
24FreeBSD Journal • January/February 2024

1 of 16

One of my favorite hardware features is called Single-Root Input/Output Virtualiza-
tion (SR-IOV). It makes a single physical device appear like multiple similar devices to 
the operating system. The FreeBSD approach to exposing SR-IOV capabilities is one 

of several reasons I tend to prefer FreeBSD on my servers.

SR-IOV for Networking Overview
Virtualization is a great solution if your demand for network devices exceeds the number 

of physical network ports on your server. There are many ways to accomplish this with soft-
ware, but a hardware-based alternative is SR-IOV, which lets a single physical PCIe device to 
present itself as many to the OS.

There are several upsides to using SR-IOV. It offers the best performance compared to 
other means of virtualization. If you’re a stickler for security, SR-IOV better isolates memory 
and the virtualized PCI devices it creates. It also results in a very tidy setup as everything is a 
PCI device, i.e., no virtual bridges, switches, etc.

To make use of SR-IOV networking, you’ll need an SR-IOV capable network adapter and 
an SR-IOV capable motherboard. I’ve used several SR-IOV capable network cards over the 
years, such as the Intel i350-T4V2 Ethernet Adapter, the Mellanox ConnectX-4 Lx, and the 
Chelsio T520-SO-CR Fiber Network Adapter. For this article, I’ll be using an Intel X710-DA2 
Fiber Network Adapter (product brief) in a FreeBSD 14.0-RELEASE server. It’s a nice option 
as it requires no special firmware configuration and driver support is built into the FreeBSD 
kernel by default. And as a bonus, it uses a fraction of the power of many alternatives, max-
ing out at only 3.7 Watts.

The Intel X710-DA2 PCIe 3.0 Fiber Network Adapter

BY MARK McBRIDE

SR-IOV is a First Class  
FreeBSD Feature
A detailed walkthrough of how to setup hardware-driven 
virtualization using SR-IOV capable devices in FreeBSD.

https://en.wikipedia.org/wiki/Single-root_input/output_virtualization
https://en.wikipedia.org/wiki/Single-root_input/output_virtualization
https://markmcb.com/freebsd/vs_linux/
https://ark.intel.com/content/www/us/en/ark/products/84805/intel-ethernet-server-adapter-i350-t4v2.html
https://www.nvidia.com/en-us/networking/ethernet/connectx-4-lx/
https://www.chelsio.com/nic/unified-wire-adapters/t520-so-cr/
https://ark.intel.com/content/www/us/en/ark/products/83964/intel-ethernet-converged-network-adapter-x710da2.html
https://ark.intel.com/content/www/us/en/ark/products/83964/intel-ethernet-converged-network-adapter-x710da2.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-x710-brief.pdf
https://www.freebsd.org/releases/14.0R/announce/


25FreeBSD Journal • January/February 2024

The X710-DA2 has two physical SFP+ fiber ports. In SR-IOV terms, these correspond to 
physical functions (PFs). Without SR-IOV enabled, the PFs behave like the ports on any net-
work adapter card and will show up as two network interfaces in FreeBSD. With SR-IOV en-
abled, each PF is capable of creating, configuring, and managing several Virtual Functions 
(VFs). Each VF will appear in the OS as a PCIe device.

In the case of the X710-DA2 specifically, its 2 PFs can virtualize up to 128 VFs. From the 
standpoint of FreeBSD, it’s as if you have a network card with 128 ports. These VFs can then 
be allocated to jails and virtual machines for isolated networking.

Using SR-IOV in FreeBSD
We touched a bit on how SR-IOV conceptually works, but I find it easier to understand 

with practical examples. Let’s walk through setting up SR-IOV in FreeBSD from scratch. To 
do this, we’ll focus on:

•	 Hardware Installation
•	 Hardware Configuration
•	 FreeBSD Configuration of SR-IOV
•	 Using an SR-IOV Network VF in a Jail
•	 Using an SR-IOV Network VF in a Bhyve Virtual Machine

Hardware Installation
The installation of the SR-IOV capable X710-DA2 is easy enough, but there is one major 

consideration. Not all PCIe slots on motherboards are created equally. I highly recommend 
you take a look at your motherboard’s manual before getting started. For this example, I’ll 
be using a Supermicro X12STH-F motherboard. The manual provides two insightful dia-
grams:

