
17FreeBSD Journal • January/February 2024

1 of 7

Today1, you’re going to be reading2 about OpenVPN’s DCO.
Initially developed by James Yonan, OpenVPN saw its first release on May 13, 2001.

It supports many common platforms (such as FreeBSD, OpenBSD, Dragonfly, AIX, ...)
and a few less common ones (macOS, Linux, Windows) as well. It supports peer-to-peer and
client-server models, with pre-shared key, certificate, or username/password-based authen-
tication.

As you’d expect with any project that’s been around for more than 20 years, it grew
many features for many different use cases.

The Problem
While OpenVPN is very nice, clearly there must be a problem. Without a problem, this ar-

ticle wouldn’t be very interesting3. There is, indeed, an issue, and it is that OpenVPN is imple-
mented as a single-threaded, userspace process.

It uses if_tun to inject packets into the network stack. As a result, its performance has not
kept up with current connectivity rates. It also makes it difficult to take advantage of mod-
ern multi-core hardware or cryptographic offload hardware.

The main issue with OpenVPN’s performance is its userspace nature. Incoming traffic is
naturally received by a NIC, which would typically DMA the packet into kernel memory. It
is then processed further by the network stack until that works out what socket the packet
belongs to, and passes it to userspace. This socket may be UDP or TCP.

Passing the packet to userspace involves copying it, at which point the userspace Open-
VPN process verifies and decrypts the packet and re-injects it into the network stack using
if_tun. This means copying the plain-text packet back into the kernel for further processing.

BY KRISTOF PROVOST

if_ovpn

 or OpenVPN

18FreeBSD Journal • January/February 2024

Inevitably all this context switching and copying back and forth has a significant impact
on performance.

In the current architecture it’s very hard to make significant performance improvements.

What is DCO
Now that we’ve established what our problem is, we can start thinking about solutions4.
If our problem is context switches to userspace then one plausible solution is to keep the

work inside the kernel, and that’s what DCO–Data Channel Offload–does.

DCO moves the data channel, that is, the cryptographic operations and the tunneling
of the traffic, into the kernel. It does this through a new virtual device driver, if_ovpn. The
OpenVPN userspace process remains responsible for connection setup (including authenti-
cation and option negotiation), coordinating with the if_ovpn driver via a new ioctl interface.

The OpenVPN project decided that the introduction of DCO was a good opportunity to
remove some legacy features and do some general tidying up. As part of that, they’ve taken
the Henry Ford approach to encryption algorithm choice. You can have any algorithm you
like, as long as you like AES-GCM or ChaCha20/Poly1305. In black.

DCO also does not support compression, layer 2 traffic, non-subnet topologies or traffic
shaping5.

It’s important to note here that DCO does not change the OpenVPN protocol. It’s possi-
ble for a client to use it with a server that does not, or vice versa. You’ll get the biggest bene-
fit when both sides use it, of course, but that’s not required.

Considerations
This is the part where I talk up just how hard this all was, so you’ll all be impressed that I

actually got this to work. Does that still work if I tell you that’s what I’m doing? Let’s find out!
Anyway, there are a couple of things that needed special attention:

Multiplexing
The first issue is that OpenVPN uses a single connection to transport both the tunneled

data and the control data. The tunneled data needs to be handled by the kernel, and the
control data is handled by the OpenVPN userspace process.

You can see the issue. The socket is initially opened and fully owned by OpenVPN itself. It
sets up the tunnel and handles the authentication. Once that’s completed, it partially hands
over control to the kernel side (i.e., if_ovpn).

2 of 7

19FreeBSD Journal • January/February 2024

This means informing if_ovpn of the file descriptor (which the kernel uses to look up the
in-kernel struct socket), so it can hold a reference to it. That ensures the socket doesn’t go
away while the kernel is using it. Perhaps because the OpenVPN process was terminated, or
because it was having a bad day and decided to mess with us. It’s userspace, it does crazy
things.

For those of you who want to follow along in the kernel code, you’re looking for the
ovpn_new_peer()6 function.

Having looked up the socket we can now also install the filtering function via udp_set_
kernel_tunneling(). The filter, ovpn_udp_in-
put(), looks at all incoming packets for the specified
socket, and decides if it’s a payload packet which it
should handle, or a control packet which OpenVPN in
userspace should handle.

