
46FreeBSD Journal • January/February 2024

1 of 7

Note: This article assumes a setup based on FreeBSD. If you prefer a version based on OpenBSD, it is available here.

VPNs are a fundamental tool for securely connecting to your own serv-
ers and devices. Many people use commercial VPNs for various
reasons, ranging from not trusting their provider (especially when

connecting from a public hotspot) to wanting to “go out” on the Internet with a different IP
address, perhaps from another country. Here, I want to highlight some of the new features
that have been brought into the base stack—many of which are enabled by default, and
some of which may need to be specifically activated. Each feature will be described with de-
tails that may help improve the networking experience.

Whatever the reason, solutions are not lacking. I
have always set up management VPNs to allow serv-
ers and/or clients to communicate with each other us-
ing secure channels. Lately, I have been activating IPv6
connectivity on all my devices (both desktop/servers
and mobile devices) and I needed to quickly create a
node that concentrated some networks and allowed
them to go out on the network in IPv6. The tools I
used and will describe are:

• VPS – in this case, I used a basic Hetzner Cloud
VPS, but any provider that provides IPv6 connectiv-
ity will do – if you want IPv6, of course.

• FreeBSD – a versatile, stable, and secure operating system.
• Wireguard – lightweight, secure, and at the same time, not very “chatty,” so it is also

gentle on mobile device batteries. When there is no traffic, it simply does not transmit/
receive anything. Well supported by all major desktop and server operating systems as
well as Android and iOS devices.

• Unbound – can make DNS queries directly to root servers, not through forwarders.
It also allows you to insert block-lists and have a result similar to that of Pi-Hole (i.e.,
ad-blocking).

• SpamHaus lists – to immediately stop connections to and from users on blacklists.
The first step is to activate a VPS and install FreeBSD. On the Hetzner Cloud console,

there might not be a pre-built FreeBSD image, but only a selection of Linux distributions.
Don’t worry, just choose any of them and create the VPS. Once done, the FreeBSD ISO im-
age will be available among the “ISO Images.” Just insert the virtual CD, restart the VPS, and
the FreeBSD installation will appear in the console.

BY STEFANO MARINELLI

Make Your Own VPN —
FreeBSD, Wireguard, IPv6
and Ad-blocking Included

I want to highlight some
of the new features that
have been brought into
the base stack.

https://it-notes.dragas.net/2023/04/03/make-your-own-vpn-wireguard-ipv6-and-ad-blocking-included/
https://my-notes.dragas.net/posts/2023/the-urgency-of-transitioning-to-ipv6/
https://my-notes.dragas.net/posts/2023/the-urgency-of-transitioning-to-ipv6/
https://www.freebsd.org/
https://www.wireguard.com
https://nlnetlabs.nl/projects/unbound/about/
https://www.spamhaus.org/

47FreeBSD Journal • January/February 2024

I won’t go into detail, the operation is simple and straightforward. The only precaution (in
the case of a Hetzner Cloud VPS) is to use “DHCP” for IPv4 but, for now, do not configure
IPv6. It will be configured later.

Install all FreeBSD updates (using the freebsd-update fetch install command)
and reboot.

Wireguard, on FreeBSD, is now available as a kernel module and the userland can be in-
stalled using the pkg install wireguard-tools package manager. This means you can
easily keep it updated alongside other software on the system.

The first step is to configure IPv6 on the VPS. In the case of Hetzner, unfortunately, they
only provide a /64, so it will be necessary to segment the assigned network. In this example,
it will be divided into /72 subnetworks - to find valid subclasses, it will be possible to use a
calculator.

The /etc/rc.conf file should have entries similar to:

ifconfig_vtnet0=”DHCP”
ifconfig_vtnet0_ipv6=”inet6 2a01:4f8:cafe:cafe::1 prefixlen 72”
ipv6_defaultrouter=”fe80::1%vtnet0”

In short, keep the base address assigned by Hetzner, but change the prefix length to 72 -
thus giving the possibility of having other networks available.

It is now necessary to enable forwarding for IPv4 and IPv6. Add these lines to the
/etc/sysctl.conf file:

net.inet.ip.forwarding=1
net.inet6.ip6.forwarding=1

After reboot, test it:

ping6 google.com

If everything has been configured correctly, the ping will be executed and google.com
will reply.

To configure Wireguard, a few steps will be necessary. First of all, the private key will need
to be created:

wg genkey | tee /dev/stderr | wg pubkey | grep --label PUBLIC -H .

You will get a private key and a public key. Take note of the public key — it will be needed
to configure the clients.