X12STH-F Motherboard Physical Map

2 of 16

https://www.supermicro.com/en/products/motherboard/x12sth-f
https://www.supermicro.com/manuals/motherboard/X12/MNL-2367.pdf


26FreeBSD Journal • January/February 2024

X12STH-F Motherboard Block Map

In the first diagram we see our PCIe slots are numbered 4, 5, and 6, left-to-right. If you 
look closely, you’ll see slot 4 has a “PCH” prefix while 5 and 6 have a “CPU” prefix. The block 
map diagram shows what this means in a bit more detail. Slots 5 and 6 connect directly to 
the CPU in the LGA1200 socket, while slot 4 connects to the Platform Controller Hub. De-
pending on the specific components in your system, this may determine which slots will al-
low SR-IOV to work as expected. There’s no easy way to know until later when we configure 
FreeBSD, but as a rule of thumb, especially with older motherboards, I find the CPU slots to 
be a reliable choice. If you do find in later steps that SR-IOV is not working, try using a differ-
ent PCIe slot. Motherboard documentation isn’t always detailed, so trial and error is some-
times the quickest way to see which slot will work.

Supermicro X12STH-F Motherboard, CPU PCIe Slot 6 with Intel X710-DA2 
(Also: Intel Xeon E-2324G w/ 4x8GB ECC UDIMM in a Supermicro 825TQC-R740LPB 2U Chassis)

Intel X710-DA2 SFP+ Ports with DAC Cables Attached

3 of 16

https://en.wikipedia.org/wiki/Platform_Controller_Hub


27FreeBSD Journal • January/February 2024

Hardware Configuration
The X710-DA2 will behave like a non-SR-IOV capable card until you enable SR-IOV in 

your motherboard settings. It’s easy to do, but also quite easy to forget, so be sure you don’t 
skip this important step.

The exact procedure will vary by motherboard, but most will have a screen with PCIe 
configuration options. Find that screen and enable SR-IOV. While you’re there it’s a good 
idea to check other settings are enabled that you’re likely to use in conjunction with SR-IOV, 
like CPU virtualization.

X12STH-F Motherboard Setup, PCIe Configuration on Advanced Screen

X12STH-F Motherboard Setup, SR-IOV Configuration on PCIe Screen

4 of 16



28FreeBSD Journal • January/February 2024

We can now boot FreeBSD and take a look at dmesg(8). Here’s a snippet from mine.

ixl0: <Intel(R) Ethernet Controller X710 for 10GbE SFP+ - 2.3.3-k> mem  

      0x6000800000-0x6000ffffff,0x6001808000-0x600180ffff irq 16 at device 0.0 on pci1 

ixl0: fw 9.120.73026 api 1.15 nvm 9.20 etid 8000d87f oem 1.269.0 

ixl0: PF-ID[0]: VFs 64, MSI-X 129, VF MSI-X 5, QPs 768, I2C 

ixl0: Using 1024 TX descriptors and 1024 RX descriptors 

ixl0: Using 4 RX queues 4 TX queues 

ixl0: Using MSI-X interrupts with 5 vectors 

ixl0: Ethernet address: 3c:fd:fe:9c:9e:30 

ixl0: Allocating 4 queues for PF LAN VSI; 4 queues active 

ixl0: PCI Express Bus: Speed 2.5GT/s Width x8 

ixl0: SR-IOV ready 

ixl0: netmap queues/slots: TX 4/1024, RX 4/1024

On the third line we see some SR-IOV references. “PF-ID[0]” is associated with ixl0, and 
this PF is capable of 64 VFs. And on the tenth line we get a nice confirmation that this PCIe 
device is “SR-IOV ready.” The reason for the “ixl” name is that this card uses the ixl(4) Intel 
Ethernet 700 Series Driver.

There’s nothing else you need to do to configure the X710-DA2’s hardware. Some cards 
(like the aforementioned Mellanox) require you to configure the card’s firmware, while oth-
er cards (like the aforementioned Chelsio) require driver configuration in /̀boot/loader.conf .̀ 
Neither is needed with the X710-DA2, though you may want to check the card’s firmware 
version and update it if necessary.

With this, we’re ready to shift our focus from hardware setup to FreeBSD configuration. 

