM image the extra redundancy is not very useful.

2.	Create at least one dataset in the pool. The dataset
needs to be mountable as the root filesystem. In prac-
tice, a FreeBSD-on-ZFS installation comes with a dozen
or so datasets pre-created, but an initial proof-of-con-
cept can ignore this for simplicity’s sake.

3.	Populate the dataset with the contents of the input
directory trees.More specifically, for each input file,
makefs needs to allocate a dnode and copy the file into
the image somewhere. It also needs to copy attributes,
such as file permissions, of the input files.

In particular, quite a few ZFS features which affect on-
disk layout can simply be ignored. There is no need for
makefs to bother with compression or snapshots, for example. So while the task still
seemed somewhat daunting, by excluding all but the minimum necessary features, it
seemed quite doable.

Attempt #1: libzpool
As a FreeBSD kernel developer I already had some experience with OpenZFS internals,

but ZFS is a complex beast. The code is partitioned into quite a few different subsystems,
most of which have no knowledge of how data actually gets laid out on disk, and I had no
experience with the ones that do. However, it turns out that one can compile the OpenZFS
kernel module into a userspace library: libzpool.so. This is used primarily for testing the
OpenZFS code itself, but seemed like an excellent starting point for my project: libzpool.
so knows all about the ZFS on-disk layout, so I thought I could avoid learning too much
about it and instead write code that used high-level operations, similar to how commands
like zpool create simply ask the kernel to create a pool on a set of vdevs.

Without going into too much detail, this approach ended up yielding a working proto-
type, but turned out to be a dead end. A few of the reasons:

•	libzpool.so is really not suitable for “production” applications: it has no stable inter-
face, and my prototype was effectively making use of undocumented kernel APIs. If I
were to press on with this approach, the result would be fragile and difficult to maintain.

•	The code in libzpool.so is mostly unmodified kernel code, and thus creates lots of

3 of 7

ZFS is large
and complex,
but a hypothetical
makefs -t zfs
can ignore a lot
of the details

41FreeBSD Journal • March/April 2024

threads and caches file data in the ARC, all of which is unnecessary for makefs’s purpos-
es. A consequence of this is that the prototype was very slow and would consume gobs
of system memory, sometimes triggering the out-of-memory killer.

•	The result was not reproducible. If I ran the prototype twice with identical inputs, the
output would not be byte-for-byte identical.

While I had to throw away most of the prototype, writing it was a useful learning experi-
ence and helped motivate me to try a different approach.

At this point, it seemed I would have to get my hands dirty and learn about the ZFS on-
disk layout. I realized that the FreeBSD boot loader would have a similar problem: in order to
boot FreeBSD from a ZFS pool, the loader needs to be able to find the kernel file and load
it into memory. The boot loader runs in a constrained environment and thus cannot use the
kernel’s ZFS code, so clearly other people had already solved similar problems.

Attempt #2: ZFS From Scratch
Fortunately, there is a ZFS on-disk layout specification floating around the Internet; it is

rather incomplete and outdated, but it was much better than nothing. On top of that, I had
the boot loader code to look at. In some sense it solves the inverse problem that makefs
does: it just opens and reads data from a ZFS pool without writing anything, whereas
makefs creates a new pool but does not need to be able to read existing pools.

The duality with the boot loader was very useful: I could write code to create a pool, and
then test it by trying to use the boot loader to read a file (the kernel) from the pool. More
specifically, I would first install a FreeBSD kernel to a temporary directory:

$ cd /usr/src
$ make buildkernel
$ make installkernel DESTDIR=/tmp/test -DNO_ROOT

Then I can create a ZFS image and try to load it using the legacy bhyve loader:

$ makefs -t zfs -o poolname=zroot zfs.img /tmp/test
$ sudo bhyveload -c stdio -d zfs.img test

Here, bhyveload is using /boot/userboot.so, which is a copy of the FreeBSD boot load-
er that is compiled to run in userspace. It has most of the functionality of the real boot load-
er, but rather than using, say, BIOS calls or EFI boot services to read data from disk, it uses
the familiar read(2) system call to fetch data from the image file, zfs.img.

The initial goal was to get userboot.so to find and load the kernel located at /boot/
kernel/kernel in zfs.img. This was a very convenient test harness since I could easily at-
tach a debugger to bhyveload or add print statements to the loader and recompile user-
boot.so. My first milestone was to get vdev_probe() to recognize the image as a valid ZFS
pool.

vdev Labels and the uberblock
vdev_probe() looks at a disk to see if it belongs to a ZFS pool; that is, it determines

whether the disk appears to be a vdev, and if so, starts loading more metadata:

/*
 * Ok, we are happy with the pool so far. Lets find
 * the best uberblock and then we can actually access

4 of 7

https://people.freebsd.org/~markj/Zfs_ondiskformat.pdf
https://cgit.freebsd.org/src/tree/stand/libsa/zfs/zfsimpl.c?h=release/14.0.0#n2008

42FreeBSD Journal • March/April 2024

 * the contents of the pool.
 */
vdev_uberblock_load(vdev, spa->spa_uberblock);

Chapter 1 of the ZFS on-disk specification describes vdev labels and uberblocks in a
good amount of detail. The summary is that a vdev contains a block of metadata, the vdev
label, which contains metadata describing the pool to which the vdev belongs, as well as
copies of the “uberblock”, which points to the root of the vdev’s metadata tree. So, in order
to get userboot.so to find my pool, I wrote code which adds vdev labels to the output im-
age file.

At this point makefs was already making use of ZFS-specific data structures, such as
vdev_label_t and uberblock_t. Rather than duplicating the definitions used by the boot
loader, makefs shares with it a large header that contains many useful on-disk data structure
definitions.

Object Sets and the MOS
Once the loader was able to probe and recognize makefs-generated images, the next

step was to get it to mount a dataset from within the image. The loader code that handles
this is mostly contained in zfs_get_root().

To understand the implementation of zfs_get_root(), it is worth reading chapter three
of the ZFS on-disk specification, which describes object sets. While the specification quickly
gets into the gory details, it is worth reviewing the high-level
structures that are used to represent data in ZFS.

ZFS has “block pointers”, which really just refer to the
physical location of a block of data on a vdev (from makefs’s
perspective, this is just an offset into the output image file).
A ZFS metadata object, of which there are several dozen
types, is represented by a 512-byte “dnode”. A dnode con-
tains various bits of metadata about the object, such as its
type and size, and may also contain block pointers referring
to additional data. For example, a file stored in a ZFS data-
set is represented by a dnode (of type DMU_OT_PLAIN_FILE_
CONTENTS), much like an inode in a traditional Unix filesys-
tem. Finally, an “object set” is a structure which contains an
array of dnodes; a dnode is uniquely identified by the object
set to which it belongs and its index in the array.

A ZAP (ZFS Attribute Processor) is a dnode which contains a set of key-value pairs. ZAPs
are used to represent many higher-level ZFS metadata structures. For example, a Unix direc-
tory is represented by a ZAP whose keys are filenames and values are dnode IDs for the cor-
responding files.

The MOS (meta object set) is the root object set of the pool. The uberblock contains a
pointer to the MOS, and from the MOS it is possible to reach all other metadata (and thus,
data) in the pool. With this information, it is a bit easier to understand zfs_get_root(): it
takes the dnode with ID 1 (which it expects to be a ZAP object), uses it to find a ZAP object
containing pool properties and looks up the value of the “bootfs” property, which is used to
find the dnode of the root dataset.

