
January/February 2024



Nov/Dec 2019 57

November/December 2022

Writing Custom 
Commands in FreeBSD’s 
DDB Kernel Debugger

DTrace: New Additions  
to an Old Tracing System

Certificate-based 
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2024 Editorial Calendar
• Networking 

(January-February)

• Development Workflow and CI (March-April)

• Configuration Management Showdown  

(May-June)

• Storage and File Systems (July-August)

• To come (September-October)

• To come (November-December)

https://www.freebsdfoundation.org/journal


LETTER
from the Foundation

J O U R N A L
®

Editorial Board
 John Baldwin • Member of the FreeBSD Core Team and 
  Chair of FreeBSD Journal Editorial Board

 Tom Jones • FreeBSD Developer, Internet Engineer 
  and Researcher at the University of 
  Aberdeen

 Ed Maste • Senior Director of Technology, 
  FreeBSD Foundation and Member 
  of the FreeBSD Core Team

 Benedict Reuschling • FreeBSD Documentation Committer 
  and Member of the FreeBSD Core Team

 Mariusz Zaborski • FreeBSD Developer

Advisory Board
 Anne Dickison • Marketing Director, FreeBSD Foundation

 Justin Gibbs • Founder of the FreeBSD Foundation, 
  President and Treasurer of the FreeBSD 
  Foundation Board

 Allan Jude • CTO at Klara Inc., the global FreeBSD 
  Professional Services and Support 
  company

 Dru Lavigne • Author of BSD Hacks and 
  The Best of FreeBSD Basics

 Michael W Lucas • Author of more than 40 books including 
  Absolute FreeBSD, the FreeBSD 
  Mastery series, and git commit murder

 Kirk McKusick • Lead author of The Design and 
  Implementation book series

 George Neville-Neil • Past President of the FreeBSD Foundation 
  Board, and co-author of The Design 
  and Implementation of the FreeBSD 
  Operating System

 Hiroki Sato • Director of the FreeBSD Foundation 
  Board, Chair of AsiaBSDCon,  
  and Assistant Professor at Tokyo 
  Institute of Technology

 Robert N. M. Watson • Director of the FreeBSD Foundation 
  Board, Founder of the TrustedBSD 
  Project, and University Senior Lecturer 
  at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

 Editor-at-Large • James Maurer 
  maurer.jim@gmail.com

 Design & Production • Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times 
a year (January/February, March/April, May/June, July/August, 

September/October, November/December). 
Published by the FreeBSD Foundation, 

3980 Broadway St. STE #103-107, Boulder, CO 80304 
ph: 720/207-51 42 • fax: 720/222-2350 

email: info@freebsdfoundation.org

Copyright © 2024 by FreeBSD Foundation. All rights reserved. 
This magazine may not be reproduced in whole or in part without written  

permission from the publisher.

3FreeBSD Journal • January/February 2024

Welcome to the January/February edition of the 
FreeBSD Journal! A decade ago, we unveiled 
the inaugural issue, spotlighting the release 

of FreeBSD 10.0 and featuring discussions on pivotal 
topics such as the transition to clang as the base system 
C and C++ compiler, and ZFS. Over the past ten years, 
the Journal has showcased a wealth of content, with 
more than 250 articles, accompanied by numerous 
book reviews and engaging trip reports. None of 
this would have been possible without the invaluable 
contributions from authors across the FreeBSD 
community, both past and present members of the 
Editorial Board, and, of course, our dedicated readers.  
A heartfelt thank you to all!

As we embark on the next decade, we’re pleased 
to announce two structural changes to the Journal. 
Firstly, we’re departing from the browser-based 
format and introducing HTML versions alongside the 
traditional PDFs for each article. Secondly, starting with 
the November/December 2023 issue, the Editorial 
Board has collaborated with esteemed guest experts-
-authorities on each issue’s theme—to help plan and 
develop content. These experts not only suggest topics 
and potential authors but, in some cases, contribute 
articles themselves. Our recent issue (FreeBSD 14.0) 
marked the beginning of this collaboration, benefiting 
from the insights of guest expert Warner Losh, and 
contributions from Michael Tüxen. Thank you, Warner 
and Michael!

We value the input of our readers and invite you to 
share your thoughts. Whether you have feedback on 
our articles, suggestions for future topics, or an interest 
in contributing an article yourself, please reach out to us 
at journaleditor@freebsdfoundation.org.

John Baldwin 
Chair of the FreeBSD Journal Editorial Board

mailto:journaleditor@freebsdfoundation.org


10th A�iversary

FreeBSD Journal

4FreeBSD Journal • January/February 2024

January/February 2024

5  RACK and Alternate TCP Stacks 
for FreeBSD
By Randall Stewart and Michael Tüxen

11  Updates on TCP in FreeBSD 14 
By Richard Scheffenegger

17  If_ovpn or Open VPN
By Kristof Provost

24  SR-IOV is a First Class FreeBSD Feature
By Mark McBride

41  FreeBSD Interface API (IfAPI)
By Justin Hibbits

43  BATMAN – The Better Approach to Mobile 
Ad-Hoc Networks
By Aymeric Wibo

46  Make Your Own VPN – FreeBSD, 
Wireguard, IPv6 and Ad-blocking Included
By Stefano Marinelli

3 Foundation Letter
By John Baldwin

53 Practical Ports: Monitor Your Hosts with Zabbix 
By Benedict Reuschling

61 10 Years of the FreeBSD Journal
Crossword by Tom Jones

63 FreeBSD Foundation 2023 Recap 
By Deb Goodkin

68 Events Calendar 
By Anne Dickison



5FreeBSD Journal • January/February 2024

1 of 6

In 2017 changes were made to the TCP stack in FreeBSD, allowing the coexistence of mul-
tiple TCP stacks. This way, the existing TCP stack could be left untouched and allow inno-
vation at the cost of a limited number of function calls. Some functionality is still shared 

between all TCP stacks: the implementation of the SYN-Cache including the handling of 
SYN-Cookies and the initial steps of the handling of incoming TCP segments like checksum 
verification and looking up the TCP endpoint based on the port numbers and IP addresses. 
At any given time, a TCP connection is handled by exactly one TCP stack, but this TCP stack 
can be changed during the lifetime of the TCP connection.

This is where the TCP RACK stack began as a com-
plete rewrite of the original TCP stack from the call to 
the tcp_do_segment() function and many other mod-
ularized sub-functions. The initial goal was to add sup-
port for a loss detection method called Recent Acknowl-
edgement (RACK). RACK was described in an Internet 
draft, which became RFC 8985 in 2021. This is where the 
name of this TCP stack—RACK—comes from. But the 
TCP RACK stack has grown far beyond just the addition 
of support for RFC 8985. Part of the rewrite includes a 
completely different way of handling selective acknowl-
edgement (SACK) information. In the TCP RACK stack, 
a complete map of all user data sent is maintained that 
allows an improved handling of retransmissions of user data as well as the addition of the 
RACK loss detection described in RFC 8985. Many additional features have grown out of 
this rewrite and are described in this article.

How to Use the TCP RACK Stack
The RACK stack is available in both FreeBSD CURRENT and FreeBSD 14.0. How to make 

it available depends on the FreeBSD version.
For FreeBSD 14.0, one needs to add the following two lines to the kernel configuration file

option TCPHPTS 
makeoptions WITH_EXTRA_TCP_STACKS=1

and rebuild the kernel. The first line results in compiling the TCP high precision timer sys-
tem (HPTS) into the kernel. The second line results in generating a kernel loadable module 
for the TCP RACK stack (tcp_rack.ko). To use the TCP RACK stack, the kernel module 
must be loaded. This can be done on every reboot by adding the line

tcp_rack_load=”YES”

to the file /boot/loader.conf.

BY RANDALL STEWART AND MICHAEL TÜXEN

The RACK stack is available 
in both FreeBSD CURRENT 
and FreeBSD 14.0.

RACK and Alternate TCP Stacks  
for FreeBSD



6FreeBSD Journal • January/February 2024

In FreeBSD CURRENT, both TCP RACK and HPTS are built as kernel modules by default. 
Since tcphpts.ko is loaded automatically as a dependency of tcp_rack.ko, only the latter 
must be loaded using kldload. To load the TCP RACK stack on every reboot, the following 
two lines need to be added to the file /boot/loader.conf:

tcphpts_load=”YES” 
tcp_rack_load=”YES”

Compiling the TCP RACK stack statically into the kernel of FreeBSD CURRENT is also 
possible by adding the following two lines to the kernel configuration file

option TCPHPTS 
option TCP_RACK

and rebuilding the kernel.
Note that TCP Blackbox Logging (option TCP_BLACKBOX) is now built by default in 

FreeBSD 14.0 and higher and also in FreeBSD CURRENT for all 64-bit platforms, since it is 
the standard way that TCP transport developers are both instrumenting as well as debug-
ging the various TCP stacks.

The above describes how to make the TCP RACK stack available on a FreeBSD system. A 
list of all available TCP stacks is shown by running

sysctl net.inet.tcp.functions_available

in a shell.
In the upcoming versions—FreeBSD 14.1 and higher—the usage of the TCP RACK stack 

will be the same as the one described above for FreeBSD CURRENT.
There are different ways of actually using the TCP RACK stack, some involving source 

code changes of applications, some only involving configuration changes.
The sysctl-variable net.inet.tcp.functions_default is used to specify the default 

TCP stack that is used for new TCP endpoints created using the socket(2) system call. Ex-
ecuting

sysctl net.inet.tcp.functions_default=rack

sets the default stack to the TCP RACK stack. By adding the line

net.inet.tcp.functions_default=rack

to the file /etc/sysctl.conf the TCP RACK stack will be the default TCP stack after re-
booting the system. When a TCP endpoint is created via a listener, the TCP stack is either in-
herited from the listener or based on the default TCP stack depending on the sysctl-vari-
able net.inet.tcp.functions_inherit_listen_socket_stack being non-zero or 
zero. The default value of this variable is one.

It is also possible to change the TCP stack of individual TCP connections by using the 
tcpsso(8) command line tool as described in the man-page of the tool.

If the source code can be changed, the IPPROTO_TCP-level socket option with the name 
TCP_FUNCTION_BLK can be used to switch the TCP stack being used for the socket to the 
TCP RACK stack. The option value has the type struct tcp_function_set. For example, 
the following code performs this:

2 of 6



7FreeBSD Journal • January/February 2024

struct tcp_function_set tfs; 
 
strncpy(tfs.function_set_name, “rack”, TCP_FUNCTION_NAME_LEN_MAX); 
tfs.pcbcnt = 0; 
setsockopt(fd, IPPROTO_TCP, TCP_FUNCTION_BLK, &tfs, sizeof(tfs));

Using the TCP RACK stack allows the use of a number of features that the default TCP stack 
does not currently support. A lot of these features can be controlled via IPPROTO_TCP-level 
socket options or sysctl-variables under net.inet.tcp.rack.

Features of the TCP RACK Stack
The following sections describe the most important features provided by the TCP RACK 

stack.

RACK/TLP
Recent Acknowledgement (RACK) and Tail Loss Probe (TLP) are two integrated fea-

tures within the TCP RACK stack. Recent acknowledgement changes the way that packet 
loss is detected and retransmissions are triggered. The loss detection implemented in the 
FreeBSD base stack and specified in RFC 5681 takes three duplicate acknowledgments or 
acknowledgement arrivals with SACK to get the TCP stack to send out a retransmission. In 
some cases, where, for example, less than four packets have been sent, this will cause the 
TCP stack to send the retransmission only after a retransmission timeout has occurred. 
RACK changes this so that when a SACK arrives, if enough time has elapsed since the send-
ing of the lost packets, a retransmission happens immediately. If not enough time has oc-
curred (usually the time is a bit larger than the current RTT), then a small RACK timer is 
started, and when this expires the retransmission is sent. This then will fix many—but not 
all—of the cases where a retransmission timeout would have to force out data. The last case 
is solved by the TLP. This is where whenever the TCP RACK stack has sent data, it starts a 
TLP timer instead of a retransmission timer. If the TLP timer expires, the TCP RACK stack 
sends either a new segment or the last segment sent. The hope of this TLP-sent segment is 
that the sender would either receive an acknowledgement back indicating all data has been 
received (a case where the last acknowledgement was lost) or the TLP would elicit a SACK, 
which would allow the normal fast recovery mechanisms to take over without hitting a re-
transmission timeout and thus collapsing the congestion window to 1 MSS.