This tunneling function is also the only change I
had to make to the rest of the network stack. It need-
ed to be taught that certain packets would be han-
dled by the kernel and others could still be passed
through to userspace. That was done in https://cgit.
freebsd.org/src/commit/?id=742e7210d00b359d81b-
9c778ab520003704e9b6c .

The ovpn_udp_input() function is the main
entry point for the receive path. The network stack
hands packets over to this function for any UDP
packets arriving on the socket it’s been installed on.

The function first checks if the packet can be han-
dled by the kernel driver. That is, the packet is a data
packet and it’s destined for a known peer id. If that’s
not the case the filter function tells the UDP code to pass the packet through the normal
flow as if there were no filter function. That means the packet will arrive on the socket and
be processed by OpenVPN’s userspace process.

Early versions of the DCO driver had separate ioctl commands to read and write control
messages, but both the Linux and FreeBSD drivers have been adapted to use the socket in-
stead. This simplifies handling of both control packets and new clients.

If, on the other hand, the packet is a data packet for a known peer, it is decrypted, has its
signature validated, and is then passed on to the network stack for further processing.

For those of you following along, that’s done here https://cgit.freebsd.org/src/tree/sys/
net/if_ovpn.c?id=da69782bf06645f38852a8b23af#n1483 .

UDP
OpenVPN can be run over both UDP and TCP. While UDP is the obvious choice for a lay-

er 3 VPN protocol, some users need to run it over TCP to transit firewalls.
The FreeBSD kernel offers a convenient filter function for UDP sockets, but has no

equivalent for TCP, so FreeBSD if_ovpn currently only supports UDP and not TCP.
The Linux DCO driver developer was rather more ... courageous and has chosen to im-

plement TCP support as well. The developer did, against the odds, in fact survive this experi-
ence, and is now significantly wiser.

3 of 7

Pretty much every
modern CPU has
multiple cores,
and it’d be kind of nice
to be able to use more
than just one of them.

https://cgit.freebsd.org/src/commit/?id=742e7210d00b359d81b9c778ab520003704e9b6c
https://cgit.freebsd.org/src/commit/?id=742e7210d00b359d81b9c778ab520003704e9b6c
https://cgit.freebsd.org/src/commit/?id=742e7210d00b359d81b9c778ab520003704e9b6c
https://cgit.freebsd.org/src/tree/sys/net/if_ovpn.c?id=da69782bf06645f38852a8b23af#n1483
https://cgit.freebsd.org/src/tree/sys/net/if_ovpn.c?id=da69782bf06645f38852a8b23af#n1483

20FreeBSD Journal • January/February 2024

Hardware Cryptography Offload
if_ovpn relies on the in-kernel OpenCrypto framework for cryptographic operations. This

means it can also take advantage of any cryptographic offload hardware present in the sys-
tem. This can further improve performance.

It’s already been tested with Intel’s QuickAssist Technology (QAT), the SafeXcel EIP-97
crypto accelerator and AES-NI.

Locking Design
Look, if you thought you were going to get a discussion of kernel code without having to

talk about locking, I don’t know what to tell you. That was naively optimistic of you.
Pretty much every modern CPU has multiple

cores, and it’d be kind of nice to be able to use more
than just one of them. That is, we can’t just lock out
other cores while one core is doing work. It’s impolite.
It also doesn’t perform well.

Happily, this turned out to be reasonably easy to
do. The entire approach is based on distinguishing
read and write accesses to if_ovpn’s internal data
structures. That is, we allow many different cores to
look up things at the same time but will only ever al-
low one to change things (and then not allow any
readers while the change is being made). That turns
out to work well enough because—most of the
time—we don’t need to change things.

The common case, when we receive or send pack-
ets, just needs to look up keys, destination addresses
and ports and other related information.

It’s only when we modify things (i.e., on configu-
ration changes or re-keying) that we need to take a write lock, and that we pause the data
channel. That’s brief enough that our puny human brains won’t notice it, and that makes ev-
eryone happy.

There’s one exception to this “we don’t make changes to process data” rule, and that is
packet counters. Every packet gets counted (twice even, once for the packet count, once for
a byte count), and that has to be done concurrently. Here, too, we are lucky, in that the ker-
nel’s counter(9) framework is designed exactly for this situation. It keeps totals per CPU
core so that one core will not affect or slow down another. It’s only when the counters are
actually read that it will ask each core for its total and will add them up.