5 of 7

The next step was
to get it to mount
a dataset from within
the image.

https://cgit.freebsd.org/src/tree/usr.sbin/makefs/zfs/vdev.c?h=release/14.0.0#n163
https://cgit.freebsd.org/src/tree/sys/cddl/boot/zfs/zfsimpl.h?h=release/14.0.0#n947
https://cgit.freebsd.org/src/tree/stand/libsa/zfs/zfsimpl.c?h=release/14.0.0#n3334

43FreeBSD Journal • March/April 2024

When creating a pool, makefs allocates and begins populating the MOS in
pool_init(). Once userboot.so was able to process the MOS, it became possible to im-
port a makefs-generated pool, at which point I started using zdb(8) to inspect the generat-
ed pool. zdb’s command-line usage is rather obscure, but simple invocations like

zdb -dddd zroot 1

which dumps dnode 1 from the MOS, were very useful for figuring out what OpenZFS ex-
pects to see when importing a pool. For example, when dumping a ZAP object, zdb can
print all of the key-value pairs in the ZAP. Many configuration ZAP keys have values which
are dnode IDs, so zdb can easily be used to inspect different “layers” of the pool and dataset
configuration.

Datasets and Files
ZFS datasets have names and are organized into a tree. The root dataset is named after

the pool itself (e.g., “zroot”), and names of child datasets are prefixed by the parent’s name.
While my initial prototype of ZFS support for makefs auto-
matically placed all files in the root dataset, this was not suf-
ficient to be able to create root-on-ZFS VM images:
bsdinstall and other FreeBSD installers automatically cre-
ate a number of child datasets. Some, such as zroot/var,
are never mounted but only exist to provide settings which
are inherited by child datasets, such as zroot/var/log. My
goal was for makefs to be able to create a tree of datasets
which matches the layout provided by bsdinstall.

The release image-building script demonstrates the syn-
tax for creating multiple datasets. Each dataset is described
by a -o fs option which contains the dataset name and a
semicolon-separated list of properties. Only a small number
of properties - as described in the
zfsprops(8) manual page — are currently supported.

When makefs -t zfs finishes initializing various struc-
tures, it begins to process the input directory trees. Each input file is represented by a fsno-
de structure, and these structures are organized into a tree which represents the file tree.
First, makefs determines which fsnode corresponds to the root of each mounted dataset.
Then, it traverses the tree of fsnodes, allocating a dnode for each file; this happens in the
context of a dataset which determines the object set from which the dnode is allocated.

To copy a regular file makefs allocates a dnode from the current object set and, in a loop,
allocates blocks of space from the output file, and copies data from the input file into the
allocations. ZFS supports power-of-2 block sizes ranging from 4KB to 128KB, so smaller files
do not create excessive internal fragmentation. All allocated blocks in the image are tracked
using a bitmap which is updated by the vdev_space_alloc() function.

Allocated space tracked by the bitmap must be recorded in the output image; ZFS uses
a central data structure, the “space map,” to track which regions of a vdev are currently al-
located. makefs uses the bitmap as an internal representation of all block allocations, and
uses it to generate the space map as one of the final steps of image generation, once all
block allocations have been done.

6 of 7

The root dataset
is named after the pool
itself and names
of child datasets
are prefixed by
the parent’s name.

https://cgit.freebsd.org/src/tree/usr.sbin/makefs/zfs.c?h=release/14.0.0#n544
https://cgit.freebsd.org/src/tree/release/tools/vmimage.subr?h=release/14.0.0#n190
https://cgit.freebsd.org/src/tree/usr.sbin/makefs/zfs/fs.c?h=release/14.0.0#n1048
https://cgit.freebsd.org/src/tree/usr.sbin/makefs/zfs/fs.c?h=release/14.0.0#n548
https://cgit.freebsd.org/src/tree/usr.sbin/makefs/zfs/vdev.c?h=release/14.0.0#n235

44FreeBSD Journal • March/April 2024

Conclusion
Adding ZFS support to makefs took a fair bit of effort but ultimately resulted in an imple-

mentation that I believe will be useful to many FreeBSD users, while avoiding a large main-
tenance burden. There is rougly 2,600 lines of ZFS-specific code in makefs (out of 15,000
lines in total), which is reasonably small. There is also a regression test suite which provides a
good amount of coverage.

Of those 2,600 lines, over 100 are calls to assert() and so simply verify invariants. These
assertions were very useful during development, since a lot of code was written in an in-
complete manner just to get the boot loader working, and fleshed out more fully later on;
they served to document the limitations of various functions and helped catch many bugs
as I added more and more functionality.

Now that FreeBSD 14.0 has shipped and root-on-ZFS VM images are available, I hope
that many users are taking advantage of this new feature. A number of bugs were found
and fixed during the release cycle, so at least some users have been trying it out. Currently
there are no enhancements planned for makefs -t zfs but this may change in response
to feedback — please submit a bug report if you see any room for improvement.

MARK JOHNSTON is a software developer and FreeBSD src developer living in Toronto,
Ontario, Canada. When not sitting in front of a computer he enjoys playing in a city dodge-
ball league with friends.

7 of 7

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

Contents

https://cgit.freebsd.org/src/tree/usr.sbin/makefs/tests/makefs_zfs_tests.sh?h=release/14.0.0
mailto:maurer.jim@gmail.com

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

https://freebsdfoundation.org/donate

46FreeBSD Journal • March/April 2024

Version control has been around for a long time. Having a way to keep a certain ver-
sion of a file in a state where it is retrieved is the start of our journey. After all, that’s
what backup software is for. Some people use version control systems (VCS) that

way, but that only scratches the surface. The valuable parts of VCS is to be able to review
what has changed in the file over its history. When using it with other people to keep im-
portant project files in sync with everyone else, features like blaming, diffing, branching and
merging become even more relevant. These features make collaboration on anything from
text, source code, configuration files, and anything worth sharing within a group possible
in the first place. Most big projects that have a large set of those files under version control
would simply be too tedious to maintain without
sophisticated tooling around it. Version control
systems have come and gone, both from com-
mercial and open source vendors. Many of them
implement a basic set of functionality that has
been established by the people using it, and in-
troducing a whole new set of terminology and
complicated tooling is often seen as a hindrance
to adoption.

Each code change in the long history of the
FreeBSD project has had a descriptive text, called
the commit message, attached to it. What may
seem like a nuisance for some is actually help-
ful when looking for problems that are rooted in the past. Why was a change made 15 years
ago? Who made that change, what other files were touched by the same commit, and what
are the actual lines of code that were affected? These are all questions that not only the
diffs that the VCS produces can relate, but also the commit message is a valuable help in
understanding what is going on in the code today. This often bridges the past to the future
since Unix systems have been around for a while and are running on hardware that people
who committed the changes in the past could not possibly conceive.

With FreeBSD being so old, preserving that rich history is important. Particularly when
there is a need to switch to a different version control system. Over time, FreeBSD has used
CVS, then migrated to Subversion, and now uses git. (I’m fairly sure there was also RCS in-
volved in the early days.) Each time such a migration took place, one primary goal was to
preserve every single change made, along with the commit message.

BY BENEDICT REUSCHLING

1 of 8

Enhance Your Git Experience

PRACTICAL

Each code change
in the long history
of the FreeBSD project
has had a descriptive
text attached to it.