A user of the TCP RACK stack, just by enabling the stack, gets the benefits of both RACK 
and TLP automatically. No socket option or configuration is required by the upper layer.

Proportional Rate Reduction (PRR)
Proportional Rate Reduction (PRR) is another automatic built-in feature of the TCP RACK 

stack, specified in RFC 6937 and currently being updated by the IETF. PRR improves the 
way data is sent during fast recovery. When using the TCP congestion control as specified 
in RFC 5681, the congestion window is reduced in half on entering fast recovery. This then 
causes a stall in sending new data during fast recovery. Basically, the sender must wait for 
one-half of the outstanding data to be acknowledged, and then the sender can start send-
ing new data (along with our retransmissions). This causes a “stall” in the data flow between 
the sender and receiver. PRR is designed to improve that, such that during fast recovery, a 
new data segment can be sent roughly every other acknowledgment. This then prevents 

3 of 6



8FreeBSD Journal • January/February 2024

the data “stall” and keeps data continually moving thus keeping the RTT and other transport 
metrics active and updating.

RACK Rapid Recovery (RRR)
RACK Rapid Recovery (RRR) is an interesting feature that started as a bug. In the initial 

development, the TCP RACK stack inadvertently allowed a case where when a SACK arrived 
that declared more than a single segment missing and the RACK timer expired for all of 
the data, the TCP RACK stack would send one segment and start a RACK timer. When the 
RACK timer expired (which was set to the RACK minimum timeout value of 1 ms), the TCP 
RACK stack would send another one of the missing segments. This would repeat until all of 
the missing segments were sent. This effectively ignores PRR during the initial recovery with 
a cost of sending further PRR segments much later. So, for example, if RRR sent 3 segments, 
the first retransmission and two extras, it would take the arrival of roughly 6 more acknowl-
edgements before PRR would send out a new segment.

When this bug was discovered and “fixed,” the quality of experience (QoE) for the users 
degraded. This is because those early segment losses often hold up the delivery of quite a 
few segments of data. This led to adding this as a feature that can be turned off and also 
has programmability into the amount of time since the time in question effectively makes 
RRR paced at 12Mbps in its default setup. By default, this feature is on with the RRR recov-
ery rate set for one segment every millisecond. This results in a rate of 12 Mbps assuming a 
maximum transmission unit (MTU) of 1500 bytes.

SACK Attack Detection
One of the downsides of keeping a complete map of what is being sent is that this map 

can grow quite large in some circumstances. The TCP RACK stack attempts at all times to 
collapse the map to as small as possible yet still keep track of all stages of outstanding data. 
There is, however, an introduced possibility that a malicious peer can be designed to attack 
the memory and CPU resources used by the TCP RACK stack for a TCP connection by con-
stantly splitting the sendmap into smaller and smaller pieces so that TCP RACK stack uses 
large amounts of memory and spends excessive amounts of time searching through that 
memory. An example might be where an attacker sends SACKs for every other byte. This 
can pose a serious threat and can impact a machine in undesired ways.

The TCP RACK stack includes the optional compiled in feature called TCP_SAD_DETEC-
TION. The SAD stands for SACK Attack Detection (SAD). One can enable it for the TCP 
RACK stack by adding the line

option TCP_SAD_DETECTION

to the kernel configuration file and rebuilding the kernel.
Once added, it is on by default. It montors for a malicious peer and if detected, it disables 

the processing of SACKs from the peer. This degrades that single peer’s performance but 
does not prevent the connection from making progress. It, in effect, becomes a connection 
that responds as if no SACK was ever enabled. This penalizes loss recovery, but still allows 
the connection to continue.

Burst Mitigation
Built into the TCP RACK stack, and on without any user intervention, is burst mitiga-

tion. To mitigate bursts, the stack will only send out a set size (the max burst size) at a send 

4 of 6



9FreeBSD Journal • January/February 2024

opportunity and start either a small timer (to send out more) or depend on the returning 
acknowledgement stream to prompt the sending of more data. This helps mitigate large 
bursts that can cause excessive loss.

Support for TCP Blackbox Logging (BBLog)
One of the interesting aspects of the TCP RACK stack is the extensive support of TCP 

Blackbox Logging for both debugging and just general statistical analysis and instrumenta-
tion. This makes it much easier to track down problems and to acquire analysis of connec-
tion behavior.

Large Receive Offload (LRO) Integration for Burst Mitigation
TCP Large Receive Offload (LRO) is a feature to reduce the CPU resources needed for 

a receiver by coalescing multiple received TCP segments into a single one before passing 
them into the TCP stack. Often this results in a loss of information about the individual re-
ceived segments but reduces the CPU resources needed, since fewer TCP segments need 
to be processed by the TCP stack.

An interesting feature interaction is a set of changes that have been made to the LRO 
code for better support of pacing in the TCP RACK stack. When a TCP connection is doing 
burst mitigation, it tends to walk through the send path more often, sending smaller bursts. 
Due to this, changes were made to the LRO code allowing all of the timing data on pack-
et arrival information to be carried through to the TCP RACK stack without loss. Basically, 
during packet processing, the LRO code looks up to see if the packet is associated with a 
connection that allows it to queue packets directly to the TCP RACK stack. If so, the packets 
are enqueued directly to the connection and, depending upon connection state, the con-
nection may be woken up. In cases where the TCP RACK stack is doing burst mitigation or 
pacing, that wake up is deferred until a timer expires and something can be done with the 
inbound acknowledgments. These steps also bypass IP stack processing and thus provide an 
additional mild reduction of needed CPU resources.

A Host of Alternate Features
Many other features are available in the TCP RACK stack via various socket options and 

sysctl-variables. Currently, TCP RACK stack supports 58 socket options that enable var-
ious features including pacing, burst mitigation options and recovery response modifica-
tions. Besides the socket options, around 150 sysctl-variables exist to either make a socket 
option apply to all connections or to modify various TCP RACK stack default configurations. 
All of these features and configuration are available to help adjust the TCP RACK stack to 
better conform to your network conditions and requirements.

How Netflix Evolves the TCP RACK Stack
Netflix currently uses only the TCP RACK stack, the FreeBSD default stack is present, but 

not in use. The way Netflix uses the TCP RACK stack is a bit novel and worth noting. Netflix 
actually keeps several generations of the TCP RACK stack named for its release numbers. 
At all times, it keeps the “latest” TCP RACK stack with all of the leading-edge features under 
development by its transport group.

Periodically, when a release is cut, the latest TCP RACK stack under development is cop-
ied and supported based on a release number. This TCP stack is then evaluated based upon 
QoE and CPU performance in comparison to the previously released TCP stack which is the 

5 of 6



10FreeBSD Journal • January/February 2024

default in use. When the newest TCP RACK stack is at least as good or better than the old 
TCP RACK stack, the default is switched to the newer TCP RACK stack in the next release. 
The old TCP RACK stack is maintained for several releases and eventually removed.

New features on TCP RACK stacks are also tested this way so that it can be determined if 
a feature adds value or not. Reducing network impact with no degradation of QoE for Net-
flix’s users is one of the transport team’s main goals, so that Netflix is both a better network 
citizen and at the same time providing a good overall QoE.

Conclusion and Outlook
The TCP RACK stack provides a strong alternative to the FreeBSD base stack. It adds 

more features and options that provide a richer set of alternatives for the application devel-
oper to better tailor the TCP experience for users.

The TCP RACK stack was extensively tested using the Netflix setup and workload. But 
it is important to also test it in other setups and workloads. Therefore, it would be great if 
users could test the TCP RACK stack on their hardware, using their setup, and under their 
workload. Please report any issues found during testing to net@freebsd.org or to the au-
thors of this article. Depending on the feedback and further testing, the TCP RACK stack 
might become the default stack for FreeBSD in the future.

RANDALL STEWART (rrs@freebsd.org) has been an operating system developer for over 
40 years and a FreeBSD developer for over 10 years. He specializes in Transports including 
TCP and SCTP but has also been known to poke into other areas of the operating system. 
He currently works at Netflix in its transport team, supporting the TCP stack while innovat-
ing to constantly improve user QoE. 

MICHAEL TÜXEN (tuexen@freebsd.org) is a professor at the Münster University of Applied 
Sciences, a part-time contractor for Netflix, and a FreeBSD source committer since 2009. 
His focus is on transport protocols like SCTP and TCP, their standardization at the IETF and 
their implementation in FreeBSD.

6 of 6

mailto: net@freebsd.org
mailto:rrs@freebsd.org
mailto:tuexen@freebsd.org


11FreeBSD Journal • January/February 2024

1 of 6

It’s been about 3 ½ years since I last reported on the area of the FreeBSD project I fo-
cus on, namely, the TCP protocol implementation. For those who don’t know, FreeBSD 
doesn’t feature only one TCP stack, but multiple ones with development occurring dom-

inantly in the RACK and base stack. Currently, the one used by default (base stack) is the 
stack long evolved and derived from BSD4.4. Also, since 2018, we have had a complete-
ly refactored stack (“RACK stack” – with the Recent ACKnowledgement mechanism as its 
namesake), that provides many advanced capabilities that are lacking in the base stack. For 
example, the RACK stack provides high granularity pacing capabilities. That is, the stack can 
time the sending of packets and even out the consumption of network resources. In con-
trast, if an application presents the base stack with a sudden burst of data to transmit, there 
are instances where this data will be sent out in a large burst at near line rate (the speed of 
the interface, provided the CPU and internal busses are not the bottleneck). This happen 
most notably whenever there is a short application pause from the last application IO by a 
couple tens of milliseconds. (Further details on the RACK stack are beyond the scope of this 
article and can be read in the accompanying article by Michael Tuexen and Randall Stewart.).

Here, I want to highlight some of the new features that have been brought into the base 
stack – many of which are enabled by default, and some of which may need to be specif-
ically activated. Each feature will be described with details that may help improve the net-
working experience.

Overall, there have been around 1033 commits since the release of FreeBSD 13.0 to the 
sys/netinet directory where all the transport protocols traditionally live. This gives an over-
view of selected changes to the base stack, where functionality was improved:

Proportional Rate Reduction
The first feature brought into the base stack is PRR – Proportional Rate Reduction 

(RFC6937). To understand PRR on a high level, let’s first understand how SACK behavior 
functions during loss recovery. One issue with standard SACK loss recovery was that while 
the congestion window is adjusted on entering loss recovery (e.g., to 50% of the value at 
onset of congestion with NewReno or 70% with Cubic) after a single packet loss, the es-
timation of how many packet are still in flight will initially not allow any packets to be sent 
while ACKs return for the first half (NewReno) or initial 30% of the window. Once that limit 
has been reached, every incoming ACK will elicit a new packet, but this may well happen at 
an effective rate that overwhelms the congestion point in the network. The initial quiet peri-
od may serve to drain queues and allow for the subsequent, faster-than-ideal transmissions. 
Often that behavior leads to subsequent losses (perhaps even losses of retransmitted pack-
ets – more on that later).

To quickly adjust the effective sending rate – and also deal more appropriately when 
there are multiple losses of data packets or maybe even losses of ACK packets – PRR will 
calculate how much data should be sent out for every new, incoming ACK and sends out as 
many full-sized packets as appropriate at that that time. In the simple example with NewRe-

BY RICHARD SCHEFFENEGGER

Updates On  
 TCP  in FreeBSD 14



12FreeBSD Journal • January/February 2024

no with a reduction of the congestion window to half and just a single loss, this will cause 
one new packet to be sent for every two ACKs returned. Thus, the sending rate will adjust 
instantly to exactly half of what it used to be – stopping the congested device from be-
ing overloaded. In the presence of multiple data losses or ACKs discarded, PRR may inject 
even more than one packet when an ACK is finally received, making good on these missed 
sending opportunities. Overall, this behavior ensures that at the end of the window (RTT) 
when loss recovery happens, the effective congestion window is as close as possible to the 
expected congestion window, and that no transmit opportunities are missed, even under 
problematic scenarios like multiple packet losses or ACK losses.