FreeBSD Configuration of SR-IOV

Using PFs
A nice thing about SR-IOV is regardless of whether or not you tell a PF to create VFs you 

can still use the PF as a network interface. I’ll add the following to my /̀etc/rc.conf` and as-
sign an IP address to the PF for use in the host.

ifconfig_ixl0=”inet 10.0.1.201 netmask 255.255.255.0” 

defaultrouter=”10.0.1.1”

Now when I boot the system, I can expect the ixl0 device to have an IP address that I can 
use to connect to the system regardless of whether SR-IOV is enabled or not.

Telling PFs to Create VFs
Management of PFs and VFs in FreeBSD is handled by iovctl(8), which is included in the 

base OS. To create VFs, we need to create a file in the /̀etc/iov/` directory with some specif-
ics of what we want. We will execute a simple strategy and create one VF to assign to a jail, 
and a second for a bhyve virtual machine. The iovctl.conf(5) manual page will give us the 
most important parameters.

5 of 16

https://man.freebsd.org/dmesg
https://man.freebsd.org/cgi/man.cgi?query=ixl
https://man.freebsd.org/cgi/man.cgi?query=iovctl
https://man.freebsd.org/iovctl.conf


29FreeBSD Journal • January/February 2024

OPTIONS 

     The following parameters are accepted by all PF drivers: 

 

     device (string) 

             This parameter specifies the name of the PF device.  This 

             parameter is required to be specified. 

 

     num_vfs (uint16_t) 

             This parameter specifies the number of VF children to create. 

             This parameter may not be zero.  The maximum value of this 

             parameter is device-specific.

I like to set num_vfs to what I need. We could set it to the max, but I find it makes looking 
at ifconfig and other command output more difficult.

Additionally, as different cards have different drivers, each driver has options you can set 
based on the hardware capability. The ixl(4) manual page lists several optional parameters.

IOVCTL OPTIONS 

     The driver supports additional optional parameters for created VFs 

     (Virtual Functions) when using iovctl(8): 

 

     mac-addr (unicast-mac) 

             Set the Ethernet MAC address that the VF will use.  If 

             unspecified, the VF will use a randomly generated MAC address.

Or, alternatively, you can use the iovctl command for a terse summary of what parame-
ters are valid for a PF and its VFs, and what their defaults are.

(host) $ sudo iovctl -S -d ixl0 

The following configuration parameters may be configured on the PF: 

        num_vfs : uint16_t (required) 

        device : string (required) 

 

The following configuration parameters may be configured on a VF: 

        passthrough : bool (default = false) 

        mac-addr : unicast-mac (optional) 

        mac-anti-spoof : bool (default = true) 

        allow-set-mac : bool (default = false) 

        allow-promisc : bool (default = false) 

        num-queues : uint16_t (default = 4)

We’ll make use of the mac-addr parameter to set specific MAC addresses for each VF. 
Setting the MAC address is a bit arbitrary in this case, but I’ll do it to demonstrate how a 
config file looks with PF parameters, default VF parameters, and parameters specific to indi-
vidual VFs.

6 of 16

https://man.freebsd.org/ixl


30FreeBSD Journal • January/February 2024

PF { 

        device : “ixl0” 

        num_vfs : 2 

} 

 

DEFAULT { 

        allow-set-mac : true; 

} 

 

VF-0 { 

        mac-addr : “aa:88:44:00:02:00”; 

} 

 

VF-1 { 

        mac-addr : “aa:88:44:00:02:01”; 

}

This instructs ixl0 to create two VFs. By default, every VF will be allowed to set it’s own 
MAC. And each VF will have an initial MAC address assigned to it (which can be overridden 
with the previous default setting).

Before we make it effective, let’s take a look at our current environment. We’ll find two ixl 
PCI devices, and two ixl network interfaces.

(host) $ ifconfig -l 

ixl0 ixl1 lo0 

 

(host) $ pciconf -lv | grep -e ixl -e iavf -A4 

ixl0@pci0:1:0:0:        class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086  

device=0x1572 subvendor=0x8086 subdevice=0x0007 

    vendor     = Intel Corporation 

    device     = Ethernet Controller X710 for 10GbE SFP+ 

    class      = network 

    subclass   = ethernet 

ixl1@pci0:1:0:1:        class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086  

device=0x1572 subvendor=0x8086 subdevice=0x0000 

    vendor     = Intel Corporation 

    device     = Ethernet Controller X710 for 10GbE SFP+ 

    class      = network 

    subclass   = ethernet

To make our /etc/iov/ixl0.conf configuration effective, we use iovctl(8).

(host) $ sudo iovctl -C -f /etc/iov/ixl0.conf

Should you change your config file, delete and recreate the VFs.