47FreeBSD Journal • March/April 2024

Switching version control systems is sometimes necessary because a vendor goes out of
business or something better comes along that people find more appealing than the cur-
rent solution. The best is the enemy of the good. Git has become the de-facto standard for
version control these days, even if it has some rough edges and a bit of a learning curve. In
my view, both as a user/consumer of the FreeBSD project as well as a committer, it took a
while to get familiar again and to make git a tool that works for me and not the other way
around. I may still not totally grasp all of the inner workings, but luckily, I do not have to. De-
velopers working on the src and ports trees also use a lot more of the features like branch-
ing, merging, tagging, cherry-picking, rebasing, and others that are not required in the
documentation repository. Still, sometimes a typo fix in a ports description or a man page
requires people like me to also get at least a basic understanding of these concepts to do
the right thing.

It’s also a question of how often something is
used. If I use a feature only twice per year, I may
need to look it up again because the last time I
did was a while ago. The basics of cloning a fresh
tree, pulling updates, making changes, commit-
ting, and pushing them are all too familiar once
you’ve done it regularly. I compare it to basic vi
usage. I can open a document, make changes,
save, and exit just fine. But the other features that
a powerful editor like vi and friends provides may
stay hidden from me forever. Same with git: it has
a lot more under the hood which users do not
know about or even need. More often than not though, it makes life easier—even for the
basic cases—to have a bit of knowledge and configuration around these advanced features.
And this holds not only for a developer, but also for a user.

FreeBSD 14 deprecated the portsnap utility which a lot of people used to get a new or
updated version of the ports tree. Instruction in the handbook and other places now directs
people to check out the ports tree directly from git. The same is true when a user needs
a copy of the src tree, because they need to recompile the kernel module for VirtualBox.
These are all good use cases, but there is a catch: both the src and ports trees take a long
time to clone because of the long and rich history described above. Let’s see if we can add
some configuration and tools that speeds up the process. We’ll also learn about other neat
features that git provides, both for Joe random user as well as Jane developer.

Faster Cloning
First, install git on FreeBSD by running pkg install git. Since we do not have a ports

tree yet and there is no more portsnap, that can turn into a chicken and egg problem on
a system that does not have direct access to the FreeBSD mirrors. A poudriere machine in
your local network may be the solution here, or download the file on a different machine,
copy over the binary, and use pkg install ./<packagename> to install it.

Note that the git port itself contains a good amount of configurable options. Since we’re
starting out, we ignore that for now and revisit some of these when we feel more experi-
enced. If you discover something useful, then consider blogging about it or write an article
for the FreeBSD Journal. After all, why do I have to do all the writing work?

2 of 8

If I use a feature
only twice per year,
I may need to look
it up again.

48FreeBSD Journal • March/April 2024

Once git is available, we can return to our use case above: downloading a copy of the
ports tree. The FreeBSD Handbook Chapter 4 tells us that we can either get the HEAD
branch (the latest and greatest) or be a bit less on the bleeding edge and get the quarter-
ly branch. Whichever we chose, we get presented with the all too familiar git clone com-
mand. That’s all fine and good, but it takes a long time to finish downloading all those files
and directories. Let’s look at the quarterly branch at the time of writing this article. I’ll use
the time(1) command to measure the download time.

$ time git clone https://git.FreeBSD.org/ports.git -b 2024Q1 /usr/ports
Cloning into '/usr/ports'...
remote: Enumerating objects: 6125935, done.
remote: Counting objects: 100% (960/960), done.
remote: Compressing objects: 100% (142/142), done.
Receiving objects: 100% (6125935/6125935), 1.20 GiB | 36.28 MiB/s, done.
remote: Total 6125935 (delta 925), reused 833 (delta 818), pack-reused 6124975
Resolving deltas: 100% (3700108/3700108), done.
Updating files: 100% (158490/158490), done.
git clone https://git.FreeBSD.org/ports.git /usr/ports
0.00s user 0.03s system 0% cpu 3:34.48 total

Bandwidth aside, this 3:34 is too long for me. We can do better than this. Since we do not
need all the history and just the latest version of files, a shallow clone using --depth-1 is
much faster.

time git clone --depth=1 https://git.FreeBSD.org/ports.git /usr/ports
Cloning into '/usr/ports'...
remote: Enumerating objects: 194509, done.
remote: Counting objects: 100% (194509/194509), done.
remote: Compressing objects: 100% (182218/182218), done.
remote: Total 194509 (delta 11904), reused 120301 (delta 5787), pack-reused 0
Receiving objects: 100% (194509/194509), 85.40 MiB | 10.48 MiB/s, done.
Resolving deltas: 100% (11904/11904), done.
Updating files: 100% (158490/158490), done.
git clone --depth=1 https://git.FreeBSD.org/ports.git /usr/ports
0.01s user 0.01s system 0% cpu 28.709 total

Much faster indeed (29s) and I get exactly what I want. What if I need the full history be-
cause I’m working on a bug? Then I can use a filter function to first get the whole commit
history, but not the history. The latter may come as a separate step. I’m looking to reduce
the time to download, so let’s try this:

time git clone --filter=blob:none https://git.FreeBSD.org/ports.git /usr/ports
Cloning into '/usr/ports'...
remote: Enumerating objects: 3706789, done.
remote: Counting objects: 100% (794/794), done.
remote: Compressing objects: 100% (82/82), done.
remote: Total 3706789 (delta 771), reused 721 (delta 712), pack-reused 3705995
Receiving objects: 100% (3706789/3706789), 704.87 MiB | 48.79 MiB/s, done.
Resolving deltas: 100% (2043361/2043361), done.
remote: Enumerating objects: 152073, done.
remote: Counting objects: 100% (63494/63494), done.
remote: Compressing objects: 100% (61224/61224), done.

3 of 8

49FreeBSD Journal • March/April 2024

remote: Total 152073 (delta 7810), reused 2276 (delta 2270), pack-reused 88579
Receiving objects: 100% (152073/152073), 78.98 MiB | 10.93 MiB/s, done.
Resolving deltas: 100% (11301/11301), done.
Updating files: 100% (158490/158490), done.
git clone --filter=blob:none https://git.FreeBSD.org/ports.git /usr/ports
 0.00s user 0.03s system 0% cpu 1:51.29 total

Git divided the work into two parts: first, all blobs (think files here) get filtered out and
fetches history at first. In the second step, the blobs followed. This was faster than a full
clone, but slower than the shallow copy. There was also a difference in the retrieved sizes,
which contributed to the speedup. In the regular clone, we received 1.20 GB. The two-step
process of the blobless clone let git receive 704.87 MB of history followed by 78.98 MB. This
benefit comes with a drawback though: when I have found the bug and I want to know
when this was introduced, the git blame operation needs to fetch those revisions from
the server first. If I’m on the road without network access, I’m out of luck. The full clone
could give me the information, as it has all the history already retrieved. Again, for non-de-
velopers interested in getting the files themselves, this does not matter much and the ben-
efit is a better download time.