Hopefully, a few graphs can explain this niche detail better. Below, we have time-se-
quence graphs which can be obtained from wireshark or the combination of tcptrace and 
associated xplot. The small blueish vertical bars indicate when a particular packet covering 
the data sequence was sent – as on the left axis. The greenish more horizontal line below in-
dicates which data was received contiguous by the receiver. Red vertical lines signify any dis-
continuous range of data that made it to the receiver. 

Cubic Without SACK or PRR, Classic NewReno Loss Recovery

Note that only a single data packet can be recovered within one window (or round-trip 
time) and the long stretch of horizontal green line indicates the latency induced before the 
receiving application gets to process additional data.

Cubic with SACK, but no PRR

2 of 6



13FreeBSD Journal • January/February 2024

As this example shows, SACK dramatically improves the situation, since all the lost pack-
ets can (typically) be retransmitted within one RTT. However, take note of the pause and re-
sumption of sending on each ACK later. This behavior drives data at an effective rate that 
caused some packets to be dropped into the network. Often, this causes one or more of 
the retransmissions to arrive too quickly and the network drops the retransmission. The only 
recourse then is to wait for a retransmission timeout (RTO).

Cubic with SACK (6675) and PRR

The improvement with PRR depicted here is subtle. Where previously no data was sent 
for half a window, and then at the old, likely too high rate for the second half, PRR injects 
packets approximately every other received ACK until the new sending rate has been 
reached, and then on nearly each subsequent incoming ACK. This serves to reduce the ef-
fective sending rate of the retransmissions and making it less likely that these will get dis-
carded by the network. Fewer RTOs and improved latency are the consequences.

The graph shown here is not entirely correct but attempts to convey the aspect of PRR 
“dithering” packets sent appropriately over the received ACKs to send them out – in this 
case, on average, 0.7 packets for every ACK including those which may have been discarded 
by the network.

The final update in this space was that PRR now automatically switches to a less conser-
vative mode unless there are additional losses in loss recovery. This effectively improves the 
transmission speed during loss recovery, similar to what would happen during normal op-
eration in the congestion avoidance phase. PRR works best (naturally) in conjunction with 
SACK, but also when only non-SACK duplicate ACKs are available. Even with nothing but 
ECN feedback, PRR improves the transmission timings.

SACK Handling
In recent years, the adherence of the base stack to SACK loss recovery as specified in 

RFC6675 has been improved. But while parts of the estimation on how much data is still 
outstanding in the network were improved, other aspects of RFC6675 were missing.

Improvements in this space now include the use of so-called rescue retransmissions – a 
precursor of the Tail-Loss Probe, which is implemented in the RACK stack. In short, when 
the final few packets of a transfer are lost in addition to earlier packet losses, the stack can 
detect the problem and will retransmit the ultimate packet to perform a timely loss recovery.

And, by implementing additional accounting when processing any incoming SACK block, 

3 of 6



14FreeBSD Journal • January/February 2024

the stack keeps better track of whether a particular packet ought to have left the network 
either by being received or having very likely been dropped. 

A final enhancement was to track whether retransmissions may also have been dropped 
by the network, but unlike RACK, which uses the time domain, the base stack looks at the 
sequence domain. While this lost retransmission detection is not specified in the RFC series, 
it’s an extremely valuable addition to reduce the flow completion time / IO service response 
time for any request-response (e.g., RPC) protocol using the TCP stack. Tracking and recov-
ering from lost retransmissions does not yet happen by default. In FreeBSD 14, this can be 
activated with net.inet.tcp.do_lrd – but with FreeBSD 15, this will move to net.inet.tcp.sack.lrd 
and be enabled by default.

Overall, these changes make the base stack more resilient during frequently encountered 
pathological issues around congestion in the IP network.

Finally, the base stack (and the RACK stack) creates DSACK (RFC2883) responses when 
receiving spurious duplicate data packets. While receiving such DSACK information doesn’t 
influence the stack behavior, providing this to a remote sender may permit that sender to 
better adjust to the specific network path behavior – e.g., Linux could increase the dup-
thresh or detect spurious retransmissions because of a spike in the path round-trip time 
(RTT).

Logging and Debugging
Over the decades, the base stack accumulated several different mechanisms to be de-

bugged on a live system. One of the least known tools, trpt, and its support was removed in 
FreeBSD 14. Still, numerous other options exist (dtrace, siftr, bblog, …). 

BlackBox Logging was introduced with the RACK stack and extended to cover more and 
more of the base stack as well. Tools are being prepared to extract internal state changes 
from a running system as well as extract them from core dumps – along with the packet 
trace itself. (See https://github.com/Netflix/tcplog_dumper and https://github.com/Netflix/
read_bbrlog)

Cubic
As described in my previous article, TCP Cubic is the de facto standard congestion con-

trol algorithm in use virtually everywhere. Recently, Cubic was also made the default for 
FreeBSD – regardless of which TCP stack is being used.

4 of 6

https://github.com/Netflix/tcplog_dumper
https://github.com/Netflix/read_bbrlog
https://github.com/Netflix/read_bbrlog


15FreeBSD Journal • January/February 2024

One notable extension here is the addition of HyStart++. When a TCP session starts up, 
the congestion control mechanism quickly ramps up bandwidth during a phase called slow 
start. Traditionally, the slow start phase ends when the first indication of congestion packet 
loss, or possibly an explicit congestion notification (ECN) feedback – is received. With 
HyStart++, which is implemented as part of the Cubic module and always enabled, the RTT 
is monitored. When the RTT starts to rise – possibly because network queues start forming  
– a less aggressive phase (conservative slow start) is entered and the RTT is still monitored 
because any timing-based signal is notoriously hard to obtain reliably. If it turns out that the 
RTT reduces again while in this conservative slow start phase, regular slow start is resumed. 
If not, the less aggressive sending pace in CSS limits the so-called overshoot – which is how 
much data may need to be recovered due to inevitable losses.

Accurate Explicit Congestion Notification 
As alluded to earlier, ECN is a mechanism to avoid packet losses as the sole signal to in-

dicate congestion events. Over the last decade, there has 
been a large effort in the Internet Engineering Task Force 
(IETF) to improve this signaling. While, originally, ECN was 
viewed as an “identical” signal to packet loss, a more fre-
quent signal with different semantics was found to work 
better to maintain shallow (fast) queues across a large range 
of bandwidths. The full architecture is named Low La-
tency, Low Loss, Scalable (L4S). While not all the pieces in 
FreeBSD are currently ready to implement a proper “TCP 
Prague” implementation, many individual features – such 
as the DCTCP congestion control module and, relevant 
here, Accurate ECN (AccECN) – are now part of the stack in 
FreeBSD 14.

While in classic ECN, only a single congestion experi-
ence mark can be signaled per RTT. This necessitates a 
heavy-handed management by the congestion control 
module. In fact, CE marks are viewed as equal to packet loss 
indications when adjusting the TCP bandwidth while oper-
ating in RFC3168 mode. In contrast, with AccECN, an arbi-
trary number of explicit congestion marks can be signaled back to the data sender by the 
receiver. This enables a more modulated and fine-grained signal to be extracted from the 
network. This becomes relevant in environments where DCTCP – with the modified, much 
more aggressive marking thresholds by the intermediate switches – is to be used. It is also 
one of the key ingredients of the Low Latency, Low Loss, Scalable (L4S) architecture – also 
known as TCP Prague. 

Authentication and Security
Recently, the RACK stack gained the capability to fully handle MD5 authentication of 

TCP packets. This is an improvement that allows the use of BGP with the RACK stack – an-
other step in making the RACK stack fully featured and useable in any generic circum-
stance.

For a long time, there has been a tight coupling between two of the features in RFC7323 

5 of 6

ECN is a mechanism  
to avoid packet losses  
as the sole signal  
to indicate congestion 
events.



16FreeBSD Journal • January/February 2024

(RFC1323) – Window Scaling and Timestamp options. In this space, we now allow either of 
these to be enabled independently of the other while the default still permits both to be ac-
tive. This can now be achieved by setting net.inet.tcp.rfc1323 
not only to on (1) or off (0), but also 2 (only window scale) 
and 3 (timestamps only). Furthermore, in accordance with 
RFC7323, it is now possible to further secure TCP sessions 
by requiring proper use of TCP timestamps under all cir-
cumstances. This is achieved by setting net.inet.tcp.tolerate_
missing_ts to 0.

What’s Next?
While the improvements of various aspects of TCP fea-

tures are well into the diminishing returns phase, there are 
still a couple of further enhancements under discussion.

For example, an erratum to RFC2018 (Selective Acknowl-
edgments) now allows information to be retained during a 
Retransmission Timeout (RTO), unlike previously. The main 
motivation at the time of the original standard was allow-
ing for “reneging” by the receiver. Unless explicitly acknowl-
edged, subsequent data could still be discarded, e.g., be-
cause of memory pressure. In practice, such reneging hardly 
ever happens, but retransmission timeouts during a SACK 
loss recovery phase do occur quite frequently. Retaining this 
information allows more efficient retransmissions even af-
ter an RTO. The challenge is that the base stack has implic-
it tight couplings with other aspects of what should happen after a retransmission timeout 
(such as slow starting from a very small congestion window). Also, the impact of this change 
after an RTO needs to be evaluated – driving some additional capabilities into the dummy-
net path emulator to model loss in more controllable ways.

RICHARD SCHEFFENEGGER has been a FreeBSD committer since April 2020 and is inter-
ested in improving the features and functionality of the TCP stack, mainly focusing on the 
slow path (loss recovery, congestion control handling), and actively developing enhance-
ments such as Accurate ECN with the IETF.

6 of 6

While the improvements 
of various aspects of TCP 
features are well into the 
diminishing returns phase, 
there are still a couple of 
further enhancements 
under discussion.



17FreeBSD Journal • January/February 2024

1 of 7

Today1, you’re going to be reading2 about OpenVPN’s DCO.
Initially developed by James Yonan, OpenVPN saw its first release on May 13, 2001. 

It supports many common platforms (such as FreeBSD, OpenBSD, Dragonfly, AIX, ...) 
and a few less common ones (macOS, Linux, Windows) as well. It supports peer-to-peer and 
client-server models, with pre-shared key, certificate, or username/password-based authen-
tication.

As you’d expect with any project that’s been around for more than 20 years, it grew 
many features for many different use cases.

The Problem
While OpenVPN is very nice, clearly there must be a problem. Without a problem, this ar-

ticle wouldn’t be very interesting3. There is, indeed, an issue, and it is that OpenVPN is imple-
mented as a single-threaded, userspace process.

It uses if_tun to inject packets into the network stack. As a result, its performance has not 
kept up with current connectivity rates. It also makes it difficult to take advantage of mod-
ern multi-core hardware or cryptographic offload hardware.

The main issue with OpenVPN’s performance is its userspace nature. Incoming traffic is 
naturally received by a NIC, which would typically DMA the packet into kernel memory. It 
is then processed further by the network stack until that works out what socket the packet 
belongs to, and passes it to userspace. This socket may be UDP or TCP.

Passing the packet to userspace involves copying it, at which point the userspace Open-
VPN process verifies and decrypts the packet and re-injects it into the network stack using 
if_tun. This means copying the plain-text packet back into the kernel for further processing.

BY KRISTOF PROVOST

if_ovpn 

 or OpenVPN



18FreeBSD Journal • January/February 2024

Inevitably all this context switching and copying back and forth has a significant impact 
on performance.

In the current architecture it’s very hard to make significant performance improvements.

What is DCO
Now that we’ve established what our problem is, we can start thinking about solutions4.
If our problem is context switches to userspace then one plausible solution is to keep the 

work inside the kernel, and that’s what DCO–Data Channel Offload–does.

DCO moves the data channel, that is, the cryptographic operations and the tunneling 
of the traffic, into the kernel. It does this through a new virtual device driver, if_ovpn. The 
OpenVPN userspace process remains responsible for connection setup (including authenti-
cation and option negotiation), coordinating with the if_ovpn driver via a new ioctl interface.

The OpenVPN project decided that the introduction of DCO was a good opportunity to 
remove some legacy features and do some general tidying up. As part of that, they’ve taken 
the Henry Ford approach to encryption algorithm choice. You can have any algorithm you 
like, as long as you like AES-GCM or ChaCha20/Poly1305. In black.

DCO also does not support compression, layer 2 traffic, non-subnet topologies or traffic 
shaping5.

