
5FreeBSD Journal • January/February 2024

1 of 6

In 2017 changes were made to the TCP stack in FreeBSD, allowing the coexistence of mul-
tiple TCP stacks. This way, the existing TCP stack could be left untouched and allow inno-
vation at the cost of a limited number of function calls. Some functionality is still shared

between all TCP stacks: the implementation of the SYN-Cache including the handling of
SYN-Cookies and the initial steps of the handling of incoming TCP segments like checksum
verification and looking up the TCP endpoint based on the port numbers and IP addresses.
At any given time, a TCP connection is handled by exactly one TCP stack, but this TCP stack
can be changed during the lifetime of the TCP connection.

This is where the TCP RACK stack began as a com-
plete rewrite of the original TCP stack from the call to
the tcp_do_segment() function and many other mod-
ularized sub-functions. The initial goal was to add sup-
port for a loss detection method called Recent Acknowl-
edgement (RACK). RACK was described in an Internet
draft, which became RFC 8985 in 2021. This is where the
name of this TCP stack—RACK—comes from. But the
TCP RACK stack has grown far beyond just the addition
of support for RFC 8985. Part of the rewrite includes a
completely different way of handling selective acknowl-
edgement (SACK) information. In the TCP RACK stack,
a complete map of all user data sent is maintained that
allows an improved handling of retransmissions of user data as well as the addition of the
RACK loss detection described in RFC 8985. Many additional features have grown out of
this rewrite and are described in this article.

How to Use the TCP RACK Stack
The RACK stack is available in both FreeBSD CURRENT and FreeBSD 14.0. How to make

it available depends on the FreeBSD version.
For FreeBSD 14.0, one needs to add the following two lines to the kernel configuration file

option TCPHPTS
makeoptions WITH_EXTRA_TCP_STACKS=1

and rebuild the kernel. The first line results in compiling the TCP high precision timer sys-
tem (HPTS) into the kernel. The second line results in generating a kernel loadable module
for the TCP RACK stack (tcp_rack.ko). To use the TCP RACK stack, the kernel module
must be loaded. This can be done on every reboot by adding the line

tcp_rack_load=”YES”

to the file /boot/loader.conf.

BY RANDALL STEWART AND MICHAEL TÜXEN

The RACK stack is available
in both FreeBSD CURRENT
and FreeBSD 14.0.

RACK and Alternate TCP Stacks
for FreeBSD

6FreeBSD Journal • January/February 2024

In FreeBSD CURRENT, both TCP RACK and HPTS are built as kernel modules by default.
Since tcphpts.ko is loaded automatically as a dependency of tcp_rack.ko, only the latter
must be loaded using kldload. To load the TCP RACK stack on every reboot, the following
two lines need to be added to the file /boot/loader.conf:

tcphpts_load=”YES”
tcp_rack_load=”YES”

Compiling the TCP RACK stack statically into the kernel of FreeBSD CURRENT is also
possible by adding the following two lines to the kernel configuration file

option TCPHPTS
option TCP_RACK

and rebuilding the kernel.
Note that TCP Blackbox Logging (option TCP_BLACKBOX) is now built by default in

FreeBSD 14.0 and higher and also in FreeBSD CURRENT for all 64-bit platforms, since it is
the standard way that TCP transport developers are both instrumenting as well as debug-
ging the various TCP stacks.

The above describes how to make the TCP RACK stack available on a FreeBSD system. A
list of all available TCP stacks is shown by running

sysctl net.inet.tcp.functions_available

in a shell.
In the upcoming versions—FreeBSD 14.1 and higher—the usage of the TCP RACK stack

will be the same as the one described above for FreeBSD CURRENT.
There are different ways of actually using the TCP RACK stack, some involving source

code changes of applications, some only involving configuration changes.
The sysctl-variable net.inet.tcp.functions_default is used to specify the default

TCP stack that is used for new TCP endpoints created using the socket(2) system call. Ex-
ecuting

sysctl net.inet.tcp.functions_default=rack

sets the default stack to the TCP RACK stack. By adding the line

net.inet.tcp.functions_default=rack

to the file /etc/sysctl.conf the TCP RACK stack will be the default TCP stack after re-
booting the system. When a TCP endpoint is created via a listener, the TCP stack is either in-
herited from the listener or based on the default TCP stack depending on the sysctl-vari-
able net.inet.tcp.functions_inherit_listen_socket_stack being non-zero or
zero. The default value of this variable is one.

It is also possible to change the TCP stack of individual TCP connections by using the
tcpsso(8) command line tool as described in the man-page of the tool.

If the source code can be changed, the IPPROTO_TCP-level socket option with the name
TCP_FUNCTION_BLK can be used to switch the TCP stack being used for the socket to the
TCP RACK stack. The option value has the type struct tcp_function_set. For example,
the following code performs this:

2 of 6

7FreeBSD Journal • January/February 2024

struct tcp_function_set tfs;

strncpy(tfs.function_set_name, “rack”, TCP_FUNCTION_NAME_LEN_MAX);
tfs.pcbcnt = 0;
setsockopt(fd, IPPROTO_TCP, TCP_FUNCTION_BLK, &tfs, sizeof(tfs));

Using the TCP RACK stack allows the use of a number of features that the default TCP stack
does not currently support. A lot of these features can be controlled via IPPROTO_TCP-level
socket options or sysctl-variables under net.inet.tcp.rack.