Scaling Up
Imagine you were working on the man pages, which reside in the src tree. Download-

ing the whole kernel, userland, tools, and everything in between is a lot for the initial clone.
What if you only occasionally work on those man pages? Surely there are changes made by
others, which we need to be aware of. Wouldn’t it be nice if our system would fetch those
changes for us, so that our local copy does not drift too far away from the top of the tree?
The scalar tool that is part of git solves it: fast downloads of a big repository and retriev-
ing changes from upstream in regular intervals. This puts the local clone into maintenance
mode, which is a fancy word for this functionality. Here is how to use it: replace git with
scalar, the rest of the command is identical.

time scalar clone https://git.FreeBSD.org/src.git /usr/src
Initialized empty Git repository in /usr/src/src/src/.git/
remote: Enumerating objects: 2386494, done.
remote: Counting objects: 100% (258756/258756), done.
remote: Compressing objects: 100% (16493/16493), done.
remote: Total 2386494 (delta 253705), reused 244654 (delta 242263), pack-reused 2127738
warning: fetch normally indicates which branches had a forced update,
but that check has been disabled; to re-enable, use '--show-forced-updates'
flag or run 'git config fetch.showForcedUpdates true'
warning: fetch normally indicates which branches had a forced update,
but that check has been disabled; to re-enable, use '--show-forced-updates'
flag or run 'git config fetch.showForcedUpdates true'
remote: Enumerating objects: 20, done.
remote: Counting objects: 100% (17/17), done.
remote: Compressing objects: 100% (17/17), done.
remote: Total 20 (delta 0), reused 0 (delta 0), pack-reused 3
Receiving objects: 100% (20/20), 196.11 KiB | 16.34 MiB/s, done.
warning: fetch normally indicates which branches had a forced update,
but that check has been disabled; to re-enable, use '--show-forced-updates'
flag or run 'git config fetch.showForcedUpdates true'

4 of 8

50FreeBSD Journal • March/April 2024

branch 'main' set up to track 'origin/main'.
Switched to a new branch 'main'
Your branch is up to date with 'origin/main'.
crontab: no crontab for root
scalar clone https://git.FreeBSD.org/src.git
0.01s user 0.00s system 0% cpu 31.971 total

Ignore those warnings for now, the process finishes nonetheless. There is something
about crontab(1) here, responsible for fetching updates in regular intervals. To convert an ex-
isting repository to use scalar, no need to clone it again: run scalar register in the root
of your repository and it will convert the local copy to use it. Neat! The scalar command will
set up a crontab entry. If you do not have a user-specific crontab (like I have here for the
root user), then run crontab -e to set it up. If all went well, git adds an entry for scalar to
run:

BEGIN GIT MAINTENANCE SCHEDULE
The following schedule was created by Git
Any edits made in this region might be
replaced in the future by a Git command.

29 1-23 * * * “/usr/local/libexec/git-core/git” --exec-path=”/usr/local/libexec/git-
core” for-each-repo --config=maintenance.repo maintenance run --schedule=hourly
29 0 * * 1-6 “/usr/local/libexec/git-core/git” --exec-path=”/usr/local/libexec/git-core”
for-each-repo --config=maintenance.repo maintenance run --schedule=daily
29 0 * * 0 “/usr/local/libexec/git-core/git” --exec-path=”/usr/local/libexec/git-core”
for-each-repo --config=maintenance.repo maintenance run --schedule=weekly
END GIT MAINTENANCE SCHEDULE

Adjust those entries to your own needs or leave them as they are. If the machine has a
proper mail setup, you’ll receive messages containing the fetched revisions when the cron-
jobs have run. Another thing that scalar clone and the associated maintenance jobs do
is add an entry to your git configuration file, aptly named .gitconfig.

[scalar]
repo = /usr/src
[maintenance]
repo = /usr/src

This brings us right into git’s configuration file.

Create Your (commit) History Everyday
Chances are that you are working on multiple repositories over time: one for work, an-

other for a private project, and contributing to your favorite open source project. The con-
figuration for those cloned repositories may be different. For example, you may use your
corporate email to identify yourself in your commits, which may not be appropriate or even
allowed when committing to a private project. As such, we can have a project-specific .git/
config as part of the repo and a global one that applies to any and all repositories you’re
working on.

The global .gitconfig is in your home directory. You can either directly edit that file (if
you know what you are doing) or use git to manage the contents of the file and set proper
values. The latter uses this syntax:

5 of 8

51FreeBSD Journal • March/April 2024

git config --global NAME VALUE

For example, to register my name for commits, I run:

git config --global user.name Benedict Reuschling

This results in an entry like this in .gitconfig:

[user]
 name = Benedict Reuschling

You can see that there are categories in brackets for entries like user (email is under there
and you better set it, too). Others are commit, diff, or branch.

Changing Commit Behavior
Torches and pitchforks aside, I do not like to use nano to write my commit messages. To

define your own editor, execute this command:

git config --global core.editor nvim

You almost always want to set this as a global option. Having this in a project .git/con-
fig and committing it will cause productivity to fall sharply as your other contributors will
start another holy editor war resulting in a lot of changes in the repo with nothing but try-
ing to change it to their own personal favorite. “Well done”, is what you will remember as the
last words of your sarcastic boss as he closes the company door behind you forever on the
same day.

There are other configuration settings that (more positively) affect your commit experi-
ence. There are too many to list here and the defaults are fine. Fiddling with some options
can change your git experience somewhat and may remove some personal annoyances
(see below). See git-config(1) for details.

How about being a bit more sophisticated and defining aliases for common but tedious
to type commands? That’s were the alias section comes in handy. I have these defined:

[alias]
 last = last -1 HEAD
 lg = log --graph --all --pretty=format:'%Cred%h -%C(yellow)%d%Creset %s %Cgreen(%ci)
%C(bold blue)<%an (%ae)>'

Similarly, when looking at the log, I’d like to see at least these fields: commit, the author,
the date the author made the change, plus the commit and its date. This is achieved by
looking at git-log(1) and figuring out that the option is called fuller:

git config --global format.pretty fuller

In my repository, I can run git last to run the equivalent of git last -1 HEAD. Get-
ting totally fancy with colors and all, I like the command git lg even more when thinking
about how few keystrokes it requires now. Try it out for yourself and thank me later.

When I do the actual commit, I want to see what gets committed. Git displays the diff
between the head revision and my own changes below the text area for the commit mes-
sage with this setting:

git config --global commit.verbose true

6 of 8

52FreeBSD Journal • March/April 2024

Your Signature, Please
Speaking of commits, why don’t you sign your commits? “Well, the GPG/PGP setup is

too complicated” may be an answer. There is a solution for that: use SSH instead. On ser-
vices such as GitHub or your corporate (or private) GitLab instance, you have already up-
loaded a public key to pull repositories over SSH. Signing your commits with the same key
gives your changes some extra credit. This is often honored with a “signed” icon or label
next to the commit on those platforms. The setup is so easy, I wonder why this is not the
default by now. Here’s how:

git config --global gpg.format ssh
git config --global user.signingKey ‘ssh-ed25519 AAAAC3(...)34rve user@host’

It’s debatable if you want to use the same SSH key everywhere. If not, remove the
--global option from the last line above and make that change for each repo with its own
key.

Commits can now go like this:

git commit -S

To always sign, make it the default:

git config --global commit.gpgsign true

But what is this? When running git show --show-signature does not show our sig-
nature, but displays an error message instead. Not cool! Good for us, the message also tells
us what to change: gpg.ssh.allowedSignersFile is the option we need to change.