It’s important to note here that DCO does not change the OpenVPN protocol. It’s possi-
ble for a client to use it with a server that does not, or vice versa. You’ll get the biggest bene-
fit when both sides use it, of course, but that’s not required.

Considerations
This is the part where I talk up just how hard this all was, so you’ll all be impressed that I 

actually got this to work. Does that still work if I tell you that’s what I’m doing? Let’s find out!
Anyway, there are a couple of things that needed special attention:

Multiplexing
The first issue is that OpenVPN uses a single connection to transport both the tunneled 

data and the control data. The tunneled data needs to be handled by the kernel, and the 
control data is handled by the OpenVPN userspace process.

You can see the issue. The socket is initially opened and fully owned by OpenVPN itself. It 
sets up the tunnel and handles the authentication. Once that’s completed, it partially hands 
over control to the kernel side (i.e., if_ovpn).

2 of 7



19FreeBSD Journal • January/February 2024

This means informing if_ovpn of the file descriptor (which the kernel uses to look up the 
in-kernel struct socket), so it can hold a reference to it. That ensures the socket doesn’t go 
away while the kernel is using it. Perhaps because the OpenVPN process was terminated, or 
because it was having a bad day and decided to mess with us. It’s userspace, it does crazy 
things.

For those of you who want to follow along in the kernel code, you’re looking for the 
ovpn_new_peer()6 function. 

Having looked up the socket we can now also install the filtering function via udp_set_
kernel_tunneling(). The filter, ovpn_udp_in-
put(), looks at all incoming packets for the specified 
socket, and decides if it’s a payload packet which it 
should handle, or a control packet which OpenVPN in 
userspace should handle.

This tunneling function is also the only change I 
had to make to the rest of the network stack. It need-
ed to be taught that certain packets would be han-
dled by the kernel and others could still be passed 
through to userspace. That was done in https://cgit.
freebsd.org/src/commit/?id=742e7210d00b359d81b-
9c778ab520003704e9b6c .

The ovpn_udp_input() function is the main 
entry point for the receive path. The network stack 
hands packets over to this function for any UDP 
packets arriving on the socket it’s been installed on.

The function first checks if the packet can be han-
dled by the kernel driver. That is, the packet is a data 
packet and it’s destined for a known peer id. If that’s 
not the case the filter function tells the UDP code to pass the packet through the normal 
flow as if there were no filter function. That means the packet will arrive on the socket and 
be processed by OpenVPN’s userspace process.

Early versions of the DCO driver had separate ioctl commands to read and write control 
messages, but both the Linux and FreeBSD drivers have been adapted to use the socket in-
stead. This simplifies handling of both control packets and new clients.

If, on the other hand, the packet is a data packet for a known peer, it is decrypted, has its 
signature validated, and is then passed on to the network stack for further processing.

For those of you following along, that’s done here https://cgit.freebsd.org/src/tree/sys/
net/if_ovpn.c?id=da69782bf06645f38852a8b23af#n1483 .

UDP
OpenVPN can be run over both UDP and TCP. While UDP is the obvious choice for a lay-

er 3 VPN protocol, some users need to run it over TCP to transit firewalls.
The FreeBSD kernel offers a convenient filter function for UDP sockets, but has no 

equivalent for TCP, so FreeBSD if_ovpn currently only supports UDP and not TCP.
The Linux DCO driver developer was rather more ... courageous and has chosen to im-

plement TCP support as well. The developer did, against the odds, in fact survive this experi-
ence, and is now significantly wiser.

3 of 7

Pretty much every  
modern CPU has  
multiple cores,  
and it’d be kind of nice  
to be able to use more  
than just one of them. 

https://cgit.freebsd.org/src/commit/?id=742e7210d00b359d81b9c778ab520003704e9b6c
https://cgit.freebsd.org/src/commit/?id=742e7210d00b359d81b9c778ab520003704e9b6c
https://cgit.freebsd.org/src/commit/?id=742e7210d00b359d81b9c778ab520003704e9b6c
https://cgit.freebsd.org/src/tree/sys/net/if_ovpn.c?id=da69782bf06645f38852a8b23af#n1483
https://cgit.freebsd.org/src/tree/sys/net/if_ovpn.c?id=da69782bf06645f38852a8b23af#n1483


20FreeBSD Journal • January/February 2024

Hardware Cryptography Offload
if_ovpn relies on the in-kernel OpenCrypto framework for cryptographic operations. This 

means it can also take advantage of any cryptographic offload hardware present in the sys-
tem. This can further improve performance.

It’s already been tested with Intel’s QuickAssist Technology (QAT), the SafeXcel EIP-97 
crypto accelerator and AES-NI.

Locking Design
Look, if you thought you were going to get a discussion of kernel code without having to 

talk about locking, I don’t know what to tell you. That was naively optimistic of you.
Pretty much every modern CPU has multiple 

cores, and it’d be kind of nice to be able to use more 
than just one of them. That is, we can’t just lock out 
other cores while one core is doing work. It’s impolite. 
It also doesn’t perform well.

Happily, this turned out to be reasonably easy to 
do. The entire approach is based on distinguishing 
read and write accesses to if_ovpn’s internal data 
structures. That is, we allow many different cores to 
look up things at the same time but will only ever al-
low one to change things (and then not allow any 
readers while the change is being made). That turns 
out to work well enough because—most of the 
time—we don’t need to change things.

The common case, when we receive or send pack-
ets, just needs to look up keys, destination addresses 
and ports and other related information.

It’s only when we modify things (i.e., on configu-
ration changes or re-keying) that we need to take a write lock, and that we pause the data 
channel. That’s brief enough that our puny human brains won’t notice it, and that makes ev-
eryone happy.

There’s one exception to this “we don’t make changes to process data” rule, and that is 
packet counters. Every packet gets counted (twice even, once for the packet count, once for 
a byte count), and that has to be done concurrently. Here, too, we are lucky, in that the ker-
nel’s counter(9) framework is designed exactly for this situation. It keeps totals per CPU 
core so that one core will not affect or slow down another. It’s only when the counters are 
actually read that it will ask each core for its total and will add them up.

Control Interface
Each OpenVPN DCO platform has its own unique way of communicating between user-

space OpenVPN and the kernel module.
On Linux, this is done through netlink, but the if_ovpn work was completed before 

FreeBSD’s netlink implementation was ready. As I’m still on probation for my last causality 
violation, I decided to use something else instead.

The if_ovpn driver is configured through the existing interface ioctl path. Specifically, the 
SIOCSDRVSPEC/SIOCGDRVSPEC calls.

4 of 7

Each OpenVPN DCO 
platform has its own  
unique way of 
communicating between 
userspace OpenVPN  
and the kernel module. 



OpenVPN will install  
the new key using 
the OVPN_NEW_KEY 
command. 

21FreeBSD Journal • January/February 2024

These calls pass a struct ifdrv to the kernel. The ifd_cmd field is used to pass the 
command, and the ifd_data and ifd_len fields are used to pass device-specific structs 
between kernel and userspace.

if_ovpn deviates somewhat from the established approach, in that it transmits serialized 
nvlists rather than structs. This makes extending the interface easier. Or, rather, it means we 
can extend the interface without breaking existing userspace consumers. If a new field is add-
ed to a struct, its layout changes which either means that the existing code will refuse to ac-
cept it due to its size mismatch7 or get very confused because fields no longer mean what 
they used to mean.

Serialized nvlists allow us to add fields without confusing the other side. Any unknown fields 
will just be ignored. This makes adding new features much easier.

Routing Lookups
You might think that if_ovpn wouldn’t need to 

worry about routing decisions. After all, the kernel’s 
network stack has already made the routing decision 
by the time the packet arrives at the network driver. 
You’d be wrong. I’d make fun of you for that, but it 
took me a while to figure it out, too.

The issue is that there are potentially multiple 
peers on a given if_ovpn interface (e.g., when it’s act-
ing as a server and has multiple clients). The kernel 
has figured out that the packet in question needs to 
go to one of them, but the kernel operates on the as-
sumption that all these clients live on a single broad-
cast domain. That is, a packet sent on the interface 
would be visible to all of them. That’s not the case 
here, so if_ovpn needs to work out which client the 
packet has to go to.

This is handled by ovpn_route_peer(). This 
function first looks through the list of peers to see if any peer’s VPN address matches the 
destination address. (Done by ovpn_find_peer_by_ip() or ovpn_find_peer_by_ip6(), 
depending on address family). If a matching peer is found the packet is sent to this peer.

If not ovpn_route_peer() performs a route lookup, and repeats the peer lookup with 
the resulting gateway address.

Only when if_ovpn has figured out the peer to send the packet to can it be encrypted 
and transmitted.

Key Rotation
OpenVPN will from time to time change the key used to secure the tunnel. That’s one of 

those hard jobs if_ovpn leaves to userspace, so some coordination between OpenVPN and 
if_ovpn is required.

OpenVPN will install the new key using the OVPN_NEW_KEY command. Each key has an 
ID, and every packet includes the key ID that was used to encrypt it. This means that during 
key rotation, all packets can still be decrypted, as both the old and new keys are known and 
kept active in the kernel.

5 of 7



22FreeBSD Journal • January/February 2024

Once the new key is installed, it can be made active using the OVPN_SWAP_KEYS com-
mand. That is, the new key will be used to encrypt outgoing packets.

Sometime later the old key can be deleted using the OVPN_DEL_KEY command.

vnet
Yes, we’re going to have to talk about vnet. I’m writing this, it’s inevitable.
I’m too lazy to explain it entirely, so I’ll just point you at an article written by much better 

author Olivier Cochard-Labbé: “Jail: vnet by examples”8.
Think of vnet as turning jails into virtual machines with their own IP stacks.
This isn’t strictly required for the pfSense use case, but it makes testing much, much eas-

ier. It means we can test on a single machine, without needing any external tools (other than 
OpenVPN itself, for what should be pretty obvious reasons).

For those interested in how this is done there’s another FreeBSD Journal article that 
might be useful: “The Automated Testing Framework,” by ... wait, I think I know that guy, 
Kristof Provost.

Performance
After all of that, I bet you’re asking yourself “Does this actually help though?”
Well, fortunately for me: yes, yes it does.
One of my colleagues at Netgate spent some time gently teasing a Netgate 410010  

device with iperf3 and got these results:

if_tun 207.3 Mbit/s

DCO Software 213.1 Mbit/s

DCO AES-NI 751.2 Mbit/s

DCO QAT 1,064.8 Mbit/s

“if_tun” is the old OpenVPN approach without DCO. It’s worth noting that it used AES-NI 
instructions in userspace, and the ‘DCO software’ setup did not. Despite this blatant at-
tempt at cheating, DCO was still slightly faster. On a level playing field (i.e., where DCO does 
use AES-NI instructions) there’s no contest. DCO is more than three times faster.

There’s some good news for Intel too: their QuickAssist offload engine is even faster 
than AES-NI, making OpenVPN five times faster than it was previously.

Future Work
Nothing is so good that it cannot be improved, but in some ways this next enhancement 

is a result of the success of DCO’s design.
The on-wire OpenVPN protocol uses a 32 bit initialization vector (IV), and for cryp-

tographic reasons I won’t explain here11, it’s a bad idea to re-use IVs with the same key.
That means that keys must be re-negotiated before we get to that point. OpenVPN’s de-

fault renegotiation interval is 3600 seconds, and with a 30% margin for safety, that would 
translate to 2^32 * 0.7 / 3600, or about 835.000 packets per second. That’s “only” 8 to 9 
Gbit/s (assuming 1300 byte packets).

With DCO, that’s already more or less within reach of contemporary hardware.
While it’s a good problem to have, it’s still a problem, so the OpenVPN developers are 

working on an updated packet format that will use 64-bit IVs.

6 of 7



23FreeBSD Journal • January/February 2024

Thanks
The if_ovpn work was sponsored by Rubicon Communications (trading as Netgate) for 

use with their pfSense product line. It’s been in use there since the 22.05 pfSense plus re-
lease12. This work was upstreamed to FreeBSD and is part of the recent 14.0 release. It re-
quires OpenVPN 2.6.0 or newer to use.

I’d also like to thank the OpenVPN developers, who were very welcoming when the initial 
FreeBSD patches turned up, and without whose assistance this project would not have gone 
anywhere near as well as it did.