Now create a new file called /usr/local/etc/wireguard/wg0.conf:

[Interface]
Address = 172.14.0.1/24,2a01:4f8:cafe:cafe:100::1/72
ListenPort = 51820
PrivateKey = YUkS6cNTyPbXmtVf/23ppVW3gX2hZIBzlHtXNFRp80w=

A new Wireguard interface called wg0 is being created. Start the Wireguard interface:

service wireguard enable
sysrc wireguard_interfaces=”wg0”
service wireguard start

2 of 7

https://subnettingpractice.com/ipv6-subnet-calculator.html
https://subnettingpractice.com/ipv6-subnet-calculator.html

48FreeBSD Journal • January/February 2024

If everything has been entered correctly, the interface should come up. Check its status:

wg

As for the firewall, FreeBSD comes with no `pf` configuration. In my setups, I tend to
block what is not needed and be permissive with what may be useful. However, I like to keep
out the “bad guys,” so I use blacklists. pf allows elements to be inserted and removed from
tables at runtime, so the firewall can be configured accordingly.

To download and apply the Spamhaus lists, I use a simple but effective script found on
the Internet, but for OpenBSD.

For the Spamhaus lists, continue with the FreeBSD script creation.
Create the script in /usr/local/sbin/spamhaus.sh:

#!/bin/sh

#this is normally run once per day via cron.

echo updating Spamhaus DROP lists:
(
 { fetch -o - https://www.spamhaus.org/drop/drop.txt && \
 fetch -o - https://www.spamhaus.org/drop/edrop.txt && \
 fetch -o - https://www.spamhaus.org/drop/dropv6.txt ; \
 } 2>/dev/null | sed “s/;/#/” > /var/db/drop.txt
)
pfctl -t spamhaus -T replace -f /var/db/drop.txt

Make it executable and run it. Pf isn’t enabled, so you’ll get an error — but this will create
the /var/db/drop.txt file:

chmod a+rx /usr/local/sbin/spamhaus.sh
/usr/local/sbin/spamhaus.sh

There are many possibilities to configure pf on FreeBSD. A fairly simple example could
be this:

ext_if=”vtnet0”
wg0_if=”wg0”
wg0_networks=”172.14.0.0/24”

set skip on lo

nat on $ext_if from { $wg0_networks } to any -> ($ext_if)

Spamhaus DROP list:
table <spamhaus> persist file “/var/db/drop.txt”

block drop log quick from <spamhaus>

Pass ICMP on ipv6

3 of 7

https://daemonforums.org/showthread.php?t=11420
https://daemonforums.org/showthread.php?t=11420

49FreeBSD Journal • January/February 2024

pass quick proto ipv6-icmp
Block from ipv6 to wg0 network
block in quick on $ext_if inet6 to { 2a01:4f8:cafe:cafe:100::/72 }
Pass Wireguard traffic - in and out
pass quick on $wg0_if

default deny
block in
block out

pass in on $ext_if proto tcp to port ssh
pass in on $ext_if proto udp to port 51820

pass out on $ext_if

This is a very simple configuration: it blocks everything that is present in the list down-
loaded from Spamhaus, allows NAT from the Wireguard network to the public interface, al-
lows ICMP traffic in IPv6 (necessary for the network to function properly) while blocking in-
coming traffic to the Wireguard IPv6 LAN (remember that the IPs will be public and directly
reachable, so we don’t want to expose our devices by default). All traffic on the Wireguard
interface will be allowed to pass. Then everything will be blocked and exceptions will be
specified, i.e., allowing SSH and Wireguard connections (of course). Authorization will also be
granted to allow traffic to exit from the public network interface.

Save this configuration to /etc/pf.conf.
Enable and start pf:

service pf enable
service pf start

You will probably be kicked out of the system. Don’t worry, just reconnect. pf is doing its
job.

If everything went correctly, the firewall should have loaded the new rules.
To obtain caching of DNS queries and the related ad-block, it is now time to configure

Unbound. Let’s install it with:

pkg install unbound

A while ago, I found a script which I slightly adapted. I don’t remember where I got it, so
I’ll paste it here without citing the original creator.

Create a script to update the unbound ad-block, in /usr/local/sbin/unbound-ad-
hosts.sh:

#!/bin/sh

Using blacklist from pi-hole project https://github.com/pi-hole/
to enable AD blocking in unbound(8)

PATH=”/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin”

4 of 7

50FreeBSD Journal • January/February 2024

Available blocklists - comment line to disable blocklist
_disconad=”https://s3.amazonaws.com/lists.disconnect.me/simple_ad.txt”
_discontrack=”https://s3.amazonaws.com/lists.disconnect.me/simple_tracking.
txt”
_stevenblack=”https://raw.githubusercontent.com/StevenBlack/hosts/master/
hosts”

Global variables
_tmpfile=”$(mktemp)” && echo '' > $_tmpfile
_unboundconf=”/usr/local/etc/unbound/unbound-adhosts.conf”

Remove comments from blocklist
simpleParse() {
 fetch -o - $1 | \
 sed -e ‘s/#.*$//’ -e ‘/^[[:space:]]*$/d’ >> $2
}

Parse DisconTrack
[-n “${_discontrack}”] && simpleParse $_discontrack $_tmpfile

Parse DisconAD
[-n “${_disconad}”] && simpleParse $_disconad $_tmpfile

Parse StevenBlack
[-n “${_stevenblack}”] && \
 fetch -o - $_stevenblack | \
 sed -n '/Start/,$p' | \
 sed -e 's/#.*$//' -e '/^[[:space:]]*$/d' | \
 awk '/^0.0.0.0/ { print $2 }' >> $_tmpfile