Git complains because SSH does not build a web of trust that signs keys by others. In-
stead, we need to tell git which keys we are trusting. A separate file contains all trusted SSH
signatures. Since we are orderly people, let’s put this file in ~/.config/git/allowed_sign-
ers (create the paths if they don’t exist by now).

The content of allowed_signers is as follows:

email ssh-ed25519 ssh_public_key comment

Keen eyes will recognize it as the same format that ssh-keygen(1) uses. We need to at
least trust our own SSH key, so put it there. Repeat this for all the other people in your circle
who contribute to the repo and sign their commits, too. To teach git about this file, add yet
another configuration option (the one the error message complained about earlier):

git config --global gpg.ssh.allowedSignersFile “~/.config/git/allowed_signers”

Retry the git show --show-signature command (and create an alias for it) to see
the error message replaced by the git signature.

Fixing Minor Annoyances
To update your local copy, it’s suggested that you run git pull --ff-only, which is

the default behavior. If you keep forgetting to add the parameter, then set it as the default
pull behavior like this:

git config --global pull.ff only

Of course, you could create an alias for it. This is one of those “fire-and-forget” settings
you do not need to revisit in the future.

7 of 8

53FreeBSD Journal • March/April 2024

When looking at diffs, I always wondered why git uses a/ and b/ to distinguish the files
from each other. I do not need those, the filenames speak for themselves. I found that dis-
abling this behavior is possible with this option:

git config --global diff.noprefix true

Speaking of diffs, I would like to see at least 5 lines of context around my changes. That is
a personal preference, but anyone can set it to their liking with this option:

git config --global diff.context 5

Working on an international project like FreeBSD has taught me that there are multiple
ways to write a date. The default display that git uses is Fri Mar 01 12:34:56 2024. All
fine with that, but I’m used to the following way: 2024-03-01 12:34:56. This option sets it
exactly how I like it:

git config --global log.date iso

Another thing that I found odd was the order in which git lists branches when running
git branch. I would like to have the branch with the most recent commit at the top and
not some other (random?) order. To change this, my .gitconfig contains this:

git config --global branch.sort -committerdate

Now I see exactly which branch received the most recent changes. Time to merge!

Conclusion
My configuration will probably grow over time as I discover other useful options. Git is

flexible in its configuration. The defaults are fine for most people and changes are easy to
make. This article should get you started writing your own config and ideally reduce some
of the teeth grinding involved when working with git.

References:
https://blog.gitbutler.com/git-tips-and-tricks/
https://jvns.ca/blog/2024/02/16/popular-git-config-options/
https://blog.dbrgn.ch/2021/11/16/git-ssh-signatures/

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project
and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

8 of 8

Contents

https://blog.gitbutler.com/git-tips-and-tricks/
https://jvns.ca/blog/2024/02/16/popular-git-config-options/
https://blog.dbrgn.ch/2021/11/16/git-ssh-signatures/
https://www.bsdnow.tv/

54FreeBSD Journal • March/April 2024

Last September, I had the pleasure of traveling to the city of Coimbra, Portugal, where
the annual European technical conference on BSD systems, EuroBSDCon, took place.

Although I had already been to Portugal a few times, in the Douro valley near Por-
to, in Porto itself, or in Lisboa, I had never had the opportunity to learn about Coimbra. The
city was an ancient capital of the Kingdom of Portugal, almost a thousand years ago, and,
today, is a major cultural center and a vibrant city renowned for its university, one of the old-
est in the world. Its region is the third most populated of Portugal, and the city has one of
the highest per capita incomes in the country. Hilly, downtown Coimbra, called “Baixa”, is
made of magnificent ancient buildings—especially the university’s historic ones. The confer-
ence premises were only a few minutes away, giving even the attendees on tight schedules
a glimpse of the architecture and atmosphere of this enchanting medieval city.

The opportunity to meet in-person with a lot of developers was very exciting, and I was
fortunate to be very well served in this regard. The talks and presentations I attend-
ed were great. Summaries are provided below based on my personal notes,
with the hope to pique your curiosity about these topics. You can also
find slides for most of the talks on the conference website at
https://2023.eurobsdcon.org/slides/, and video recordings
on the EuroBSDCon YouTube channel.

BY OLIVIER CERTNER

1 of 8

EuroBSDCon 2023
Conference Report

https://2023.eurobsdcon.org/slides/

55FreeBSD Journal • March/April 2024

FreeBSD’s Developer Summit
Thanks to Joseph Mingrone from the FreeBSD Foundation, as a newly contracted gen-

eral developer, I was invited to attend the developer summit on Thursday and Friday. At the
introductory session, approximately 30 persons presented themselves and their connection
to the project. I already knew almost half of them by name and had seen a few of them on
videos or conference calls but hadn’t met a single one in person. Surprisingly, I don’t recall
having seen or met any of them at EuroBSDCon 2017 in Paris, my only other BSD confer-
ence so far. Speaking of which, let me write a belated, but big thank you to Jean-Sébastien
Pédron for taking time to introduce me to various people at that earlier conference.

A significant contingent from the FreeBSD Foundation was in attendance, as well as del-
egations from Netflix and Beckhoff, but also several freelance developers, faculties, and
other professionals not working on FreeBSD by day, but managing to be quite active in the
community, such as Guido van Rooij, one of the old-timers and a member of the EuroBSD-
Con Foundation, whom I would like to thank for his
warm welcome.

The first session was a report from the FreeBSD
Foundation and its various on-going projects, such
as improving the installer (Pierre Pronchéry), Wi-Fi
support (Bjoern Zeeb, En-Wei Wu), RISC V support
(Mitchell Horne), bhyve (John Baldwin, Mark John-
ston), fixing pressing security issues (John Baldwin),
re-implementing libc’s string functions with SIMD
(Robert Clausecker), implementing SU+J snapshots
(Kirk McKusick), improving CI and fixing ports (Moin
Rahman), making FreeBSD a Cloud Init platform
(Mina Galić), importing OpenSSL 3 in base (Pierre
Pronchéry), fixing rtprio(2) and rationalizing sched-
uling priorities, both for applications and internally (by
yours truly; still a work in progress as of this writing). I honestly couldn’t keep track of all proj-
ects, so let me apologize for anything I missed and advise the interested reader to browse
the Foundation’s blog (at https://freebsdfoundation.org/blog) and the developer summit’s
wiki page (https://wiki.freebsd.org/DevSummit/202309) for more information.

This was followed by a keynote talk by Justin Gibbs on imagining the next 30 years (since,
as you must know, FreeBSD turned 30 last year). His main message, through recollections of
his own involvement with the project, both technically and in establishing the Foundation,
was to foster a “trying in order to be successful” attitude and to ask everyone: “What would
you do if you weren’t afraid?” This prompted an exchange among participants, with a lot of
ideas thrown on the table, including:

•	Become the OS for smartphones, IoT, any mobile computing.
•	Be the best operating system to run AI workloads.
•	Become a large group that can help each other grow (mentoring, teaching).
•	Have people under 20 with limited budget install FreeBSD on inexpensive hardware.
•	A point-and-click jail deployment system to use instead of Docker.
•	Spread the culture of upstreaming, convince involved businesses that it is in their best

2 of 8

Conference Report

“What would you do

if you weren’t afraid?”

—Justin Gibbs

https://freebsdfoundation.org/blog
https://wiki.freebsd.org/DevSummit/202309

56FreeBSD Journal • March/April 2024

interest, have them allow their experienced developers to engage more with the com-
munity.