Footnotes:
1.  Or. whenever you read this.
2.  Fine. Writing. Reading. Look, if you’re going to be pedantic about this, we’ll be at this 

all day.
3. Look, if you’re not interested in DCO you can just go read the next article. I’m sure it’s 

very nice.
4. I say “we”, but as much as I’d like to take credit for the solution it was the OpenVPN de-

velopers who came up with the DCO architecture and implemented it for Windows 
and Linux. All I did was what they did, but for FreeBSD.

5. In OpenVPN. DCO can be combined with the OS’s traffic shaping (i.e. dummynet).
6. https://cgit.freebsd.org/src/tree/sys/net/if_ovpn.c?id=da69782bf-

06645f38852a8b23af#n490
7. You might also say because the struct got fat. You might, I’m too polite for that.
8. https://freebsdfoundation.org/wp-content/uploads/2020/03/Jail-vnet-by-Examples.pdf
9. https://freebsdfoundation.org/wp-content/uploads/2019/05/The-Automated-Test-

ing-Framework.pdf
10. https://shop.netgate.com/products/4100-base-pfsense
11. Mostly because I do not understand them myself.
12. https://www.netgate.com/blog/pfsense-plus-software-version-22.05-now-available

KRISTOF PROVOST is a freelance, embedded software engineer specializing in network 
and video applications. He’s a FreeBSD committer, maintainer of the pf firewall in FreeBSD. 
He currently spends most of his time working on pfSense for Netgate.

Kristof has an unfortunate tendency to stumble into uClibc bugs, and a burning hatred 
for FTP. Do not talk to him about IPv6 fragmentation.

7 of 7

https://cgit.freebsd.org/src/tree/sys/net/if_ovpn.c?id=da69782bf06645f38852a8b23af#n490
https://cgit.freebsd.org/src/tree/sys/net/if_ovpn.c?id=da69782bf06645f38852a8b23af#n490
https://freebsdfoundation.org/wp-content/uploads/2020/03/Jail-vnet-by-Examples.pdf
https://freebsdfoundation.org/wp-content/uploads/2019/05/The-Automated-Testing-Framework.pdf
https://freebsdfoundation.org/wp-content/uploads/2019/05/The-Automated-Testing-Framework.pdf
https://shop.netgate.com/products/4100-base-pfsense
https://www.netgate.com/blog/pfsense-plus-software-version-22.05-now-available


24FreeBSD Journal • January/February 2024

1 of 16

One of my favorite hardware features is called Single-Root Input/Output Virtualiza-
tion (SR-IOV). It makes a single physical device appear like multiple similar devices to 
the operating system. The FreeBSD approach to exposing SR-IOV capabilities is one 

of several reasons I tend to prefer FreeBSD on my servers.

SR-IOV for Networking Overview
Virtualization is a great solution if your demand for network devices exceeds the number 

of physical network ports on your server. There are many ways to accomplish this with soft-
ware, but a hardware-based alternative is SR-IOV, which lets a single physical PCIe device to 
present itself as many to the OS.

There are several upsides to using SR-IOV. It offers the best performance compared to 
other means of virtualization. If you’re a stickler for security, SR-IOV better isolates memory 
and the virtualized PCI devices it creates. It also results in a very tidy setup as everything is a 
PCI device, i.e., no virtual bridges, switches, etc.

To make use of SR-IOV networking, you’ll need an SR-IOV capable network adapter and 
an SR-IOV capable motherboard. I’ve used several SR-IOV capable network cards over the 
years, such as the Intel i350-T4V2 Ethernet Adapter, the Mellanox ConnectX-4 Lx, and the 
Chelsio T520-SO-CR Fiber Network Adapter. For this article, I’ll be using an Intel X710-DA2 
Fiber Network Adapter (product brief) in a FreeBSD 14.0-RELEASE server. It’s a nice option 
as it requires no special firmware configuration and driver support is built into the FreeBSD 
kernel by default. And as a bonus, it uses a fraction of the power of many alternatives, max-
ing out at only 3.7 Watts.

The Intel X710-DA2 PCIe 3.0 Fiber Network Adapter

BY MARK McBRIDE

SR-IOV is a First Class  
FreeBSD Feature
A detailed walkthrough of how to setup hardware-driven 
virtualization using SR-IOV capable devices in FreeBSD.

https://en.wikipedia.org/wiki/Single-root_input/output_virtualization
https://en.wikipedia.org/wiki/Single-root_input/output_virtualization
https://markmcb.com/freebsd/vs_linux/
https://ark.intel.com/content/www/us/en/ark/products/84805/intel-ethernet-server-adapter-i350-t4v2.html
https://www.nvidia.com/en-us/networking/ethernet/connectx-4-lx/
https://www.chelsio.com/nic/unified-wire-adapters/t520-so-cr/
https://ark.intel.com/content/www/us/en/ark/products/83964/intel-ethernet-converged-network-adapter-x710da2.html
https://ark.intel.com/content/www/us/en/ark/products/83964/intel-ethernet-converged-network-adapter-x710da2.html
https://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-x710-brief.pdf
https://www.freebsd.org/releases/14.0R/announce/


25FreeBSD Journal • January/February 2024

The X710-DA2 has two physical SFP+ fiber ports. In SR-IOV terms, these correspond to 
physical functions (PFs). Without SR-IOV enabled, the PFs behave like the ports on any net-
work adapter card and will show up as two network interfaces in FreeBSD. With SR-IOV en-
abled, each PF is capable of creating, configuring, and managing several Virtual Functions 
(VFs). Each VF will appear in the OS as a PCIe device.

In the case of the X710-DA2 specifically, its 2 PFs can virtualize up to 128 VFs. From the 
standpoint of FreeBSD, it’s as if you have a network card with 128 ports. These VFs can then 
be allocated to jails and virtual machines for isolated networking.

Using SR-IOV in FreeBSD
We touched a bit on how SR-IOV conceptually works, but I find it easier to understand 

with practical examples. Let’s walk through setting up SR-IOV in FreeBSD from scratch. To 
do this, we’ll focus on:

•  Hardware Installation
•  Hardware Configuration
•  FreeBSD Configuration of SR-IOV
•  Using an SR-IOV Network VF in a Jail
•  Using an SR-IOV Network VF in a Bhyve Virtual Machine

Hardware Installation
The installation of the SR-IOV capable X710-DA2 is easy enough, but there is one major 

consideration. Not all PCIe slots on motherboards are created equally. I highly recommend 
you take a look at your motherboard’s manual before getting started. For this example, I’ll 
be using a Supermicro X12STH-F motherboard. The manual provides two insightful dia-
grams:

X12STH-F Motherboard Physical Map

2 of 16

https://www.supermicro.com/en/products/motherboard/x12sth-f
https://www.supermicro.com/manuals/motherboard/X12/MNL-2367.pdf


26FreeBSD Journal • January/February 2024

X12STH-F Motherboard Block Map

In the first diagram we see our PCIe slots are numbered 4, 5, and 6, left-to-right. If you 
look closely, you’ll see slot 4 has a “PCH” prefix while 5 and 6 have a “CPU” prefix. The block 
map diagram shows what this means in a bit more detail. Slots 5 and 6 connect directly to 
the CPU in the LGA1200 socket, while slot 4 connects to the Platform Controller Hub. De-
pending on the specific components in your system, this may determine which slots will al-
low SR-IOV to work as expected. There’s no easy way to know until later when we configure 
FreeBSD, but as a rule of thumb, especially with older motherboards, I find the CPU slots to 
be a reliable choice. If you do find in later steps that SR-IOV is not working, try using a differ-
ent PCIe slot. Motherboard documentation isn’t always detailed, so trial and error is some-
times the quickest way to see which slot will work.

Supermicro X12STH-F Motherboard, CPU PCIe Slot 6 with Intel X710-DA2 
(Also: Intel Xeon E-2324G w/ 4x8GB ECC UDIMM in a Supermicro 825TQC-R740LPB 2U Chassis)

Intel X710-DA2 SFP+ Ports with DAC Cables Attached

3 of 16

https://en.wikipedia.org/wiki/Platform_Controller_Hub


27FreeBSD Journal • January/February 2024

Hardware Configuration
The X710-DA2 will behave like a non-SR-IOV capable card until you enable SR-IOV in 

your motherboard settings. It’s easy to do, but also quite easy to forget, so be sure you don’t 
skip this important step.

The exact procedure will vary by motherboard, but most will have a screen with PCIe 
configuration options. Find that screen and enable SR-IOV. While you’re there it’s a good 
idea to check other settings are enabled that you’re likely to use in conjunction with SR-IOV, 
like CPU virtualization.

X12STH-F Motherboard Setup, PCIe Configuration on Advanced Screen

X12STH-F Motherboard Setup, SR-IOV Configuration on PCIe Screen

4 of 16



28FreeBSD Journal • January/February 2024

We can now boot FreeBSD and take a look at dmesg(8). Here’s a snippet from mine.

ixl0: <Intel(R) Ethernet Controller X710 for 10GbE SFP+ - 2.3.3-k> mem  

      0x6000800000-0x6000ffffff,0x6001808000-0x600180ffff irq 16 at device 0.0 on pci1 

ixl0: fw 9.120.73026 api 1.15 nvm 9.20 etid 8000d87f oem 1.269.0 

ixl0: PF-ID[0]: VFs 64, MSI-X 129, VF MSI-X 5, QPs 768, I2C 

ixl0: Using 1024 TX descriptors and 1024 RX descriptors 

ixl0: Using 4 RX queues 4 TX queues 

ixl0: Using MSI-X interrupts with 5 vectors 

ixl0: Ethernet address: 3c:fd:fe:9c:9e:30 

ixl0: Allocating 4 queues for PF LAN VSI; 4 queues active 

ixl0: PCI Express Bus: Speed 2.5GT/s Width x8 

ixl0: SR-IOV ready 

ixl0: netmap queues/slots: TX 4/1024, RX 4/1024

On the third line we see some SR-IOV references. “PF-ID[0]” is associated with ixl0, and 
this PF is capable of 64 VFs. And on the tenth line we get a nice confirmation that this PCIe 
device is “SR-IOV ready.” The reason for the “ixl” name is that this card uses the ixl(4) Intel 
Ethernet 700 Series Driver.

There’s nothing else you need to do to configure the X710-DA2’s hardware. Some cards 
(like the aforementioned Mellanox) require you to configure the card’s firmware, while oth-
er cards (like the aforementioned Chelsio) require driver configuration in /̀boot/loader.conf .̀ 
Neither is needed with the X710-DA2, though you may want to check the card’s firmware 
version and update it if necessary.

With this, we’re ready to shift our focus from hardware setup to FreeBSD configuration. 

FreeBSD Configuration of SR-IOV

Using PFs
A nice thing about SR-IOV is regardless of whether or not you tell a PF to create VFs you 

can still use the PF as a network interface. I’ll add the following to my /̀etc/rc.conf` and as-
sign an IP address to the PF for use in the host.

ifconfig_ixl0=”inet 10.0.1.201 netmask 255.255.255.0” 

defaultrouter=”10.0.1.1”

Now when I boot the system, I can expect the ixl0 device to have an IP address that I can 
use to connect to the system regardless of whether SR-IOV is enabled or not.

Telling PFs to Create VFs
Management of PFs and VFs in FreeBSD is handled by iovctl(8), which is included in the 

base OS. To create VFs, we need to create a file in the /̀etc/iov/` directory with some specif-
ics of what we want. We will execute a simple strategy and create one VF to assign to a jail, 
and a second for a bhyve virtual machine. The iovctl.conf(5) manual page will give us the 
most important parameters.

5 of 16

https://man.freebsd.org/dmesg
https://man.freebsd.org/cgi/man.cgi?query=ixl
https://man.freebsd.org/cgi/man.cgi?query=iovctl
https://man.freebsd.org/iovctl.conf


29FreeBSD Journal • January/February 2024

OPTIONS 

     The following parameters are accepted by all PF drivers: 

 

     device (string) 

             This parameter specifies the name of the PF device.  This 

             parameter is required to be specified. 

 

     num_vfs (uint16_t) 

             This parameter specifies the number of VF children to create. 

             This parameter may not be zero.  The maximum value of this 

             parameter is device-specific.

I like to set num_vfs to what I need. We could set it to the max, but I find it makes looking 
at ifconfig and other command output more difficult.