Control Interface
Each OpenVPN DCO platform has its own unique way of communicating between user-

space OpenVPN and the kernel module.
On Linux, this is done through netlink, but the if_ovpn work was completed before

FreeBSD’s netlink implementation was ready. As I’m still on probation for my last causality
violation, I decided to use something else instead.

The if_ovpn driver is configured through the existing interface ioctl path. Specifically, the
SIOCSDRVSPEC/SIOCGDRVSPEC calls.

4 of 7

Each OpenVPN DCO
platform has its own
unique way of
communicating between
userspace OpenVPN
and the kernel module.

OpenVPN will install
the new key using
the OVPN_NEW_KEY
command.

21FreeBSD Journal • January/February 2024

These calls pass a struct ifdrv to the kernel. The ifd_cmd field is used to pass the
command, and the ifd_data and ifd_len fields are used to pass device-specific structs
between kernel and userspace.

if_ovpn deviates somewhat from the established approach, in that it transmits serialized
nvlists rather than structs. This makes extending the interface easier. Or, rather, it means we
can extend the interface without breaking existing userspace consumers. If a new field is add-
ed to a struct, its layout changes which either means that the existing code will refuse to ac-
cept it due to its size mismatch7 or get very confused because fields no longer mean what
they used to mean.

Serialized nvlists allow us to add fields without confusing the other side. Any unknown fields
will just be ignored. This makes adding new features much easier.

Routing Lookups
You might think that if_ovpn wouldn’t need to

worry about routing decisions. After all, the kernel’s
network stack has already made the routing decision
by the time the packet arrives at the network driver.
You’d be wrong. I’d make fun of you for that, but it
took me a while to figure it out, too.

The issue is that there are potentially multiple
peers on a given if_ovpn interface (e.g., when it’s act-
ing as a server and has multiple clients). The kernel
has figured out that the packet in question needs to
go to one of them, but the kernel operates on the as-
sumption that all these clients live on a single broad-
cast domain. That is, a packet sent on the interface
would be visible to all of them. That’s not the case
here, so if_ovpn needs to work out which client the
packet has to go to.

This is handled by ovpn_route_peer(). This
function first looks through the list of peers to see if any peer’s VPN address matches the
destination address. (Done by ovpn_find_peer_by_ip() or ovpn_find_peer_by_ip6(),
depending on address family). If a matching peer is found the packet is sent to this peer.

If not ovpn_route_peer() performs a route lookup, and repeats the peer lookup with
the resulting gateway address.

Only when if_ovpn has figured out the peer to send the packet to can it be encrypted
and transmitted.

Key Rotation
OpenVPN will from time to time change the key used to secure the tunnel. That’s one of

those hard jobs if_ovpn leaves to userspace, so some coordination between OpenVPN and
if_ovpn is required.

OpenVPN will install the new key using the OVPN_NEW_KEY command. Each key has an
ID, and every packet includes the key ID that was used to encrypt it. This means that during
key rotation, all packets can still be decrypted, as both the old and new keys are known and
kept active in the kernel.

5 of 7

22FreeBSD Journal • January/February 2024

Once the new key is installed, it can be made active using the OVPN_SWAP_KEYS com-
mand. That is, the new key will be used to encrypt outgoing packets.

Sometime later the old key can be deleted using the OVPN_DEL_KEY command.

vnet
Yes, we’re going to have to talk about vnet. I’m writing this, it’s inevitable.
I’m too lazy to explain it entirely, so I’ll just point you at an article written by much better

author Olivier Cochard-Labbé: “Jail: vnet by examples”8.
Think of vnet as turning jails into virtual machines with their own IP stacks.
This isn’t strictly required for the pfSense use case, but it makes testing much, much eas-

ier. It means we can test on a single machine, without needing any external tools (other than
OpenVPN itself, for what should be pretty obvious reasons).

For those interested in how this is done there’s another FreeBSD Journal article that
might be useful: “The Automated Testing Framework,” by ... wait, I think I know that guy,
Kristof Provost.