•	CI, automatic regression testing. In general, many more tests.
This synthetic list is my own, so I apologize if I’ve left out or misunderstood some points.
Sergio Carlavilla Delgado then presented the web-

site for a new project he is working on and encour-
aged people to give feedback. A more mature front
page was distributed around a month after the event
through mailing lists, and it was quite exciting to see
the progress made and the gap between it and our
existing website.

Greg Wallace, the Foundation’s Director of Part-
nerships & Research, organized a SWOT (Strengths,
Weaknesses, Opportunities, Threats) Session, with
again lots of ideas exchanged. Listing all of them
here would be too long, and Greg has produced a
document with all the output. It can be read at
https://wiki.freebsd.org/DevSummit/202309 (scroll to
find the “community SWOT” line, referencing a PDF
attachment).

We were then greeted with a surprise talk by Jordan Hubbard who, if I recall correct-
ly, was “by chance” spending a few days near Coimba (are we supposed to really believe
that?). I remember it as a great depiction of project history, but also as a focused talk on
what currently matters from his perspective (he’s working with NVIDIA), and what he thinks
FreeBSD would be wise to embrace. I only have a few notes that probably won’t do it justice,
but here’s the gist. AI is now “the” market, just as networking and mobile were before. Any-
thing of significance in AI cannot run on a single GPU, nor on a single node for that matter.
Consequently, speed of communication is king. Direct communication between CPUs and
GPUs, or CPUs and DPUs, must be supported by the kernel. UCX (see openucx.org) is the
successor to Infiniband verbs. Additionally, inference in AI will happen at the edges.

I began the first evening by chatting with Ruslan Bukin, first about his initial RISC-V port
for FreeBSD, then shifting to various non-technical subjects such as special, mostly low-fat,
diets, or French engineering’s high quality when it comes to bicycle parts. In the process, I
found myself invited to a Netflix dinner with Jonathan Looney, Warner Losh, Gleb Smirnoff,
John Baldwin (and Ruslan of course), where I spent most of the time listening to the conver-
sations while enjoying delicious seafood. I don’t know how Ruslan managed it, but thanks a
lot to him for dragging me in.

The next day started with a talk by Bojan Novkovic on an experimental kernel bench-
marking framework called “kbench”. Its goal is to facilitate kernel testing in various ways by
standardizing the flow for several use cases, helping check reproducibility and catch perfor-
mance regressions. It could also be a good vehicle for research projects. Its Python scripts
fetch, build, and run benchmarks from a particular, pre-assembled set. Bojan’s short-term
goals are to expand the benchmark pool and add tracking for more metrics (dtrace(1),
libxo(3)-based utilities, pmc(3)). A longer-term step would be to ease collected data’s
post-processing. The framework can be found at https://github.com/bnovkov/kbench.

Conference Report

“AI is now ‘the’ market,

just as networking

and mobile were before.”

— Jordan Hubbard

3 of 8

https://wiki.freebsd.org/DevSummit/202309
https://openucx.org
https://github.com/bnovkov/kbench

57FreeBSD Journal • March/April 2024

Loosely connected to the previous talk was Ruslan Bukin’s presentation of his Hardware
Trace Framework (hwt(9)). It relies on dedicated hardware support built into CPUs, name-
ly Processor Trace (PT) for Intel, and the CoreSight and Statistical Profiling Extensions (SPE)
technologies from ARM. The framework’s kernel side weights 3,5k lines, with scheduler and
mmap() hooks, ioctl-based trace context management, code to support the /dev/hwt
devices and multiple backends. hwt(1) can be used to choose the mode of operation, con-
figure address range filtering and perform process management and symbol lookup. Core-
Sight is the oldest technology from ARM and it offers only a single stream per CPU. The
backend for it can be found in-tree under sys/arm64/coresight and is fully functional.
Some code snippets to support Intel PT are available. ARM Ltd. is currently working on the
SPE backend.

Changing subject to ports and packages, Michael Reim presented “Ravenports”, the lat-
est take on a new ports system started by John Marino in 2017. Michael is using it as he is
working for a small hosting company in Germany that started on FreeBSD but is mostly Li-
nux today. Its core features are a high concurrency build system with a high level of automa-
tion as necessary for a small maintainer team, support for sub packages and variants (corre-
sponding somewhat to FreeBSD’s flavor it seems), multi-platform support (all BSDs, Linux,
Solaris, currently on hold, macOS dropped), self-contained (including toolchain, GCC-based,
currently 13.2), with binary bootstrap, and with very up-to-date software versions. Some
drawbacks compared to FreeBSD’s ports are that it isn’t currently portable to niche or ob-
solete ISAs (which I suspect may have to do with the non-availability of a GNAT-based Ada
compiler), is only lightly tested, and has a much lower port count.

In the evening, when I contacted Joe about his plans, he responded by inviting me to
a follow-up dinner to a core team and Foundation meeting, where I could chat with Deb
Goodkin, Greg Wallace, Li Wen-Hsu and Ed Maste from the Foundation, and core team’s
Mateusz Piotrowski, all of whom were all very friendly and welcoming.

The Conference
Henning Brauer, EuroBSDCon Foudation’s CTO (read: Chief Trolling Officer) opened the

conference with humor, kindness, and practical information on how to get beverages and
how to locate the different rooms and zones of interest. He introduced a keynote by Paula
Alexandra Silva on “Facilitating Change: Embracing Gender Diversity in Computer Science”.

As the first technical talk, I attended John Baldwin’s NVMe over Fabrics (NVMe-oF) in
the FreeBSD project. The aim of this technology is to permit the use of the NVMe interface
(greater parallelism, lower latency) with devices that are not physically connected to the re-
questing computer, but are rather accessed over TCP, RDMA or Fibre Channel. For a reason
I don’t recall, I unfortunately missed the outline. Trying to make sense of my notes, I built
the following short summary, to be taken with a grain of salt perhaps. FreeBSD’s implemen-
tation is a 3-layer design, in the middle is the transport abstraction that handles capsules
(data buffers). Thanks to that, you can just allocate a queue pair and never deal with trans-
port specifics. The user space library, libnvmf, is designed for simplicity and debuggability
(not thread-safe, blocking I/O on sockets). It provides a TCP implementation. There are also
userspace implementations of part of the functionality of both a host (nvmfdd, doing I/O
on a single namespace on a remote controller) and a controller (multiple namespaces sup-
ported, backed either by files, character devices or memory buffers). The kernel datapath
mirrors this transport abstraction but uses asynchronous callbacks instead of blocking for

Conference Report
4 of 8

58FreeBSD Journal • March/April 2024

performance. nvmf(4) is the in-kernel Fabrics host. It creates the /dev/nvmeX devices (so
nvmecontrol(8) works), and supports disk access through CAM (/dev/ndaX). Future work
is to add an in-kernel Controller, implement support for RDMA and Fibre Channel, and TLS
protection for TCP queue pairs. Current code can be seen at https://github.com/bsdjhb/
freebsd.git, branch nvmf2. This work was sponsored by Chelsio.