Create unbound(8) local zone file
sort -fu $_tmpfile | grep -v “^[[:space:]]*$” | \
awk '{
 print “local-zone: \”” $1 “\” redirect”
 print “local-data: \”” $1 “ A 0.0.0.0\””
}' > $_unboundconf && rm -f $_tmpfile

service unbound reload 1>/dev/null

exit 0

After saving the script, make it executable and run it:

chmod a+rx /usr/local/sbin/unbound-adhosts.sh
/usr/local/sbin/unbound-adhosts.sh

5 of 7

51FreeBSD Journal • January/February 2024

Now, the Unbound configuration file in /usr/local/etc/unbound/unbound.conf can
be modified as follows:

server:
 verbosity: 1
 log-queries: no
 num-threads: 4
 num-queries-per-thread: 1024
 interface: 127.0.0.1
 interface: 172.14.0.1
 interface: 2a01:4f8:cafe:cafe:100::1
 interface: ::1
 outgoing-range: 64
 chroot: “”

 access-control: 0.0.0.0/0 refuse
 access-control: 127.0.0.0/8 allow
 access-control: ::0/0 refuse
 access-control: ::1 allow
 access-control: 172.14.0.0/24 allow
 access-control: 2a01:4f8:cafe:cafe:100::/72 allow

 hide-identity: yes
 hide-version: yes
 auto-trust-anchor-file: “/usr/local/etc/unbound/root.key”
 val-log-level: 2
 aggressive-nsec: yes
 prefetch: yes
 username: “unbound”
 directory: “/usr/local/etc/unbound”
 logfile: “/var/log/unbound.log”
 use-syslog: no
 pidfile: “/var/run/unbound.pid”
 include: /usr/local/etc/unbound/unbound-adhosts.conf

remote-control:
 control-enable: yes
 control-interface: /var/run/unbound.sock

Now, enable and start unbound:

service unbound enable
service unbound start

If everything has been set up correctly, unbound will be able to respond to DNS requests
made on 172.14.0.1 and 2a01:4f8:cafe:cafe:100::1.

Now it is possible to configure the Wireguard client. Create a new configuration by in-
serting “172.14.0.2/32, 2a01:4f8:cafe:cafe:100::2/128” (the ones that will later be entered in the
peer configuration of the server) in the local IP addresses. Set the DNS server address to

6 of 7

52FreeBSD Journal • January/February 2024

“172.14.0.1” and/or its corresponding IPv6 address (in the example, 2a01:4f8:cafe:cafe:100::1 -
yours will be different). In the peer section, insert the server’s data, including its public key,
IP address:port (in the example, the port is 51820), and allowed addresses (setting “0.0.0.0/0,
::0/0” means “all connections will be sent via Wireguard” — all the traffic will pass through
the VPN for both IPv4 and IPv6).Each implementation has its own procedure (Android, iOS,
MikroTik, Linux, etc.) but essentially it is sufficient to create the right configuration both on
the server and on the client.

Reopen the Wireguard configuration file /usr/local/etc/wireguard/wg0.conf and add:

[Interface]
Address = 172.14.0.1/24,2a01:4f8:cafe:cafe:100::1/72
ListenPort = 51820
PrivateKey = YUkS6cNTyPbXmtVf/23ppVW3gX2hZIBzlHtXNFRp80w=

[Peer]
PublicKey = *client's public key*
AllowedIPs = 172.14.0.2/32, 2a01:4f8:cafe:cafe:100::2/128

The client’s public key will be shown by the client itself.
Reload the Wireguard configuration:

service wireguard restart

It is also possible to use the VPN only as an ad-blocker, by only routing DNS traffic
through it. To achieve this result, configure the client so that the only allowed address is
the one of the just-configured unbound (in this example, 172.14.0.1 and/or 2a01:4f8:cafe:ca-
fe:100::1) — DNS resolution will occur via VPN, but browsing will continue to work through
the main provider.

To automatically update the spamhaus and ad-block lists, we will use cron.First, create a
script, for example, /usr/local/sbin/update-blocklists.sh:

#!/bin/sh

/usr/local/sbin/unbound-adhosts.sh
/usr/local/sbin/spamhaus.sh

Make it executable:

chmod +x /usr/local/sbin/update-blocklists.sh

Then, add it to the crontab to run daily:

echo “@daily /usr/local/sbin/update-blocklists.sh” >> /etc/crontab

This approach benefits from both update management and security perspectives.

STEFANO MARINELLI is an IT Consultant with over two decades of experience in the
realms of IT consulting, training, research, and publishing. His expertise spans across oper-
ating systems, with a special emphasis on *BSD systems — FreeBSD, NetBSD, OpenBSD,
DragonFlyBSD - and Linux. Stefano is also the barista at BSD Cafe, a vibrant community hub
for *BSD enthusiasts, and has led the FreeOsZoo project at the University of Bologna, mak-
ing open-source operating system images accessible for virtual machines.

7 of 7