(host) $ sudo iovctl -D -f /etc/iov/ixl0.conf 

(host) $ sudo iovctl -C -f /etc/iov/ixl0.conf

7 of 16

https://man.freebsd.org/cgi/man.cgi?query=iovctl


31FreeBSD Journal • January/February 2024

To check that it worked, let’s run the same ifconfig and pciconf commands from before.

(host) $ ifconfig -l 

ixl0 ixl1 lo0 iavf0 iavf1 

 

(host) $ pciconf -lv | grep -e ixl -e iavf -A4 

ixl0@pci0:1:0:0:        class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x1572 subvendor=0x8086 subdevice=0x0007 

    vendor     = Intel Corporation 

    device     = Ethernet Controller X710 for 10GbE SFP+ 

    class      = network 

    subclass   = ethernet 

ixl1@pci0:1:0:1:        class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x1572 subvendor=0x8086 subdevice=0x0000 

    vendor     = Intel Corporation 

    device     = Ethernet Controller X710 for 10GbE SFP+ 

    class      = network 

    subclass   = ethernet 

-- 

iavf0@pci0:1:0:16:      class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c subvendor=0x8086 subdevice=0x0000 

    vendor     = Intel Corporation 

    device     = Ethernet Virtual Function 700 Series 

    class      = network 

    subclass   = ethernet 

iavf1@pci0:1:0:17:      class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c subvendor=0x8086 subdevice=0x0000 

    vendor     = Intel Corporation 

    device     = Ethernet Virtual Function 700 Series 

    class      = network 

    subclass   = ethernet

Voilà! Our shiny new VFs have arrived. In the `pciconf` output we still see our ixl devic-
es, but now there are two iavf devices. The iavf(4) manual page let’s us know that this is the 
driver for Intel Adaptive Virtual Functions.

In addition to seeing new PCI devices, ifconfig confirms that they are indeed recognized 
as network interfaces. For the most common aspects of a network device, you’ll probably 
not be able to tell the difference between a PF and VF. If you want to get into the details 
and differences, check out the driver documentation and the -c capabilities flag of pciconf, 
e.g. pciconf -lc iavf.

To make this config persistent across reboots, amend your /etc/rc.conf file.

# Configure SR-IOV 

iovctl_files=”/etc/iov/ixl0.conf”

Now we’ve got two VFs ready for action. Let’s put them to use!

Using an SR-IOV Network VF in a Jail
This section assumes you have a basic understanding of FreeBSD Jails. As such, setting 

up a jail from scratch is out of scope. For more information how to do this, see the Jails and 
Containers chapter of the FreeBSD Handbook.

8 of 16

https://man.freebsd.org/iavf
https://docs.freebsd.org/en/books/handbook/jails/
https://docs.freebsd.org/en/books/handbook/jails/


32FreeBSD Journal • January/February 2024

I don’t use any jail management ports and rely on what come in the base OS. If you’ve 
used something like Bastille, the specifics on how/where to put your configs might vary a 
bit, but the concept is the same. In this example we’re working with a jail named “desk.”

exec.start += “/bin/sh /etc/rc”; 

exec.stop = “/bin/sh /etc/rc.shutdown”; 

exec.clean; 

mount.devfs; 

 

desk { 

        host.hostname = “desk”; 

        path = “/mnt/apps/jails/desk”; 

        vnet; 

        vnet.interface = “iavf0”; 

        devfs_ruleset=”5”; 

        allow.raw_sockets; 

}

That’s it! The jail now has access to its own dedicated VF network device setup via vnet(9). 
I’ll tweak the jail’s /etc/rc.conf file to enable it.

ifconfig_iavf0=”inet 10.0.1.231 netmask 255.255.255.0” 

defaultrouter=”10.0.1.1”

Now let’s start the jail and check that it works.

(host) $ sudo service jail start desk 

Starting jails: desk. 