I then went to Kristof Provost’s talk on if_ovpn(4) and was pleased to discover that,
even if Wireguard seems to be all the rage now, some people are working on improving
OpenVPN’s performance. if_ovpn(4) is a clean-room, in-kernel, OpenVPN client imple-
mentation which supports only a subset of functionalities: Only the AES-GCM and ChaCha
ciphers are available (the others are old), it doesn’t support layer 2 networking (to keep the
kernel interface simple) and is UDP-only (much more work is required for TCP). Userspace
handles the control channel, while the kernel handles the data channel. They both share a
single socket, whose file descriptor is passed to the kernel during connection setup. Kernel
passes up to userland unknown (i.e., control) packets. Userland drives the kernel through
ioctl(2) and nvlists(9) for extensibility (where
Linux uses netlink, which at time of this work had
yet to be integrated into FreeBSD). Key rotation is a
two-phase process: New keys are declared and later
switched to, without traffic disruption. vnet helped a
lot for testing (see /usr/tests/sys/net/if_ovpn).
Performance of the Data Channel Offload (DCO) by
if_ovpn(4) was tested on a Netgate 4100. DCO with
QAT (Intel’s Quick Assist Technology)offload reach-
es 1Gbit/s, DCO with AES-NI crypto ~750Mbit/s and
DCO with software crypto ~210Mbit/s, to be com-
pared with ~210Mbit/s with OpenVPN on if_tun
but using AES-NI for crypto. Development was spon-
sored by Netgate.

At the lunch break, we gathered outside, in a kind
of loggia because of the weather, for a family photo, a
great pretext for a lot of chatting and an unexpected attraction: A unique T-shirt parodying
the sleeve of a famous album by AC/DC, with the text “UNIX, Highway to Shell”, worn by
EuroBSDCon Foundation’s Katie McMillan. Chatting and technical discussions then contin-
ued at the university’s restaurant.

The afternoon session began for me with Hiroki Sato’s talk on USB DbC (Debug Capabil-
ity). Serial consoles make debugging firmware or early boot possible, but there are no serial
ports on modern hardware, only legacy interfaces such as BMC (Baseboard Management
Controller) on server machines. USB replaces all these legacy interfaces. However, it doesn’t
allow a direct connection between two hosts, a tiered star topology is required. Thus, USB
debugging works by changing one port of the host to debug (the “target host”) into a USB
device managed by the debugging host. Comparable debugging technologies include IEEE
1394 (FireWire; legacy), which supports point-to-point and physical access to memory (see
dcons(4)), but also USB 2.0 (see EHCI specification) although it requires a special repeater
hardware. On the debugging host, a normal USB 3 stack is enough. On the target host, the
new udbc(4) experimental driver manages the port turned into a device for simple serial

I was pleased to discover

that, even if Wireguard

seems to be all the rage

now, some people are

working on improving

OpenVPN’s performance.

5 of 8

Conference Report

https://github.com/bsdjhb/freebsd.git
https://github.com/bsdjhb/freebsd.git

59FreeBSD Journal • March/April 2024

communication. It doesn’t need a full USB stack, as it only has to manage the TRB (Transfer
Request Block) ring buffers of two USB pipes, and DbC is designed as a simple transport for
more sophisticated debug protocols (such as JTAG and Intel DCI). Physically, an A-to-A USB
3.0 cross-cable is required, and, of all ports of the root hub, only one will convert to behave
as a USB device to the debugging host. Code and an install image can be found at https://
people.allbsd.org/~hrs/FreeBSD/udbc/20230915. After enough compatibility feedback,
patches will be submitted. Nothing in this work is x86-specific, and porting to other BSDs
should be easy. udbc(4) could be extended to mimic other types of USB devices (such as,
possibly, a mass storage device).

Next, I attended Warner Losh’s talk on booting FreeBSD with LinuxBoot, using
loader.kboot. I’m not going into many details here since the presentation was dense and
you can find them all in the public slides. LinuxBoot was started in 2017 by Google (as NERF)
to provide a unified booting environment and to get rid of UEFI (mostly). With it, a low-lev-
el boot loader initializes a machine just enough to launch Linux, which then runs scripts to
determine what to finally boot via kexec(). There is a very nice community around it. The
low-level boot loader can be UEFI (Pre-EFI Interface), coreboot romstage, U-boot SPL, or the
Slim bootloader. This talk only considers UEFI and its EDK2 implementation, which LinuxBoot
strips down to only PEI (Pre-EFI Interface; initializes low-level details of the machine, such as
memory, clocks, etc.) and the Runtime Services. By using LinuxBoot, you only have to write
device drivers once—for Linux and not UEFI DXE—which brings several advantages: Faster
time-to-market, often faster boot times, more security hardened (100k contributors versus
only 100 to 200 for Grub/EDK2). FreeBSD needed to be ported to LinuxBoot for several rea-
sons. On amd64 and aarch64, the kernel expects some metadata such as memory maps
to boot, and some are provided by the system firmware (BIOS, UEFI) which the kernel can’t
necessarily access. These data are usually prepared by our loader(8), so the first step was to
port it as a Linux binary and add “stand” devices to access host resources from it. Also, Linux
already sets the virtual address mapping, via UEFI’s SetVirtualAddressMapping(), which
can be called only once. This required changing FreeBSD’s kernel to support a non-trivial
virtual to physical address mapping (and there was also a problem with the GICv3 interrupt
controller on aarch64). With this work, FreeBSD is the only non-Linux, non-GRUB-assisted
fully booting UEFI OS under LinuxBoot on x86 and aarch64.

I finished the talks of the first day with Toshaan Bharvani’s talk on Running FreeBSD on
OpenPOWER, which is an exciting architecture that permits machines booting with com-
pletely open firmware. Porting efforts on POWER are shifting towards little endianness be-
cause a lot of desktop applications (such as Firefox, JS) can’t run properly on a big-endian
architecture. The open firmware includes OPAL (Open Power Abstraction Loader) imple-
mented by skiboot, which launches Linux running the petitboot bootloader, but also some
open BMC implementations such as LibreBMC or OpenBMC. Current developers are Al-
fredo Dal’Ava Junior, Leandro Lupori, Andre Fernando da Silva, among others. There is still a
lot of work to do, so please volunteer! Current hardware is still expensive, with ~5k€ for an
IBM AC922 Developer Machine or a Talos II entry-level developer system. “Soft” hardware,
with FPGA-based Microwatt and LibreSOC, is also available. The OpenPOWER HUB initia-
tive (https://openpowerfoundation.org/hub) provides access to several types of OpenPOW-
ER hardware. The next generation hardware should come much better priced, first with en-
try-level PowerISA 3.1 Racks (start of 2024) to be followed by Workstations (expected price
around $1000 to $1500), single-board computers such as PowerPi! Embedded Single Board

6 of 8

Conference Report

https://people.allbsd.org/~hrs/FreeBSD/udbc/20230915
https://people.allbsd.org/~hrs/FreeBSD/udbc/20230915
https://openpowerfoundation.org/hub

Computer in several versions and generations, an enablement platform for developers
(maybe around $500), microcontroller systems, and FPGA-based devices. So, please help
emPOWER BSDs!

The day concluded with a beautiful social event. It took place not far from the historic
center, on the other side of the Mondego River, in a restaurant with a huge room to accom-
modate us all. I don’t remember how it happened, but I soon found myself sitting at a ta-
ble between John Baldwin and Mark Johnston. When these two giants engage in technical
conversations, it is always a pleasure to listen to them. We enjoyed the evening, with lots of
occasions for informal chats around a great buffet.
The most spectacular moment was an unforgettable
demonstration of “Fado de Coimbra” by a group of
men coated with the traditional back academic suit.
The emotional power their rendition conveyed is sim-
ply impossible to describe in text.