Features of the TCP RACK Stack
The following sections describe the most important features provided by the TCP RACK

stack.

RACK/TLP
Recent Acknowledgement (RACK) and Tail Loss Probe (TLP) are two integrated fea-

tures within the TCP RACK stack. Recent acknowledgement changes the way that packet
loss is detected and retransmissions are triggered. The loss detection implemented in the
FreeBSD base stack and specified in RFC 5681 takes three duplicate acknowledgments or
acknowledgement arrivals with SACK to get the TCP stack to send out a retransmission. In
some cases, where, for example, less than four packets have been sent, this will cause the
TCP stack to send the retransmission only after a retransmission timeout has occurred.
RACK changes this so that when a SACK arrives, if enough time has elapsed since the send-
ing of the lost packets, a retransmission happens immediately. If not enough time has oc-
curred (usually the time is a bit larger than the current RTT), then a small RACK timer is
started, and when this expires the retransmission is sent. This then will fix many—but not
all—of the cases where a retransmission timeout would have to force out data. The last case
is solved by the TLP. This is where whenever the TCP RACK stack has sent data, it starts a
TLP timer instead of a retransmission timer. If the TLP timer expires, the TCP RACK stack
sends either a new segment or the last segment sent. The hope of this TLP-sent segment is
that the sender would either receive an acknowledgement back indicating all data has been
received (a case where the last acknowledgement was lost) or the TLP would elicit a SACK,
which would allow the normal fast recovery mechanisms to take over without hitting a re-
transmission timeout and thus collapsing the congestion window to 1 MSS.

A user of the TCP RACK stack, just by enabling the stack, gets the benefits of both RACK
and TLP automatically. No socket option or configuration is required by the upper layer.

Proportional Rate Reduction (PRR)
Proportional Rate Reduction (PRR) is another automatic built-in feature of the TCP RACK

stack, specified in RFC 6937 and currently being updated by the IETF. PRR improves the
way data is sent during fast recovery. When using the TCP congestion control as specified
in RFC 5681, the congestion window is reduced in half on entering fast recovery. This then
causes a stall in sending new data during fast recovery. Basically, the sender must wait for
one-half of the outstanding data to be acknowledged, and then the sender can start send-
ing new data (along with our retransmissions). This causes a “stall” in the data flow between
the sender and receiver. PRR is designed to improve that, such that during fast recovery, a
new data segment can be sent roughly every other acknowledgment. This then prevents

3 of 6

8FreeBSD Journal • January/February 2024

the data “stall” and keeps data continually moving thus keeping the RTT and other transport
metrics active and updating.

RACK Rapid Recovery (RRR)
RACK Rapid Recovery (RRR) is an interesting feature that started as a bug. In the initial

development, the TCP RACK stack inadvertently allowed a case where when a SACK arrived
that declared more than a single segment missing and the RACK timer expired for all of
the data, the TCP RACK stack would send one segment and start a RACK timer. When the
RACK timer expired (which was set to the RACK minimum timeout value of 1 ms), the TCP
RACK stack would send another one of the missing segments. This would repeat until all of
the missing segments were sent. This effectively ignores PRR during the initial recovery with
a cost of sending further PRR segments much later. So, for example, if RRR sent 3 segments,
the first retransmission and two extras, it would take the arrival of roughly 6 more acknowl-
edgements before PRR would send out a new segment.

When this bug was discovered and “fixed,” the quality of experience (QoE) for the users
degraded. This is because those early segment losses often hold up the delivery of quite a
few segments of data. This led to adding this as a feature that can be turned off and also
has programmability into the amount of time since the time in question effectively makes
RRR paced at 12Mbps in its default setup. By default, this feature is on with the RRR recov-
ery rate set for one segment every millisecond. This results in a rate of 12 Mbps assuming a
maximum transmission unit (MTU) of 1500 bytes.

SACK Attack Detection
One of the downsides of keeping a complete map of what is being sent is that this map

can grow quite large in some circumstances. The TCP RACK stack attempts at all times to
collapse the map to as small as possible yet still keep track of all stages of outstanding data.
There is, however, an introduced possibility that a malicious peer can be designed to attack
the memory and CPU resources used by the TCP RACK stack for a TCP connection by con-
stantly splitting the sendmap into smaller and smaller pieces so that TCP RACK stack uses
large amounts of memory and spends excessive amounts of time searching through that
memory. An example might be where an attacker sends SACKs for every other byte. This
can pose a serious threat and can impact a machine in undesired ways.

The TCP RACK stack includes the optional compiled in feature called TCP_SAD_DETEC-
TION. The SAD stands for SACK Attack Detection (SAD). One can enable it for the TCP
RACK stack by adding the line

option TCP_SAD_DETECTION

to the kernel configuration file and rebuilding the kernel.
Once added, it is on by default. It montors for a malicious peer and if detected, it disables

the processing of SACKs from the peer. This degrades that single peer’s performance but
does not prevent the connection from making progress. It, in effect, becomes a connection
that responds as if no SACK was ever enabled. This penalizes loss recovery, but still allows
the connection to continue.