 

(host) $ sudo jexec desk ifconfig iavf0 

iavf0: flags=1008843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST,LOWER_UP> metric 0 mtu 1500 

        options=4e507bb<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU,VLAN_HWCSUM,TSO4, 

TSO6,LRO,VLAN_HWFILTER,VLAN_HWTSO,RXCSUM_IPV6,TXCSUM_IPV6,HWSTATS,MEXTPG> 

        ether aa:88:44:00:02:00 

10.0.1.231 netmask 0xffffff00 broadcast 10.0.1.255 

        media: Ethernet autoselect (10Gbase-SR <full-duplex>) 

        status: active 

        nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL> 

 

(host) $ sudo jexec desk ping 9.9.9.9 

PING 9.9.9.9 (9.9.9.9): 56 data bytes 

64 bytes from 9.9.9.9: icmp_seq=0 ttl=58 time=19.375 ms 

64 bytes from 9.9.9.9: icmp_seq=1 ttl=58 time=19.809 ms 

64 bytes from 9.9.9.9: icmp_seq=2 ttl=58 time=19.963 ms

As expected, we see the iavf0 interface in the jail and it appears to be working normally. 
But what about that device in the host OS? Is it still there? Let’s check.

9 of 16

https://bastillebsd.org/
https://man.freebsd.org/vnet


33FreeBSD Journal • January/February 2024

(host) $ ifconfig -l 

ixl0 ixl1 lo0 iavf1

As expected, the iavf0 interface is no longer visible to the host OS. You’ll still see the PCI 
device with pciconf, but will not be able to do anything with it. The jail is in full control of 
this device. If you stop the jail, the iavf0 device will return to the host OS and once again be 
present in ifconfig output.

Using an SR-IOV Network VF in a Bhyve Virtual Machine
You can achieve a similar result with bhyve(8) virtual machines, though the approach is a 

bit different. With jails we can assign/release VFs during runtime. With bhyve, this must be 
done at boot time and requires a tweak to our SR-IOV config. First, let’s have a look again at 
pciconf before we change anything.

(host) $ pciconf -l | grep iavf 

iavf0@pci0:1:0:16:      class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c  

subvendor=0x8086 subdevice=0x0000 

iavf1@pci0:1:0:17:      class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c  

subvendor=0x8086 subdevice=0x0000

Look at the unused VF, iavf1. The first column can be read as “there’s a PCI0 device us-
ing the driver iavf, ID 1, with a PCI selector of bus 1, slot 0, function 17”. While you don’t need 
them yet, those last three numbers are how we’ll eventually tell bhyve which device to use. 
Before we get to that, let’s ensure we load vmm(4) at boot time to enable bhyve, and tweak 
our second VF so that it’s ready for passthrough to bhyve.

## Load the virtual machine monitor, the kernel portion of bhyve 

vmm_load=”YES” 

 

# Another way to passthrough a VF, or any PCI device, is to 

# specify the device in /boot/loader.conf. I show this for reference.  

# We’ll use our iovctl config instead as it keeps things in one place. 

# pptdevs=”1/0/17”

To reserve the VF for passthrough to bhyve, we use the iovctl passthrough parameter. 

    passthrough (boolean) 

             This parameter controls whether the VF is reserved for the use of 

             the bhyve(8) hypervisor as a PCI passthrough device.  If this 

             parameter is set to true, then the VF will be reserved as a PCI 

             passthrough device and it will not be accessible from the host 

             OS.  The default value of this parameter is false.

10 of 16

https://man.freebsd.org/bhyve
https://man.freebsd.org/vmm


34FreeBSD Journal • January/February 2024

PF { 

        device : “ixl0” 

        num_vfs : 2 

} 

 

DEFAULT { 

        allow-set-mac : true; 

} 

 

VF-0 { 

        mac-addr : “aa:88:44:00:02:00”; 

} 

 

VF-1 { 

        mac-addr : “aa:88:44:00:02:01”; 

        passthrough : true; 

}

When we next boot our system, we’ll find iavf1 absent because the iavf driver will never 
get assigned to our second VF. Instead it will get marked “ppt” for “PCI passthrough” and 
only bhyve will be able to make use of it.

With those tweaks, reboot.
Right away you’ll notice dmesg output is different. There is no mention of iavf1 this time. 

And remember the 1:0:17 selector we saw in pciconf? We see it here with a slightly differ-
ent format.

ppt0 at device 0.17 on pci1

pciconf confirms that the device is reserved for passthrough.

