
11FreeBSD Journal • January/February 2024

1 of 6

It’s been about 3 ½ years since I last reported on the area of the FreeBSD project I fo-
cus on, namely, the TCP protocol implementation. For those who don’t know, FreeBSD
doesn’t feature only one TCP stack, but multiple ones with development occurring dom-

inantly in the RACK and base stack. Currently, the one used by default (base stack) is the
stack long evolved and derived from BSD4.4. Also, since 2018, we have had a complete-
ly refactored stack (“RACK stack” – with the Recent ACKnowledgement mechanism as its
namesake), that provides many advanced capabilities that are lacking in the base stack. For
example, the RACK stack provides high granularity pacing capabilities. That is, the stack can
time the sending of packets and even out the consumption of network resources. In con-
trast, if an application presents the base stack with a sudden burst of data to transmit, there
are instances where this data will be sent out in a large burst at near line rate (the speed of
the interface, provided the CPU and internal busses are not the bottleneck). This happen
most notably whenever there is a short application pause from the last application IO by a
couple tens of milliseconds. (Further details on the RACK stack are beyond the scope of this
article and can be read in the accompanying article by Michael Tuexen and Randall Stewart.).

Here, I want to highlight some of the new features that have been brought into the base
stack – many of which are enabled by default, and some of which may need to be specif-
ically activated. Each feature will be described with details that may help improve the net-
working experience.

Overall, there have been around 1033 commits since the release of FreeBSD 13.0 to the
sys/netinet directory where all the transport protocols traditionally live. This gives an over-
view of selected changes to the base stack, where functionality was improved:

Proportional Rate Reduction
The first feature brought into the base stack is PRR – Proportional Rate Reduction

(RFC6937). To understand PRR on a high level, let’s first understand how SACK behavior
functions during loss recovery. One issue with standard SACK loss recovery was that while
the congestion window is adjusted on entering loss recovery (e.g., to 50% of the value at
onset of congestion with NewReno or 70% with Cubic) after a single packet loss, the es-
timation of how many packet are still in flight will initially not allow any packets to be sent
while ACKs return for the first half (NewReno) or initial 30% of the window. Once that limit
has been reached, every incoming ACK will elicit a new packet, but this may well happen at
an effective rate that overwhelms the congestion point in the network. The initial quiet peri-
od may serve to drain queues and allow for the subsequent, faster-than-ideal transmissions.
Often that behavior leads to subsequent losses (perhaps even losses of retransmitted pack-
ets – more on that later).

To quickly adjust the effective sending rate – and also deal more appropriately when
there are multiple losses of data packets or maybe even losses of ACK packets – PRR will
calculate how much data should be sent out for every new, incoming ACK and sends out as
many full-sized packets as appropriate at that that time. In the simple example with NewRe-

BY RICHARD SCHEFFENEGGER

Updates On
 TCP in FreeBSD 14

12FreeBSD Journal • January/February 2024

no with a reduction of the congestion window to half and just a single loss, this will cause
one new packet to be sent for every two ACKs returned. Thus, the sending rate will adjust
instantly to exactly half of what it used to be – stopping the congested device from be-
ing overloaded. In the presence of multiple data losses or ACKs discarded, PRR may inject
even more than one packet when an ACK is finally received, making good on these missed
sending opportunities. Overall, this behavior ensures that at the end of the window (RTT)
when loss recovery happens, the effective congestion window is as close as possible to the
expected congestion window, and that no transmit opportunities are missed, even under
problematic scenarios like multiple packet losses or ACK losses.

Hopefully, a few graphs can explain this niche detail better. Below, we have time-se-
quence graphs which can be obtained from wireshark or the combination of tcptrace and
associated xplot. The small blueish vertical bars indicate when a particular packet covering
the data sequence was sent – as on the left axis. The greenish more horizontal line below in-
dicates which data was received contiguous by the receiver. Red vertical lines signify any dis-
continuous range of data that made it to the receiver.

Cubic Without SACK or PRR, Classic NewReno Loss Recovery

Note that only a single data packet can be recovered within one window (or round-trip
time) and the long stretch of horizontal green line indicates the latency induced before the
receiving application gets to process additional data.