Burst Mitigation
Built into the TCP RACK stack, and on without any user intervention, is burst mitiga-

tion. To mitigate bursts, the stack will only send out a set size (the max burst size) at a send

4 of 6

9FreeBSD Journal • January/February 2024

opportunity and start either a small timer (to send out more) or depend on the returning
acknowledgement stream to prompt the sending of more data. This helps mitigate large
bursts that can cause excessive loss.

Support for TCP Blackbox Logging (BBLog)
One of the interesting aspects of the TCP RACK stack is the extensive support of TCP

Blackbox Logging for both debugging and just general statistical analysis and instrumenta-
tion. This makes it much easier to track down problems and to acquire analysis of connec-
tion behavior.

Large Receive Offload (LRO) Integration for Burst Mitigation
TCP Large Receive Offload (LRO) is a feature to reduce the CPU resources needed for

a receiver by coalescing multiple received TCP segments into a single one before passing
them into the TCP stack. Often this results in a loss of information about the individual re-
ceived segments but reduces the CPU resources needed, since fewer TCP segments need
to be processed by the TCP stack.

An interesting feature interaction is a set of changes that have been made to the LRO
code for better support of pacing in the TCP RACK stack. When a TCP connection is doing
burst mitigation, it tends to walk through the send path more often, sending smaller bursts.
Due to this, changes were made to the LRO code allowing all of the timing data on pack-
et arrival information to be carried through to the TCP RACK stack without loss. Basically,
during packet processing, the LRO code looks up to see if the packet is associated with a
connection that allows it to queue packets directly to the TCP RACK stack. If so, the packets
are enqueued directly to the connection and, depending upon connection state, the con-
nection may be woken up. In cases where the TCP RACK stack is doing burst mitigation or
pacing, that wake up is deferred until a timer expires and something can be done with the
inbound acknowledgments. These steps also bypass IP stack processing and thus provide an
additional mild reduction of needed CPU resources.

A Host of Alternate Features
Many other features are available in the TCP RACK stack via various socket options and

sysctl-variables. Currently, TCP RACK stack supports 58 socket options that enable var-
ious features including pacing, burst mitigation options and recovery response modifica-
tions. Besides the socket options, around 150 sysctl-variables exist to either make a socket
option apply to all connections or to modify various TCP RACK stack default configurations.
All of these features and configuration are available to help adjust the TCP RACK stack to
better conform to your network conditions and requirements.

How Netflix Evolves the TCP RACK Stack
Netflix currently uses only the TCP RACK stack, the FreeBSD default stack is present, but

not in use. The way Netflix uses the TCP RACK stack is a bit novel and worth noting. Netflix
actually keeps several generations of the TCP RACK stack named for its release numbers.
At all times, it keeps the “latest” TCP RACK stack with all of the leading-edge features under
development by its transport group.

Periodically, when a release is cut, the latest TCP RACK stack under development is cop-
ied and supported based on a release number. This TCP stack is then evaluated based upon
QoE and CPU performance in comparison to the previously released TCP stack which is the

5 of 6

10FreeBSD Journal • January/February 2024

default in use. When the newest TCP RACK stack is at least as good or better than the old
TCP RACK stack, the default is switched to the newer TCP RACK stack in the next release.
The old TCP RACK stack is maintained for several releases and eventually removed.

New features on TCP RACK stacks are also tested this way so that it can be determined if
a feature adds value or not. Reducing network impact with no degradation of QoE for Net-
flix’s users is one of the transport team’s main goals, so that Netflix is both a better network
citizen and at the same time providing a good overall QoE.

Conclusion and Outlook
The TCP RACK stack provides a strong alternative to the FreeBSD base stack. It adds

more features and options that provide a richer set of alternatives for the application devel-
oper to better tailor the TCP experience for users.

The TCP RACK stack was extensively tested using the Netflix setup and workload. But
it is important to also test it in other setups and workloads. Therefore, it would be great if
users could test the TCP RACK stack on their hardware, using their setup, and under their
workload. Please report any issues found during testing to net@freebsd.org or to the au-
thors of this article. Depending on the feedback and further testing, the TCP RACK stack
might become the default stack for FreeBSD in the future.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over
40 years and a FreeBSD developer for over 10 years. He specializes in Transports including
TCP and SCTP but has also been known to poke into other areas of the operating system.
He currently works at Netflix in its transport team, supporting the TCP stack while innovat-
ing to constantly improve user QoE.

MICHAEL TÜXEN (tuexen@freebsd.org) is a professor at the Münster University of Applied
Sciences, a part-time contractor for Netflix, and a FreeBSD source committer since 2009.
His focus is on transport protocols like SCTP and TCP, their standardization at the IETF and
their implementation in FreeBSD.

6 of 6

mailto: net@freebsd.org
mailto:rrs@freebsd.org
mailto:tuexen@freebsd.org