(host) $ pciconf -l | grep iavf 

iavf0@pci0:1:0:16:      class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c subvendor=0x8086 subdevice=0x0000 

 

(host) $ pciconf -l | grep ppt 

ppt0@pci0:1:0:17:       class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c subvendor=0x8086 subdevice=0x0000

The rest we do in bhyve. This article assumes you know how to get a bhyve virtual ma-
chine up and running. I use the [vm-bhyve](https://man.freebsd.org/cgi/man.cgi?query=vm) 
tool for easy management of virtual machines (but see the end of this section for raw bhyve 
parameters if you don’t use vm-bhyve). I’ll add the ppt VF to a Debian VM called debi-
an-test. All we need to do is define the device we want to passthrough in the config and re-
move any lines pertaining to virtual networking.

loader=”grub” 

cpu=1 

memory=4G 

disk0_type=”virtio-blk” 

disk0_name=”disk0.img” 

uuid=”b997a425-80d3-11ee-a522-00074336bc80” 

 

11 of 16



35FreeBSD Journal • January/February 2024

# Passthrough a VF for Networking 

passthru0=”1/0/17” 

 

# Common defaults that are not needed with a VF available 

# network0_type=”virtio-net” 

# network0_switch=”public” 

# network0_mac=”58:9c:fc:0c:fd:b7”

All we have to do now is start our bhyve virtual machine.

(host) $ sudo vm start debian-test 

Starting debian-test 

  * found guest in /mnt/apps/bhyve/debian-test 

  * booting... 

 

(host) $ sudo vm console debian-test 

Connected 

 

debian-test login: root 

Password: 

Linux debian-test 6.1.0-16-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.67-1 (2023-12-12) x86_64 

 

root@debian-test:~# lspci | grep -i intel 

00:05.0 Ethernet controller: Intel Corporation Ethernet Virtual Function 700 Series  

(rev 01) 

 

root@debian-test:~# ip addr 

2: enp0s5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000 

    link/ether aa:88:44:00:02:01 brd ff:ff:ff:ff:ff:ff 

    inet 10.0.1.99/24 brd 10.0.1.255 scope global dynamic enp0s5 

       valid_lft 7186sec preferred_lft 7186sec 

    inet6 fdd5:c1fa:4193:245:a888:44ff:fe00:201/64 scope global dynamic mngtmpaddr 

       valid_lft 1795sec preferred_lft 1795sec 

    inet6 fe80::a888:44ff:fe00:201/64 scope link 

       valid_lft forever preferred_lft forever 

 

root@debian-test:~# ping 9.9.9.9 

PING 9.9.9.9 (9.9.9.9) 56(84) bytes of data. 

64 bytes from 9.9.9.9: icmp_seq=1 ttl=58 time=20.6 ms 

64 bytes from 9.9.9.9: icmp_seq=2 ttl=58 time=19.8 ms

Success! We now have an SR-IOV VF device for networking in our bhyve VM.
If you’re a purist and don’t want to use vm-bhyve, details are appended to àvm-bhyve.

log file when you use a vm command. In it you will see the parameters that were passed to 
grub-bhyve and bhyve to start the VM.

12 of 16



36FreeBSD Journal • January/February 2024

create file /mnt/apps/bhyve/debian-test/device.map 

      -> (hd0) /mnt/apps/bhyve/debian-test/disk0.img 

grub-bhyve -c /dev/nmdm-debian-test.1A -S \ 

      -m /mnt/apps/bhyve/debian-test/device.map \ 

      -M 4G -r hd0,1 debian-test 

bhyve -c 1 -m 4G -AHP  

      -U b997a425-80d3-11ee-a522-00074336bc80 -u -S \ 

      -s 0,hostbridge -s 31,lpc \ 

      -s 4:0,virtio-blk,/mnt/apps/bhyve/debian-test/disk0.img \ 

      -s 5:0,passthru,1/0/17

✎ 
bhyve PCI passthrough is an emerging feature 
 While using VFs with vnet for jails is very stable, bhyve PCI passthrough in general is 

still under heavy development as of 14.0-RELEASE. Using byhve with passthrough alone 
works great. However, I have found that if I am also using VFs with jails, certain hardware 
combinations and volumes of devices can create unexpected behavior. Improvements 
land with each release. If you find an edge case, be sure to submit a bug.

FreeBSD SR-IOV in Summary
To make use of SR-IOV enabled virtual PCIe devices in FreeBSD, we: 
•	install an SR-IOV capable network card onto an SR-IOV capable motherboard
•	ensure the motherboard’s SR-IOV feature is enabled
•	create /etc/iov/ixl0.conf and specify how many VFs we want
•	reference /etc/iov/ixl0.conf in /etc/rc.conf to persists across boots
And that’s it!
To demonstrate that it worked, we allocated one VF to a jail using vnet. And we pre-allo-

cated another VF at boot-time for passthrough to bhyve virtual machines. In both cases, all 
we had to do was put a few lines in the respective jail/VM config files.