Performance
After all of that, I bet you’re asking yourself “Does this actually help though?”
Well, fortunately for me: yes, yes it does.
One of my colleagues at Netgate spent some time gently teasing a Netgate 410010

device with iperf3 and got these results:

if_tun 207.3 Mbit/s

DCO Software 213.1 Mbit/s

DCO AES-NI 751.2 Mbit/s

DCO QAT 1,064.8 Mbit/s

“if_tun” is the old OpenVPN approach without DCO. It’s worth noting that it used AES-NI
instructions in userspace, and the ‘DCO software’ setup did not. Despite this blatant at-
tempt at cheating, DCO was still slightly faster. On a level playing field (i.e., where DCO does
use AES-NI instructions) there’s no contest. DCO is more than three times faster.

There’s some good news for Intel too: their QuickAssist offload engine is even faster
than AES-NI, making OpenVPN five times faster than it was previously.

Future Work
Nothing is so good that it cannot be improved, but in some ways this next enhancement

is a result of the success of DCO’s design.
The on-wire OpenVPN protocol uses a 32 bit initialization vector (IV), and for cryp-

tographic reasons I won’t explain here11, it’s a bad idea to re-use IVs with the same key.
That means that keys must be re-negotiated before we get to that point. OpenVPN’s de-

fault renegotiation interval is 3600 seconds, and with a 30% margin for safety, that would
translate to 2^32 * 0.7 / 3600, or about 835.000 packets per second. That’s “only” 8 to 9
Gbit/s (assuming 1300 byte packets).

With DCO, that’s already more or less within reach of contemporary hardware.
While it’s a good problem to have, it’s still a problem, so the OpenVPN developers are

working on an updated packet format that will use 64-bit IVs.

6 of 7

23FreeBSD Journal • January/February 2024

Thanks
The if_ovpn work was sponsored by Rubicon Communications (trading as Netgate) for

use with their pfSense product line. It’s been in use there since the 22.05 pfSense plus re-
lease12. This work was upstreamed to FreeBSD and is part of the recent 14.0 release. It re-
quires OpenVPN 2.6.0 or newer to use.

I’d also like to thank the OpenVPN developers, who were very welcoming when the initial
FreeBSD patches turned up, and without whose assistance this project would not have gone
anywhere near as well as it did.

Footnotes:
1. Or. whenever you read this.
2. Fine. Writing. Reading. Look, if you’re going to be pedantic about this, we’ll be at this

all day.
3. Look, if you’re not interested in DCO you can just go read the next article. I’m sure it’s

very nice.
4. I say “we”, but as much as I’d like to take credit for the solution it was the OpenVPN de-

velopers who came up with the DCO architecture and implemented it for Windows
and Linux. All I did was what they did, but for FreeBSD.

5. In OpenVPN. DCO can be combined with the OS’s traffic shaping (i.e. dummynet).
6. https://cgit.freebsd.org/src/tree/sys/net/if_ovpn.c?id=da69782bf-

06645f38852a8b23af#n490
7. You might also say because the struct got fat. You might, I’m too polite for that.
8. https://freebsdfoundation.org/wp-content/uploads/2020/03/Jail-vnet-by-Examples.pdf
9. https://freebsdfoundation.org/wp-content/uploads/2019/05/The-Automated-Test-

ing-Framework.pdf
10. https://shop.netgate.com/products/4100-base-pfsense
11. Mostly because I do not understand them myself.
12. https://www.netgate.com/blog/pfsense-plus-software-version-22.05-now-available

KRISTOF PROVOST is a freelance, embedded software engineer specializing in network
and video applications. He’s a FreeBSD committer, maintainer of the pf firewall in FreeBSD.
He currently spends most of his time working on pfSense for Netgate.

Kristof has an unfortunate tendency to stumble into uClibc bugs, and a burning hatred
for FTP. Do not talk to him about IPv6 fragmentation.

7 of 7

https://cgit.freebsd.org/src/tree/sys/net/if_ovpn.c?id=da69782bf06645f38852a8b23af#n490
https://cgit.freebsd.org/src/tree/sys/net/if_ovpn.c?id=da69782bf06645f38852a8b23af#n490
https://freebsdfoundation.org/wp-content/uploads/2020/03/Jail-vnet-by-Examples.pdf
https://freebsdfoundation.org/wp-content/uploads/2019/05/The-Automated-Testing-Framework.pdf
https://freebsdfoundation.org/wp-content/uploads/2019/05/The-Automated-Testing-Framework.pdf
https://shop.netgate.com/products/4100-base-pfsense
https://www.netgate.com/blog/pfsense-plus-software-version-22.05-now-available