Additionally, as different cards have different drivers, each driver has options you can set 
based on the hardware capability. The ixl(4) manual page lists several optional parameters.

IOVCTL OPTIONS 

     The driver supports additional optional parameters for created VFs 

     (Virtual Functions) when using iovctl(8): 

 

     mac-addr (unicast-mac) 

             Set the Ethernet MAC address that the VF will use.  If 

             unspecified, the VF will use a randomly generated MAC address.

Or, alternatively, you can use the iovctl command for a terse summary of what parame-
ters are valid for a PF and its VFs, and what their defaults are.

(host) $ sudo iovctl -S -d ixl0 

The following configuration parameters may be configured on the PF: 

        num_vfs : uint16_t (required) 

        device : string (required) 

 

The following configuration parameters may be configured on a VF: 

        passthrough : bool (default = false) 

        mac-addr : unicast-mac (optional) 

        mac-anti-spoof : bool (default = true) 

        allow-set-mac : bool (default = false) 

        allow-promisc : bool (default = false) 

        num-queues : uint16_t (default = 4)

We’ll make use of the mac-addr parameter to set specific MAC addresses for each VF. 
Setting the MAC address is a bit arbitrary in this case, but I’ll do it to demonstrate how a 
config file looks with PF parameters, default VF parameters, and parameters specific to indi-
vidual VFs.

6 of 16

https://man.freebsd.org/ixl


30FreeBSD Journal • January/February 2024

PF { 

        device : “ixl0” 

        num_vfs : 2 

} 

 

DEFAULT { 

        allow-set-mac : true; 

} 

 

VF-0 { 

        mac-addr : “aa:88:44:00:02:00”; 

} 

 

VF-1 { 

        mac-addr : “aa:88:44:00:02:01”; 

}

This instructs ixl0 to create two VFs. By default, every VF will be allowed to set it’s own 
MAC. And each VF will have an initial MAC address assigned to it (which can be overridden 
with the previous default setting).

Before we make it effective, let’s take a look at our current environment. We’ll find two ixl 
PCI devices, and two ixl network interfaces.

(host) $ ifconfig -l 

ixl0 ixl1 lo0 

 

(host) $ pciconf -lv | grep -e ixl -e iavf -A4 

ixl0@pci0:1:0:0:        class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086  

device=0x1572 subvendor=0x8086 subdevice=0x0007 

    vendor     = Intel Corporation 

    device     = Ethernet Controller X710 for 10GbE SFP+ 

    class      = network 

    subclass   = ethernet 

ixl1@pci0:1:0:1:        class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086  

device=0x1572 subvendor=0x8086 subdevice=0x0000 

    vendor     = Intel Corporation 

    device     = Ethernet Controller X710 for 10GbE SFP+ 

    class      = network 

    subclass   = ethernet

To make our /etc/iov/ixl0.conf configuration effective, we use iovctl(8).

(host) $ sudo iovctl -C -f /etc/iov/ixl0.conf

Should you change your config file, delete and recreate the VFs.

(host) $ sudo iovctl -D -f /etc/iov/ixl0.conf 

(host) $ sudo iovctl -C -f /etc/iov/ixl0.conf

7 of 16

https://man.freebsd.org/cgi/man.cgi?query=iovctl


31FreeBSD Journal • January/February 2024

To check that it worked, let’s run the same ifconfig and pciconf commands from before.

(host) $ ifconfig -l 

ixl0 ixl1 lo0 iavf0 iavf1 

 

(host) $ pciconf -lv | grep -e ixl -e iavf -A4 

ixl0@pci0:1:0:0:        class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x1572 subvendor=0x8086 subdevice=0x0007 

    vendor     = Intel Corporation 

    device     = Ethernet Controller X710 for 10GbE SFP+ 

    class      = network 

    subclass   = ethernet 

ixl1@pci0:1:0:1:        class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x1572 subvendor=0x8086 subdevice=0x0000 

    vendor     = Intel Corporation 

    device     = Ethernet Controller X710 for 10GbE SFP+ 

    class      = network 

    subclass   = ethernet 

-- 

iavf0@pci0:1:0:16:      class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c subvendor=0x8086 subdevice=0x0000 

    vendor     = Intel Corporation 

    device     = Ethernet Virtual Function 700 Series 

    class      = network 

    subclass   = ethernet 

iavf1@pci0:1:0:17:      class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c subvendor=0x8086 subdevice=0x0000 

    vendor     = Intel Corporation 

    device     = Ethernet Virtual Function 700 Series 

    class      = network 

    subclass   = ethernet

Voilà! Our shiny new VFs have arrived. In the `pciconf` output we still see our ixl devic-
es, but now there are two iavf devices. The iavf(4) manual page let’s us know that this is the 
driver for Intel Adaptive Virtual Functions.

In addition to seeing new PCI devices, ifconfig confirms that they are indeed recognized 
as network interfaces. For the most common aspects of a network device, you’ll probably 
not be able to tell the difference between a PF and VF. If you want to get into the details 
and differences, check out the driver documentation and the -c capabilities flag of pciconf, 
e.g. pciconf -lc iavf.

To make this config persistent across reboots, amend your /etc/rc.conf file.

# Configure SR-IOV 

iovctl_files=”/etc/iov/ixl0.conf”

Now we’ve got two VFs ready for action. Let’s put them to use!

Using an SR-IOV Network VF in a Jail
This section assumes you have a basic understanding of FreeBSD Jails. As such, setting 

up a jail from scratch is out of scope. For more information how to do this, see the Jails and 
Containers chapter of the FreeBSD Handbook.

8 of 16

https://man.freebsd.org/iavf
https://docs.freebsd.org/en/books/handbook/jails/
https://docs.freebsd.org/en/books/handbook/jails/


32FreeBSD Journal • January/February 2024

I don’t use any jail management ports and rely on what come in the base OS. If you’ve 
used something like Bastille, the specifics on how/where to put your configs might vary a 
bit, but the concept is the same. In this example we’re working with a jail named “desk.”

exec.start += “/bin/sh /etc/rc”; 

exec.stop = “/bin/sh /etc/rc.shutdown”; 

exec.clean; 

mount.devfs; 

 

desk { 

        host.hostname = “desk”; 

        path = “/mnt/apps/jails/desk”; 

        vnet; 

        vnet.interface = “iavf0”; 

        devfs_ruleset=”5”; 

        allow.raw_sockets; 

}

That’s it! The jail now has access to its own dedicated VF network device setup via vnet(9). 
I’ll tweak the jail’s /etc/rc.conf file to enable it.

ifconfig_iavf0=”inet 10.0.1.231 netmask 255.255.255.0” 

defaultrouter=”10.0.1.1”

Now let’s start the jail and check that it works.

(host) $ sudo service jail start desk 

Starting jails: desk. 

 

(host) $ sudo jexec desk ifconfig iavf0 

iavf0: flags=1008843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST,LOWER_UP> metric 0 mtu 1500 

        options=4e507bb<RXCSUM,TXCSUM,VLAN_MTU,VLAN_HWTAGGING,JUMBO_MTU,VLAN_HWCSUM,TSO4, 

TSO6,LRO,VLAN_HWFILTER,VLAN_HWTSO,RXCSUM_IPV6,TXCSUM_IPV6,HWSTATS,MEXTPG> 

        ether aa:88:44:00:02:00 

10.0.1.231 netmask 0xffffff00 broadcast 10.0.1.255 

        media: Ethernet autoselect (10Gbase-SR <full-duplex>) 

        status: active 

        nd6 options=29<PERFORMNUD,IFDISABLED,AUTO_LINKLOCAL> 

 

(host) $ sudo jexec desk ping 9.9.9.9 

PING 9.9.9.9 (9.9.9.9): 56 data bytes 

64 bytes from 9.9.9.9: icmp_seq=0 ttl=58 time=19.375 ms 

64 bytes from 9.9.9.9: icmp_seq=1 ttl=58 time=19.809 ms 

64 bytes from 9.9.9.9: icmp_seq=2 ttl=58 time=19.963 ms

As expected, we see the iavf0 interface in the jail and it appears to be working normally. 
But what about that device in the host OS? Is it still there? Let’s check.

9 of 16

https://bastillebsd.org/
https://man.freebsd.org/vnet


33FreeBSD Journal • January/February 2024

(host) $ ifconfig -l 

ixl0 ixl1 lo0 iavf1

As expected, the iavf0 interface is no longer visible to the host OS. You’ll still see the PCI 
device with pciconf, but will not be able to do anything with it. The jail is in full control of 
this device. If you stop the jail, the iavf0 device will return to the host OS and once again be 
present in ifconfig output.

Using an SR-IOV Network VF in a Bhyve Virtual Machine
You can achieve a similar result with bhyve(8) virtual machines, though the approach is a 

bit different. With jails we can assign/release VFs during runtime. With bhyve, this must be 
done at boot time and requires a tweak to our SR-IOV config. First, let’s have a look again at 
pciconf before we change anything.

(host) $ pciconf -l | grep iavf 

iavf0@pci0:1:0:16:      class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c  

subvendor=0x8086 subdevice=0x0000 

iavf1@pci0:1:0:17:      class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c  

subvendor=0x8086 subdevice=0x0000

Look at the unused VF, iavf1. The first column can be read as “there’s a PCI0 device us-
ing the driver iavf, ID 1, with a PCI selector of bus 1, slot 0, function 17”. While you don’t need 
them yet, those last three numbers are how we’ll eventually tell bhyve which device to use. 
Before we get to that, let’s ensure we load vmm(4) at boot time to enable bhyve, and tweak 
our second VF so that it’s ready for passthrough to bhyve.

## Load the virtual machine monitor, the kernel portion of bhyve 

vmm_load=”YES” 

 

# Another way to passthrough a VF, or any PCI device, is to 

# specify the device in /boot/loader.conf. I show this for reference.  

# We’ll use our iovctl config instead as it keeps things in one place. 

# pptdevs=”1/0/17”

To reserve the VF for passthrough to bhyve, we use the iovctl passthrough parameter. 

    passthrough (boolean) 

             This parameter controls whether the VF is reserved for the use of 

             the bhyve(8) hypervisor as a PCI passthrough device.  If this 

             parameter is set to true, then the VF will be reserved as a PCI 

             passthrough device and it will not be accessible from the host 

             OS.  The default value of this parameter is false.

10 of 16

https://man.freebsd.org/bhyve
https://man.freebsd.org/vmm


34FreeBSD Journal • January/February 2024

PF { 

        device : “ixl0” 

        num_vfs : 2 

} 

 

DEFAULT { 

        allow-set-mac : true; 

} 

 

VF-0 { 

        mac-addr : “aa:88:44:00:02:00”; 

} 

 

VF-1 { 

        mac-addr : “aa:88:44:00:02:01”; 

        passthrough : true; 

}

When we next boot our system, we’ll find iavf1 absent because the iavf driver will never 
get assigned to our second VF. Instead it will get marked “ppt” for “PCI passthrough” and 
only bhyve will be able to make use of it.

With those tweaks, reboot.
Right away you’ll notice dmesg output is different. There is no mention of iavf1 this time. 

And remember the 1:0:17 selector we saw in pciconf? We see it here with a slightly differ-
ent format.

ppt0 at device 0.17 on pci1

pciconf confirms that the device is reserved for passthrough.

(host) $ pciconf -l | grep iavf 

iavf0@pci0:1:0:16:      class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c subvendor=0x8086 subdevice=0x0000 

 

(host) $ pciconf -l | grep ppt 

ppt0@pci0:1:0:17:       class=0x020000 rev=0x01 hdr=0x00 vendor=0x8086 device=0x154c subvendor=0x8086 subdevice=0x0000

The rest we do in bhyve. This article assumes you know how to get a bhyve virtual ma-
chine up and running. I use the [vm-bhyve](https://man.freebsd.org/cgi/man.cgi?query=vm) 
tool for easy management of virtual machines (but see the end of this section for raw bhyve 
parameters if you don’t use vm-bhyve). I’ll add the ppt VF to a Debian VM called debi-
an-test. All we need to do is define the device we want to passthrough in the config and re-
move any lines pertaining to virtual networking.

loader=”grub” 

cpu=1 

memory=4G 

disk0_type=”virtio-blk” 

disk0_name=”disk0.img” 

uuid=”b997a425-80d3-11ee-a522-00074336bc80” 

 

11 of 16



35FreeBSD Journal • January/February 2024

# Passthrough a VF for Networking 

passthru0=”1/0/17” 

 

# Common defaults that are not needed with a VF available 

# network0_type=”virtio-net” 

# network0_switch=”public” 

# network0_mac=”58:9c:fc:0c:fd:b7”

All we have to do now is start our bhyve virtual machine.