The second and last day of the conference start-
ed for me with Eirik Øverby speaking about FreeBSD
at Modirum, how they use it (and other open-source
software), and what makes the community so good
for them. The diverse war stories involving jails,
MySQL on ZFS, SO_REUSEPORT_LB, epairs and
relayd were captivating, and Eirik made this journey
very lively. His slides are available on the conference website.

I was very interested in Christos Margiolis’ presentation of his work on Arbitrary Instruc-
tion Tracing with DTrace. DTrace is a powerful live debugging tool I’m still not using nearly
enough, and Christos has augmented it with a new provider called kinst (“kernel instruc-
tions”). The base FDT provider (Function Boundary Tracing) can only trace entry and return
points of a kernel function that hasn’t been inlined. kinst provides probes to trace all instruc-
tions in a function, a specific instruction, or the entry or return points of inlined functions.
The selected probe information is passed from dtrace(1) to libdtrace and then kinst
using /dev/dtrace/kinst. kinst then disassembles the function and creates the requested
probes by overwriting target instructions with a breakpoint instruction. On execution, the
breakpoint handler calls dtrace_invop() which calls kinst_invop(). The instructions re-
placed by breakpoints nonetheless have to be executed for the execution to stay correct.
Since emulation is tedious and error prone, these instructions are copied into a trampoline
where execution is transferred to manually. The main difficulty with this approach is that
RIP/PC-relative instructions still either have to be re-encoded (amd64) or emulated (arm64,
riscv). Most of the hard work for inline function tracing is done by libtrace (using ELF and
DWARF information). If a probe designates a function that was not inlined, kinst defers it to
FBT to avoid code duplication. Each kernel module has to be checked for an inline function,
which is currently painfully slow.

As the afternoon session was beginning, I attended the gunion(8) talk by Kirk McKusick.
Kirk has the knack of presenting his ideas in clear and didactic fashion, as you can experi-
ence when watching videos of his presentations on YouTube. After starting with a refresher
on the GEOM framework, he presented the gunion(8) utility, which tracks changes to a
read-only disk on a writeable disk. This is similar to what unionfs(5) does with files and di-

60FreeBSD Journal • March/April 2024

The day concluded with

a beautiful social event.

7 of 8

Conference Report

rectories, but at the lower level of blocks on a block device. The upper disk (the writeable
one) must be at least the size of the lower disk (the read-only one). Union metadata exists
only as long as the union exists (no persistency at the moment). gunion(8) offers create
and destroy commands, as well as revert (discard the changes stored in the upper disk)
and commit (write back the upper disk’s changes in the lower disk). Uses of gunion(8) in-
clude trying to fix disks with broken filesystems without the risk of destroying them more
and without the need for backing them up first: If repairing fails, just use revert, else you
can commit and use the original disk. gunion(8) is also useful to implement poor-man’s
clones. gnop(8) was instrumental in testing error recovery, delay and out-of-order I/O han-
dling during the implementation of gunion(8).

For the last talk of my day, I stayed in the “Auditorio”, as I had all day, to watch Michael
Dexter’s presentation about “the FreeBSD Appliance”. He started by stating a definition
of a software appliance inspired by Wikipedia’s: Just enough OS (“JeOS”) to run an applica-
tion on commodity hardware. The guidelines of the presentation were then twofold. First,
it shows how FreeBSD is well suited to the task (integrated OpenZFS, jails, bhyve), and with
some advantages over illumos or Linux. “JeOS” may become a more practical reality with
packaged base, but it’s already possible to rule out almost everything through build options
and produce a working OS that boots in seconds, “OccamBSD” (see github.com/michael-
dexter/occambsd). Then, custom images based on “OccamBSD” and working on bare met-
al or under hypervisors can be produced. Second, it showcases some of the new features
introduced in FreeBSD 14.0, a way to stay up to date with recent developments.

I had initially hoped to attend Mateusz Piotrowski’s ZFS Directory Scaling talk but
changed plans for a meetup with FreeBSD Foundation’s Ed Maste to discuss my current
projects and see how to push the latest commits.

That evening, since I was leaving Monday morning, I was planning to go out and contact-
ed Mateusz Piotrowski about his plans. I was directed to a tapas bar, where I met with Da-
vid Cottlehuber, and a bunch of other nice guys with whom we finally had dinner, including
Christos Margiolis, Luca Pizzamiglio, Mohamed, and Peter. I finished the evening in an Irish
bar with Peter and some others up to a time I have not been able to remember. Fortunate-
ly, my departure train was not too early in the morning...

These were lively and fulfilling four days spent meeting a lot of people and hearing
about great technical projects. That I’m now looking forward to the next BSD conferences
probably won’t surprise you. If you’ve never attended and have the opportunity, well, come
to get a taste of it and I don’t think you will regret it!

OLIVIER CERTNER stumbled onto FreeBSD in 2004 as the result of a search for a
more serious alternative to Linux, after a cataclysmic system crash destroyed his main
ext3 HDD. He has been using it ever since everywhere he can and has maintained small
changes throughout the system privately for around 15 years. He has recently engaged
with the community and open-source development, and is currently working on a re-
vamp of scheduling priorities (which gave birth to a paper at AsiaBSDCon 2024), has
started analyzing weird OOM behaviors, and plans to work on some deep VFS prob-
lems in the near future, including a redesign of unionfs. He has been sponsored by the
FreeBSD Foundation for most of his public work.

61FreeBSD Journal • March/April 2024

8 of 8

Conference Report

Contents

https://www.github.com/michaeldexter/occambsd
https://www.github.com/michaeldexter/occambsd

BSD Events taking place through September 2024
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

Contents 62FreeBSD Journal • March/April 2024

May 2024 FreeBSD Developer Summit
May 29-30, 2024
Ottawa, Canada
https://freebsdfoundation.org/news-and-events/event-calendar/
may-2024-freebsd-developer-summit/

Join us for the May 2024 FreeBSD Developer Summit, co-located with BSDCan 2024, which
will take place in Ottawa, Canada. The two-day event takes place May 29-30, 2023, and will
consist of developer discussion sessions, vendor talks, and working groups.

BSDCan 2024
May 29 - June 1, 2024
Ottawa, Canada
https://www.bsdcan.org/2024/

BSDCan is a technical conference for people working on and with BSD operating systems
and related projects. It is a developers conference focusing on emerging technologies,
research projects, and works in progress. It also features Userland infrastructure projects
and invites contributions from both free software developers and those from commercial
vendors.

EuroBSDCon 2024
September 19-22, 2024
Dublin, Ireland
https://2024.eurobsdcon.org/

EuroBSDCon is the International annual technical conference held in a different European
country each year. It focuses on gathering users and developers working on and with 4.4BSD
(Berkeley Software Distribution) based operating systems family and related projects. The
FreeBSD Foundation is pleased to again be a Silver Sponsor.

mailto:freebsd-doc@FreeBSD.org
https://freebsdfoundation.org/news-and-events/event-calendar/may-2024-freebsd-developer-summit/
https://freebsdfoundation.org/news-and-events/event-calendar/may-2024-freebsd-developer-summit/
https://www.bsdcan.org/2024/
https://2024.eurobsdcon.org/