Cubic with SACK, but no PRR

2 of 6

13FreeBSD Journal • January/February 2024

As this example shows, SACK dramatically improves the situation, since all the lost pack-
ets can (typically) be retransmitted within one RTT. However, take note of the pause and re-
sumption of sending on each ACK later. This behavior drives data at an effective rate that
caused some packets to be dropped into the network. Often, this causes one or more of
the retransmissions to arrive too quickly and the network drops the retransmission. The only
recourse then is to wait for a retransmission timeout (RTO).

Cubic with SACK (6675) and PRR

The improvement with PRR depicted here is subtle. Where previously no data was sent
for half a window, and then at the old, likely too high rate for the second half, PRR injects
packets approximately every other received ACK until the new sending rate has been
reached, and then on nearly each subsequent incoming ACK. This serves to reduce the ef-
fective sending rate of the retransmissions and making it less likely that these will get dis-
carded by the network. Fewer RTOs and improved latency are the consequences.

The graph shown here is not entirely correct but attempts to convey the aspect of PRR
“dithering” packets sent appropriately over the received ACKs to send them out – in this
case, on average, 0.7 packets for every ACK including those which may have been discarded
by the network.

The final update in this space was that PRR now automatically switches to a less conser-
vative mode unless there are additional losses in loss recovery. This effectively improves the
transmission speed during loss recovery, similar to what would happen during normal op-
eration in the congestion avoidance phase. PRR works best (naturally) in conjunction with
SACK, but also when only non-SACK duplicate ACKs are available. Even with nothing but
ECN feedback, PRR improves the transmission timings.

SACK Handling
In recent years, the adherence of the base stack to SACK loss recovery as specified in

RFC6675 has been improved. But while parts of the estimation on how much data is still
outstanding in the network were improved, other aspects of RFC6675 were missing.

Improvements in this space now include the use of so-called rescue retransmissions – a
precursor of the Tail-Loss Probe, which is implemented in the RACK stack. In short, when
the final few packets of a transfer are lost in addition to earlier packet losses, the stack can
detect the problem and will retransmit the ultimate packet to perform a timely loss recovery.

And, by implementing additional accounting when processing any incoming SACK block,

3 of 6

14FreeBSD Journal • January/February 2024

the stack keeps better track of whether a particular packet ought to have left the network
either by being received or having very likely been dropped.

A final enhancement was to track whether retransmissions may also have been dropped
by the network, but unlike RACK, which uses the time domain, the base stack looks at the
sequence domain. While this lost retransmission detection is not specified in the RFC series,
it’s an extremely valuable addition to reduce the flow completion time / IO service response
time for any request-response (e.g., RPC) protocol using the TCP stack. Tracking and recov-
ering from lost retransmissions does not yet happen by default. In FreeBSD 14, this can be
activated with net.inet.tcp.do_lrd – but with FreeBSD 15, this will move to net.inet.tcp.sack.lrd
and be enabled by default.

Overall, these changes make the base stack more resilient during frequently encountered
pathological issues around congestion in the IP network.

Finally, the base stack (and the RACK stack) creates DSACK (RFC2883) responses when
receiving spurious duplicate data packets. While receiving such DSACK information doesn’t
influence the stack behavior, providing this to a remote sender may permit that sender to
better adjust to the specific network path behavior – e.g., Linux could increase the dup-
thresh or detect spurious retransmissions because of a spike in the path round-trip time
(RTT).

Logging and Debugging
Over the decades, the base stack accumulated several different mechanisms to be de-

bugged on a live system. One of the least known tools, trpt, and its support was removed in
FreeBSD 14. Still, numerous other options exist (dtrace, siftr, bblog, …).

BlackBox Logging was introduced with the RACK stack and extended to cover more and
more of the base stack as well. Tools are being prepared to extract internal state changes
from a running system as well as extract them from core dumps – along with the packet
trace itself. (See https://github.com/Netflix/tcplog_dumper and https://github.com/Netflix/
read_bbrlog)

Cubic
As described in my previous article, TCP Cubic is the de facto standard congestion con-

trol algorithm in use virtually everywhere. Recently, Cubic was also made the default for
FreeBSD – regardless of which TCP stack is being used.