The following section will contrast the FreeBSD approach compared to what you’ll find in 
Linux distributions to give you a feel how the two approaches vary.

SR-IOV in Linux
SR-IOV works really well in Linux. Once you’ve got it all setup, you likely won’t be able to 

find discernible differences between FreeBSD and Linux. Getting it all setup, however, can 
be a bit of a journey.

The biggest difference is there is no standard tool like FreeBSD’s iovctl for setting up SR-
IOV in Linux. There are several ways to achieve a working setup, but they are not so obvious. 
I’ll highlight how I use `udev` to setup a Mellanox card’s PF and VFs.

`udev` is a powerful tool that does a lot of stuff. One of the things it can do is enable SR-
IOV devices at boot time. The tool itself is excellent, but knowing what data to feed it is 
where the challenge lies. Getting the attributes you need will likely require a bit of searching 
on the Internet, but once you have them the resulting `udev` rules are very simple.

13 of 16

https://bugs.freebsd.org


37FreeBSD Journal • January/February 2024

# DO NOT Probe VFs that will be used for VMs 

KERNEL==”0000:05:00.0”, SUBSYSTEM==”pci”, ATTRS{vendor}==”0x15b3”, ATTRS{device}==”0x1015”,  

ATTR{sriov_drivers_autoprobe}=”0”, ATTR{sriov_numvfs}=”4” 

 

# DO Probe VFs that will be used for LXD 

KERNEL==”0000:05:00.1”, SUBSYSTEM==”pci”, ATTRS{vendor}==”0x15b3”, ATTRS{device}==”0x1015”,  

ATTR{sriov_drivers_autoprobe}=”1”, ATTR{sriov_numvfs}=”16”

That essentially says, “match the PCI device 0000:05:00.0 with vendor ID 0x15b3 and de-
vice ID 0x1015, and for that device do not try to automatically assign a driver and create 4 
VFs” (i.e., reserve for passthrough). The second rule is similar, but targets a different PF, does 
assign a driver, and creates 16 VFs (i.e., ready for container allocation). 

Depending on the card and specific Linux distribution you’re using, those may not be all 
the attributes you need. For example, if you’re using Fedora you may need to add ENV{NM_
UNMANAGED}=”1” to avoid NetworkManager taking control of your VFs at boot time. 

Similar to pciconf, lspci will get us much of what we need for the matching parts of 
those rules, which is the PCI address, vendor and device ID. In this system we can see that 
we have Mellanox ConnectX-4 Lx card.

lspci -nn | grep ConnectX             

05:00.0 Ethernet controller [0200]: Mellanox Technologies MT27710 Family [ConnectX-4 Lx] [15b3:1015] 

05:00.1 Ethernet controller [0200]: Mellanox Technologies MT27710 Family [ConnectX-4 Lx] [15b3:1015]

The attributes set by udev are visible in /sys/bus/pci/devices/0000:05:00.*/ with 
many others. Listing the contents of that directory is a good place to go looking for things 
to tell udev.

(linux) $ ls -AC /sys/bus/pci/devices/0000:05:00.0/ 

aer_dev_correctable       device            irq               net           resource0                subsystem 

aer_dev_fatal             dma_mask_bits     link              numa_node     resource0_wc             subsystem_device 

aer_dev_nonfatal          driver            local_cpulist     pools         revision                 subsystem_vendor 

ari_enabled               driver_override   local_cpus        power         rom                      uevent 

broken_parity_status      enable            max_link_speed    power_state   sriov_drivers_autoprobe  vendor 

class                     firmware_node     max_link_width    ptp           sriov_numvfs             virtfn0 

config                    hwmon             mlx5_core.eth.0   remove        sriov_offset             virtfn1 

consistent_dma_mask_bits  infiniband        mlx5_core.rdma.0  rescan        sriov_stride             virtfn2 

current_link_speed        infiniband_verbs  modalias          reset         sriov_totalvfs           virtfn3 

current_link_width        iommu             msi_bus           reset_method  sriov_vf_device          vpd 

d3cold_allowed            iommu_group       msi_irqs          resource      sriov_vf_total_msix

In that listing, we see our two udev targets, sriov_drivers_autoprobe and sriov_
numvfs, which we want to set at boot time. What does everything else do? You’ll probably 
need your favorite search engine to answer that question.