(host) $ sudo vm start debian-test 

Starting debian-test 

  * found guest in /mnt/apps/bhyve/debian-test 

  * booting... 

 

(host) $ sudo vm console debian-test 

Connected 

 

debian-test login: root 

Password: 

Linux debian-test 6.1.0-16-amd64 #1 SMP PREEMPT_DYNAMIC Debian 6.1.67-1 (2023-12-12) x86_64 

 

root@debian-test:~# lspci | grep -i intel 

00:05.0 Ethernet controller: Intel Corporation Ethernet Virtual Function 700 Series  

(rev 01) 

 

root@debian-test:~# ip addr 

2: enp0s5: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc mq state UP group default qlen 1000 

    link/ether aa:88:44:00:02:01 brd ff:ff:ff:ff:ff:ff 

    inet 10.0.1.99/24 brd 10.0.1.255 scope global dynamic enp0s5 

       valid_lft 7186sec preferred_lft 7186sec 

    inet6 fdd5:c1fa:4193:245:a888:44ff:fe00:201/64 scope global dynamic mngtmpaddr 

       valid_lft 1795sec preferred_lft 1795sec 

    inet6 fe80::a888:44ff:fe00:201/64 scope link 

       valid_lft forever preferred_lft forever 

 

root@debian-test:~# ping 9.9.9.9 

PING 9.9.9.9 (9.9.9.9) 56(84) bytes of data. 

64 bytes from 9.9.9.9: icmp_seq=1 ttl=58 time=20.6 ms 

64 bytes from 9.9.9.9: icmp_seq=2 ttl=58 time=19.8 ms

Success! We now have an SR-IOV VF device for networking in our bhyve VM.
If you’re a purist and don’t want to use vm-bhyve, details are appended to àvm-bhyve.

log file when you use a vm command. In it you will see the parameters that were passed to 
grub-bhyve and bhyve to start the VM.

12 of 16



36FreeBSD Journal • January/February 2024

create file /mnt/apps/bhyve/debian-test/device.map 

      -> (hd0) /mnt/apps/bhyve/debian-test/disk0.img 

grub-bhyve -c /dev/nmdm-debian-test.1A -S \ 

      -m /mnt/apps/bhyve/debian-test/device.map \ 

      -M 4G -r hd0,1 debian-test 

bhyve -c 1 -m 4G -AHP  

      -U b997a425-80d3-11ee-a522-00074336bc80 -u -S \ 

      -s 0,hostbridge -s 31,lpc \ 

      -s 4:0,virtio-blk,/mnt/apps/bhyve/debian-test/disk0.img \ 

      -s 5:0,passthru,1/0/17

✎ 
bhyve PCI passthrough is an emerging feature 
 While using VFs with vnet for jails is very stable, bhyve PCI passthrough in general is 

still under heavy development as of 14.0-RELEASE. Using byhve with passthrough alone 
works great. However, I have found that if I am also using VFs with jails, certain hardware 
combinations and volumes of devices can create unexpected behavior. Improvements 
land with each release. If you find an edge case, be sure to submit a bug.

FreeBSD SR-IOV in Summary
To make use of SR-IOV enabled virtual PCIe devices in FreeBSD, we: 
• install an SR-IOV capable network card onto an SR-IOV capable motherboard
• ensure the motherboard’s SR-IOV feature is enabled
• create /etc/iov/ixl0.conf and specify how many VFs we want
• reference /etc/iov/ixl0.conf in /etc/rc.conf to persists across boots
And that’s it!
To demonstrate that it worked, we allocated one VF to a jail using vnet. And we pre-allo-

cated another VF at boot-time for passthrough to bhyve virtual machines. In both cases, all 
we had to do was put a few lines in the respective jail/VM config files.

The following section will contrast the FreeBSD approach compared to what you’ll find in 
Linux distributions to give you a feel how the two approaches vary.

SR-IOV in Linux
SR-IOV works really well in Linux. Once you’ve got it all setup, you likely won’t be able to 

find discernible differences between FreeBSD and Linux. Getting it all setup, however, can 
be a bit of a journey.

The biggest difference is there is no standard tool like FreeBSD’s iovctl for setting up SR-
IOV in Linux. There are several ways to achieve a working setup, but they are not so obvious. 
I’ll highlight how I use `udev` to setup a Mellanox card’s PF and VFs.

`udev` is a powerful tool that does a lot of stuff. One of the things it can do is enable SR-
IOV devices at boot time. The tool itself is excellent, but knowing what data to feed it is 
where the challenge lies. Getting the attributes you need will likely require a bit of searching 
on the Internet, but once you have them the resulting `udev` rules are very simple.

13 of 16

https://bugs.freebsd.org


37FreeBSD Journal • January/February 2024

# DO NOT Probe VFs that will be used for VMs 

KERNEL==”0000:05:00.0”, SUBSYSTEM==”pci”, ATTRS{vendor}==”0x15b3”, ATTRS{device}==”0x1015”,  

ATTR{sriov_drivers_autoprobe}=”0”, ATTR{sriov_numvfs}=”4” 

 

# DO Probe VFs that will be used for LXD 

KERNEL==”0000:05:00.1”, SUBSYSTEM==”pci”, ATTRS{vendor}==”0x15b3”, ATTRS{device}==”0x1015”,  

ATTR{sriov_drivers_autoprobe}=”1”, ATTR{sriov_numvfs}=”16”

That essentially says, “match the PCI device 0000:05:00.0 with vendor ID 0x15b3 and de-
vice ID 0x1015, and for that device do not try to automatically assign a driver and create 4 
VFs” (i.e., reserve for passthrough). The second rule is similar, but targets a different PF, does 
assign a driver, and creates 16 VFs (i.e., ready for container allocation). 

Depending on the card and specific Linux distribution you’re using, those may not be all 
the attributes you need. For example, if you’re using Fedora you may need to add ENV{NM_
UNMANAGED}=”1” to avoid NetworkManager taking control of your VFs at boot time. 

Similar to pciconf, lspci will get us much of what we need for the matching parts of 
those rules, which is the PCI address, vendor and device ID. In this system we can see that 
we have Mellanox ConnectX-4 Lx card.

lspci -nn | grep ConnectX             

05:00.0 Ethernet controller [0200]: Mellanox Technologies MT27710 Family [ConnectX-4 Lx] [15b3:1015] 

05:00.1 Ethernet controller [0200]: Mellanox Technologies MT27710 Family [ConnectX-4 Lx] [15b3:1015]

The attributes set by udev are visible in /sys/bus/pci/devices/0000:05:00.*/ with 
many others. Listing the contents of that directory is a good place to go looking for things 
to tell udev.

(linux) $ ls -AC /sys/bus/pci/devices/0000:05:00.0/ 

aer_dev_correctable       device            irq               net           resource0                subsystem 

aer_dev_fatal             dma_mask_bits     link              numa_node     resource0_wc             subsystem_device 

aer_dev_nonfatal          driver            local_cpulist     pools         revision                 subsystem_vendor 

ari_enabled               driver_override   local_cpus        power         rom                      uevent 

broken_parity_status      enable            max_link_speed    power_state   sriov_drivers_autoprobe  vendor 

class                     firmware_node     max_link_width    ptp           sriov_numvfs             virtfn0 

config                    hwmon             mlx5_core.eth.0   remove        sriov_offset             virtfn1 

consistent_dma_mask_bits  infiniband        mlx5_core.rdma.0  rescan        sriov_stride             virtfn2 

current_link_speed        infiniband_verbs  modalias          reset         sriov_totalvfs           virtfn3 

current_link_width        iommu             msi_bus           reset_method  sriov_vf_device          vpd 

d3cold_allowed            iommu_group       msi_irqs          resource      sriov_vf_total_msix

In that listing, we see our two udev targets, sriov_drivers_autoprobe and sriov_
numvfs, which we want to set at boot time. What does everything else do? You’ll probably 
need your favorite search engine to answer that question.

With udev we’ve accomplished step 1 of 2 major steps. It effectively “turns on” the hard-
ware SR-IOV capability. We need to still need to configure it for networking use, which is 
major step 2. This varies a great deal depending on whatever we’re using to manage net-
working. For example, if you use systemd-networkd, you’d do something like this.

14 of 16



38FreeBSD Journal • January/February 2024

#/etc/systemd/network/21-wired-sriov-p1.network 

[Match] 

Name=enp5s0f1np1                                                                                                                                   

 

[SR-IOV]                                                                 

VirtualFunction=0 

Trust=true 

                   

[SR-IOV]                             

VirtualFunction=1 

Trust=true

Luckily, for systemd-networkd, the documentation isn’t so bad and you can find most of 
what you need. With that, we restart the service and the VFs are ready to use.

But not all documents are great, and aside from the networking software itself, securi-
ty overlays like AppArmor and selinux can create hard to detect blockers that are technical-
ly doing what they’re supposed to do, but will very much make the system feel like it’s not 
functioning.

As a specific example of frustration, I was recently using Fedora 39 to run a handful of 
LXD containers. I found notes to set ENV{NM_UNMANAGED}=”1” in udev and that did the 
trick to let LXD manage my VFs. Everything worked fine until I rebooted the containers sev-
eral times. Suddenly LXD started complaining that there were no VFs. 

It turns out that while the udev rule stopped NetworkManager from managing VFs at 
boot time, NetworkManager was intercepting them at runtime when containers were re-
starting and taking over management of them. I realized something strange was happen-
ing because VF device names were changing after restarting containers. For example, what 
started as enp5s0f0np0 would become something like physZqHm0g once the container it 
was assigned to restarted.

Eventually, I was able to find a way to tell NetworkManager not to do this. The critical 
config file I had to create to stop the LXD+NM battle is below, just in case you were won-
dering.

[keyfile] 

unmanaged-devices=interface-name:enp5s0f1*,interface-name:phys* 

This is just one example. Thinking you have everything working only to find out days later 
things are actually slowly self-destructing is not a good experience. In general, I find all frus-
trations have the same root cause: no existing or emerging standard way to configure SR-
IOV in the Linux ecosystem. Once you get over the not-so-obvious setup hurdles, SR-IOV 
for networking with Linux works just fine.

Conclusion
SR-IOV is a first class citizen in FreeBSD. Everything mentioned in this article you can find 

using the OS-provided manual pages. Start with a simple apropos(1) query.

(host) $ apropos “SR-IOV” 

iovctl(8) - PCI SR-IOV configuration utility

15 of 16

https://man.freebsd.org/apropos


39FreeBSD Journal • January/February 2024

The iovctl manual will get you started and the driver pages will give you the specifics for 
your hardware. When things are apparent and easy to find, system administration doesn’t 
feel like a chore.

Linux distributions are equally capable, but lacking in terms of cohesion and in-system 
documentation for SR-IOV. While I rely on Linux for all sorts of things, I truly appreciate 
the organization of configuration in FreeBSD. It’s easy to come back to a system I haven’t 
touched in a year and quickly understand what I’ve done. I far prefer this over taking de-
tailed notes with obscure URLs to comments on discussion boards where some saint post-
ed the way to make something work.

As with anything, make your own informed choice for what best suits your needs.

MARK McBRIDE works in CAR-T cell therapy in Seattle, Washington where he integrates 
supply chain, manufacturing, and patient operations solutions in a very new segment of per-
sonalized healthcare. In his free time, he enjoys over-engineering his garage homelab and 
cheering on all the local Seattle sports teams. Connect with him as @markmcb in #freebsd 
on the Libera IRC server, or via other means listed on his person site, markmcb.com.

16 of 16

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative 
leader in providing a high-performance, secure, and stable 
operating system. 
Not only is FreeBSD easy to install, but it runs a huge number 

full source code.

The FreeBSD Community is proudly supported by

T       

   

   

  

       
     

 

 

       
   

Help Create the Future.
Join the FreeBSD Project!

       
        

  
             

  

      

The FreeBSD Project is looking for 

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue 
developing this robust operating system. 
Join us!