4 of 6

https://github.com/Netflix/tcplog_dumper
https://github.com/Netflix/read_bbrlog
https://github.com/Netflix/read_bbrlog

15FreeBSD Journal • January/February 2024

One notable extension here is the addition of HyStart++. When a TCP session starts up,
the congestion control mechanism quickly ramps up bandwidth during a phase called slow
start. Traditionally, the slow start phase ends when the first indication of congestion packet
loss, or possibly an explicit congestion notification (ECN) feedback – is received. With
HyStart++, which is implemented as part of the Cubic module and always enabled, the RTT
is monitored. When the RTT starts to rise – possibly because network queues start forming
– a less aggressive phase (conservative slow start) is entered and the RTT is still monitored
because any timing-based signal is notoriously hard to obtain reliably. If it turns out that the
RTT reduces again while in this conservative slow start phase, regular slow start is resumed.
If not, the less aggressive sending pace in CSS limits the so-called overshoot – which is how
much data may need to be recovered due to inevitable losses.

Accurate Explicit Congestion Notification
As alluded to earlier, ECN is a mechanism to avoid packet losses as the sole signal to in-

dicate congestion events. Over the last decade, there has
been a large effort in the Internet Engineering Task Force
(IETF) to improve this signaling. While, originally, ECN was
viewed as an “identical” signal to packet loss, a more fre-
quent signal with different semantics was found to work
better to maintain shallow (fast) queues across a large range
of bandwidths. The full architecture is named Low La-
tency, Low Loss, Scalable (L4S). While not all the pieces in
FreeBSD are currently ready to implement a proper “TCP
Prague” implementation, many individual features – such
as the DCTCP congestion control module and, relevant
here, Accurate ECN (AccECN) – are now part of the stack in
FreeBSD 14.

While in classic ECN, only a single congestion experi-
ence mark can be signaled per RTT. This necessitates a
heavy-handed management by the congestion control
module. In fact, CE marks are viewed as equal to packet loss
indications when adjusting the TCP bandwidth while oper-
ating in RFC3168 mode. In contrast, with AccECN, an arbi-
trary number of explicit congestion marks can be signaled back to the data sender by the
receiver. This enables a more modulated and fine-grained signal to be extracted from the
network. This becomes relevant in environments where DCTCP – with the modified, much
more aggressive marking thresholds by the intermediate switches – is to be used. It is also
one of the key ingredients of the Low Latency, Low Loss, Scalable (L4S) architecture – also
known as TCP Prague.

Authentication and Security
Recently, the RACK stack gained the capability to fully handle MD5 authentication of

TCP packets. This is an improvement that allows the use of BGP with the RACK stack – an-
other step in making the RACK stack fully featured and useable in any generic circum-
stance.

For a long time, there has been a tight coupling between two of the features in RFC7323

5 of 6

ECN is a mechanism
to avoid packet losses
as the sole signal
to indicate congestion
events.

16FreeBSD Journal • January/February 2024

(RFC1323) – Window Scaling and Timestamp options. In this space, we now allow either of
these to be enabled independently of the other while the default still permits both to be ac-
tive. This can now be achieved by setting net.inet.tcp.rfc1323
not only to on (1) or off (0), but also 2 (only window scale)
and 3 (timestamps only). Furthermore, in accordance with
RFC7323, it is now possible to further secure TCP sessions
by requiring proper use of TCP timestamps under all cir-
cumstances. This is achieved by setting net.inet.tcp.tolerate_
missing_ts to 0.

What’s Next?
While the improvements of various aspects of TCP fea-

tures are well into the diminishing returns phase, there are
still a couple of further enhancements under discussion.

For example, an erratum to RFC2018 (Selective Acknowl-
edgments) now allows information to be retained during a
Retransmission Timeout (RTO), unlike previously. The main
motivation at the time of the original standard was allow-
ing for “reneging” by the receiver. Unless explicitly acknowl-
edged, subsequent data could still be discarded, e.g., be-
cause of memory pressure. In practice, such reneging hardly
ever happens, but retransmission timeouts during a SACK
loss recovery phase do occur quite frequently. Retaining this
information allows more efficient retransmissions even af-
ter an RTO. The challenge is that the base stack has implic-
it tight couplings with other aspects of what should happen after a retransmission timeout
(such as slow starting from a very small congestion window). Also, the impact of this change
after an RTO needs to be evaluated – driving some additional capabilities into the dummy-
net path emulator to model loss in more controllable ways.

RICHARD SCHEFFENEGGER has been a FreeBSD committer since April 2020 and is inter-
ested in improving the features and functionality of the TCP stack, mainly focusing on the
slow path (loss recovery, congestion control handling), and actively developing enhance-
ments such as Accurate ECN with the IETF.

6 of 6

While the improvements
of various aspects of TCP
features are well into the
diminishing returns phase,
there are still a couple of
further enhancements
under discussion.