With udev we’ve accomplished step 1 of 2 major steps. It effectively “turns on” the hard-
ware SR-IOV capability. We need to still need to configure it for networking use, which is 
major step 2. This varies a great deal depending on whatever we’re using to manage net-
working. For example, if you use systemd-networkd, you’d do something like this.

14 of 16



38FreeBSD Journal • January/February 2024

#/etc/systemd/network/21-wired-sriov-p1.network 

[Match] 

Name=enp5s0f1np1                                                                                                                                   

 

[SR-IOV]                                                                 

VirtualFunction=0 

Trust=true 

                   

[SR-IOV]                             

VirtualFunction=1 

Trust=true

Luckily, for systemd-networkd, the documentation isn’t so bad and you can find most of 
what you need. With that, we restart the service and the VFs are ready to use.

But not all documents are great, and aside from the networking software itself, securi-
ty overlays like AppArmor and selinux can create hard to detect blockers that are technical-
ly doing what they’re supposed to do, but will very much make the system feel like it’s not 
functioning.

As a specific example of frustration, I was recently using Fedora 39 to run a handful of 
LXD containers. I found notes to set ENV{NM_UNMANAGED}=”1” in udev and that did the 
trick to let LXD manage my VFs. Everything worked fine until I rebooted the containers sev-
eral times. Suddenly LXD started complaining that there were no VFs. 

It turns out that while the udev rule stopped NetworkManager from managing VFs at 
boot time, NetworkManager was intercepting them at runtime when containers were re-
starting and taking over management of them. I realized something strange was happen-
ing because VF device names were changing after restarting containers. For example, what 
started as enp5s0f0np0 would become something like physZqHm0g once the container it 
was assigned to restarted.

Eventually, I was able to find a way to tell NetworkManager not to do this. The critical 
config file I had to create to stop the LXD+NM battle is below, just in case you were won-
dering.

[keyfile] 

unmanaged-devices=interface-name:enp5s0f1*,interface-name:phys* 

This is just one example. Thinking you have everything working only to find out days later 
things are actually slowly self-destructing is not a good experience. In general, I find all frus-
trations have the same root cause: no existing or emerging standard way to configure SR-
IOV in the Linux ecosystem. Once you get over the not-so-obvious setup hurdles, SR-IOV 
for networking with Linux works just fine.

Conclusion
SR-IOV is a first class citizen in FreeBSD. Everything mentioned in this article you can find 

using the OS-provided manual pages. Start with a simple apropos(1) query.

(host) $ apropos “SR-IOV” 

iovctl(8) - PCI SR-IOV configuration utility

15 of 16

https://man.freebsd.org/apropos


39FreeBSD Journal • January/February 2024

The iovctl manual will get you started and the driver pages will give you the specifics for 
your hardware. When things are apparent and easy to find, system administration doesn’t 
feel like a chore.

Linux distributions are equally capable, but lacking in terms of cohesion and in-system 
documentation for SR-IOV. While I rely on Linux for all sorts of things, I truly appreciate 
the organization of configuration in FreeBSD. It’s easy to come back to a system I haven’t 
touched in a year and quickly understand what I’ve done. I far prefer this over taking de-
tailed notes with obscure URLs to comments on discussion boards where some saint post-
ed the way to make something work.

As with anything, make your own informed choice for what best suits your needs.

MARK McBRIDE works in CAR-T cell therapy in Seattle, Washington where he integrates 
supply chain, manufacturing, and patient operations solutions in a very new segment of per-
sonalized healthcare. In his free time, he enjoys over-engineering his garage homelab and 
cheering on all the local Seattle sports teams. Connect with him as @markmcb in #freebsd 
on the Libera IRC server, or via other means listed on his person site, markmcb.com.

16 of 16

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative 
leader in providing a high-performance, secure, and stable 
operating system. 
Not only is FreeBSD easy to install, but it runs a huge number 

full source code.

The FreeBSD Community is proudly supported by

T       

   

   

  

       
     

 

 

       
   

Help Create the Future.
Join the FreeBSD Project!

       
        

  
             

  

      

The FreeBSD Project is looking for 

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue 
developing this robust operating system. 
Join us!

Already involved?

Don�t forget to check out the latest 
grant opportunities at 
freebsdfoundation.org

   
   

https://www.markmcb.com