Already involved?

Don�t forget to check out the latest 
grant opportunities at 
freebsdfoundation.org

   
   

https://www.markmcb.com
https://www.freebsd.org/newbies.html


Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally 
recognized leader in providing a high-performance, 
secure, and stable operating system. It�s because of 
you. Your donations have a direct impact on the Project. 

Please consider making a gift to support FreeBSD for the 
coming year. It�s only with your help that we can continue 
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy. 
freebsdfoundation.org/donate

®

®

https://www.freebsdfoundation.org/donate


41FreeBSD Journal • January/February 2024

1 of 2

As some may be aware, Juniper uses its own custom network stack with FreeBSD—
forked long ago—so it only superficially resembles the current FreeBSD network 
stack. There is state in the current FreeBSD stack that doesn’t exist in Junos, and 

vise-versa.

The Why and How
Junos is big, very big. Updating FreeBSD is a monumental task. To make it easier, Juni-

per split the FreeBSD component out into its own separate repository, leaving Juniper en-
hancements in its separate repository. This causes a dilemma—how can we keep drivers 
in FreeBSD, but the netstack elsewhere? As part of the FreeBSD split project, the original 
DrvAPI was born. With this, drivers could exist in the FreeBSD repository, while keeping the 
Junos netstack separate.

But what is the netstack? Where do we draw the line 
between netstack and the rest? The initial approach was 
“all directories in sys/ prefixed net” which works well. 
However, recently the netlink component was add-
ed, which really isn’t part of the network stack concep-
tually, so that was crossed out. Now the netstack con-
sists of net, net80211, netgraph, netinet, netinet6, 
and netpfil. Keeping the details to only the network 
stack also hides the details from the core kernel. Some 
changes were needed for other parts of the kernel to ac-
commodate the IfAPI, including NFS rootless (boot) and 
mbuf handling.

Design
The current design of the IfAPI is simply accessors and 

iterators. This was chosen as the most expedient way to 
convert drivers and hide the struct ifnet, though it is 
far from the best way. Conversion was largely mechanical, and Juniper provided a shell script 
to handle the bulk of the conversion in tools/ifnet/convert_ifapi.sh. Obviously, this 
may miss some conversions, such as those where ifp is a member of another structure or 
is named something else like foo_ifp, but it does handle most cases.

As for iterators, the initial implementation was based upon Gleb Smirnoff’s if_foreach_
lladdr(), using callbacks when iterating over a given type. This was applied to both if_addr 
and if_t, where iterating over the interfaces only iterates over the current VNET. More re-

BY JUSTIN HIBBITS

Juniper split the FreeBSD 
component out into its own 
separate repository.

FreeBSD 
Interface API (IfAPI)



42FreeBSD Journal • January/February 2024

cently, a new iterator API was added, allowing iterating with a more traditional loop; the re-
quirement being you must call if_iter_finish() or ifa_iter_finish() to clean up 
any state that set up for the iteration, including freeing any memory the implementation 
may have allocated (not done with the FreeBSD network stack, but could be done by other 
stacks).

Benefits
Decoupling device drivers from the network stack de-

tails brings benefits beyond Juniper’s source code man-
agement. With a stable ABI, a single device driver can be 
used with multiple different network stacks. For instance, 
one image for all computers in a data center could se-
lect–at boot time—a different network stack based on 
the execution profile; a high-performance limited stack 
for some devices and a full stack for others, all using the 
same network drivers.

Another, smaller benefit is that driver changes and 
netstack changes can occur simultaneously without af-
fecting one another. Before the IfAPI, any changes made 
to the struct ifnet required rebuilding all device driv-
ers. Going forward, with the struct ifnet being com-
pletely private, any change to the structure requires re-
building only the files that directly reference it, resulting 
in a shorter debug cycle.

Where Next?
IfAPI is just step 1, there is still more to do to properly abstract away the network stack. 

Gleb Smirnoff proposed using KOBJ interfaces to allow a more pluggable netstack and fully 
decouple the netstack from the rest. This would even allow replacing the netstack at run-
time (kldunload/kldload). Taking this further, we could potentially allow multiple net-
stacks, assigning different devices to different stacks. With that, there could even be the 
possibility of moving interfaces between netstacks dynamically.

Conclusion
The IfAPI is only phase one in an effort to decouple network drivers from the inner work-

ings of the network stack. With further work, multiple network stacks could be in use—and 
even reloadable network stacks.

JUSTIN HIBBITS was foolishly entrusted with a FreeBSD commit bit in 2011 for his obses-
sion with PowerPC. Since then, he’s focused mostly on PowerPC and other embedded ar-
chitectures. He currently works for Juniper Networks, working on all things FreeBSD kernel 
related, and continues his passion for low-level development and exotic architectures.

2 of 2

With a stable ABI,  
a single device driver  
can be used with  
multiple different  
network stacks. 



43FreeBSD Journal • January/February 2024

BATMAN  

1 of 3

II n the expansive realm of network protocols, one stands out as a versatile and resil-
ient contender: BATMAN, the Better Approach to Mobile Ad-hoc Networks. Through 
the airwaves of large cities, BATMAN allows devices to seamlessly communicate over a 

mesh network, without any one device requiring knowledge of the wider network topology.
Over the summer, I participated in Google Summer of Code (GSoC) where I ported the 

batman-adv kernel module—which provides support 
for the BATMAN protocol on Linux—to FreeBSD. This 
GSoC thing is a program where students are award-
ed a stipend by Google for working on an open source 
project over the summer, overseen by a mentor, who, 
in my case, was the one and only Mahdi (or Meh-
di, depending on which day of the week you ask him) 
Mokhtari, aka mmokhi@. He’s a classy guy, and I’m very 
grateful to have had him as a guiding hand throughout 
my GSoC journey!

Currently with batman_adv (FreeBSD’s equiva-
lent to batman-adv), you can create and participate in 
meshes and send/receive packets over Ethernet. This 
all also works from within the Linuxulator. The porting 
effort mostly consisted of work on the LinuxKPI (nota-
bly backing struct net_device by struct ifnet 
and mbuf by sk_buff), which should hopefully ease 
porting other networking-related drivers from Linux in 
the future.

What Did the Porting Process Look Like?
Though I’m far from an expert in the ways of porting kernel components (this is the first 

time I’ve ported anything remotely as large as BATMAN), here’s a high-level overview of 
what the process looked like for me—on the off-chance some insight may be gleaned from 
my little adventure.

BY AYMERIC WIBO

Through the airwaves 
of large cities, BATMAN 
allows devices to 
seamlessly communicate 
over a mesh network.

BATMANBATMAN  
the Better Approach  
to Mobile Ad-hoc Networks



44FreeBSD Journal • January/February 2024

The first step was—naturally—to pull in the code for batman-adv from Linux into sys/
contrib/dev/batman_adv and to create the Makefile to build it, which contains a list of 
all the source files to use and which compile-time options to set, such as telling it to include 
the LinuxKPI stuff. As expected, things didn’t compile on the first try; batman-adv calls a lot 
of functions and uses a lot of structures which only exist or make sense in the context of the 
Linux kernel. This is the raison d’être of the LinuxKPI; it provides a compatibility layer that im-
plements a subset of the Linux kernel by calling to equivalent (or sometimes not-so-equiva-
lent) functions in the FreeBSD kernel.

So, the next natural thing was to get things to compile by writing stubs for all the missing 
functions and structures in the LinuxKPI, filling in the missing fields as they’re used (we can’t 
copy the structures from Linux as-is, because Linux is GPL-licensed). These stubs just con-
tain debug print statements which let us know when they’re being used.

With everything compiled, I could load the kernel module, which immediately pan-
icked the kernel. Then it was just the process of going 
through all the stubs which are being called, looking up 
and understanding their implementation in Linux, and 
implementing an equivalent for FreeBSD in the Linux-
KPI, until the kernel not-panicked. This was maybe 70% 
of the work.

Once every operation (loading the module, creat-
ing interfaces, sending stuff over it, and so forth) works 
and doesn’t blow up anything, it is time to close the 
curtains, open up the ol’ Wireshark on a second moni-
tor, and lock myself in my kot (== Belgian dorm room) 
for a week straight getting a) all the devices on the 
mesh to recognize each other, and b) data to actually 
go from device A to device C passing through device 
B without getting mangled or lost in the process. A lot 
of this time was spent revising the (sometimes insuffi-
cient) implementations made during the previous step. 
This was maybe 30% of the work, but it felt like 90%, 
with most of my time spent staring directly at Wire-
shark and it staring back at me.

Finally, BATMAN worked on FreeBSD, and all that 
was left to do was make userland tools support manip-
ulating BATMAN interfaces, write a few lines of documentation, and open the curtains.

Upstreaming batman_adv
At EuroBSDCon last year, I spoke to some members of core@ about the possibility of up-

streaming batman_adv, which they’d like to avoid, as BATMAN is GPL-licensed. So it’ll prob-
ably remain as a port forever because there isn’t really a use case where BATMAN is nec-
essary to get a working FreeBSD system; if you need to use BATMAN for something, you’ll 
likely be in a position where it’s easy to fetch and build the port yourself anyway (as opposed 
to NIC drivers e.g.).

2 of 3

With a stable ABI,  
a single device driver  
can be used with  
multiple different  
network stacks. 



45FreeBSD Journal • January/February 2024

What’s Left to Do?
The big limitation of BATMAN on FreeBSD right now is that it can’t participate in wireless 

networks. I fully intend on getting at least wireless working in the following year, as that’s 
where BATMAN’s major use case lies. Hopefully I’ll get that done in time for BSDCan 2024 :)

I wholeheartedly recommend participation in GSoC to anyone who meets the require-
ments to apply. I went from not knowing much about FreeBSD’s network stack and kernel 
to, well, still not knowing all that much about it in the grand scheme of things, but certainly 
knowing a lot more than when I started. It especially helped me become a lot more com-
fortable navigating through the source tree and debugging kernel panics, even not-net-
work-code-related.

Further Reading
Here’s a link to my GSoC project wiki page where all the specifics, code, and a small 

demo video are:  
https://wiki.freebsd.org/SummerOfCode2023Projects/CallingTheBatmanFreeNetworksOn-
FreeBSD 

And, you might find this link to the batman-adv overview interesting, as it goes more in 
detail on the BATMAN implementation on Linux (and thus also on FreeBSD):  
https://www.open-mesh.org/projects/batman-adv/wiki/Wiki

AYMERIC WIBO is a CS student at UCLouvain in Belgium and has been using and devel-
oping projects based on FreeBSD since high school. His primary interests lie in graphics and 
networking.

3 of 3

Write 
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write 

https://wiki.freebsd.org/SummerOfCode2023Projects/CallingTheBatmanFreeNetworksOnFreeBSD
https://wiki.freebsd.org/SummerOfCode2023Projects/CallingTheBatmanFreeNetworksOnFreeBSD
https://www.open-mesh.org/projects/batman-adv/wiki/Wiki
mailto:maurer.jim@gmail.com


46FreeBSD Journal • January/February 2024

1 of 7

Note: This article assumes a setup based on FreeBSD. If you prefer a version based on OpenBSD, it is available here.

VPNs are a fundamental tool for securely connecting to your own serv-
ers and devices. Many people use commercial VPNs for various 
reasons, ranging from not trusting their provider (especially when 

connecting from a public hotspot) to wanting to “go out” on the Internet with a different IP 
address, perhaps from another country. Here, I want to highlight some of the new features 
that have been brought into the base stack—many of which are enabled by default, and 
some of which may need to be specifically activated. Each feature will be described with de-
tails that may help improve the networking experience.

Whatever the reason, solutions are not lacking. I 
have always set up management VPNs to allow serv-
ers and/or clients to communicate with each other us-
ing secure channels. Lately, I have been activating IPv6 
connectivity on all my devices (both desktop/servers 
and mobile devices) and I needed to quickly create a 
node that concentrated some networks and allowed 
them to go out on the network in IPv6. The tools I 
used and will describe are:

• VPS – in this case, I used a basic Hetzner Cloud 
VPS, but any provider that provides IPv6 connectiv-
ity will do – if you want IPv6, of course.

• FreeBSD – a versatile, stable, and secure operating system.
• Wireguard – lightweight, secure, and at the same time, not very “chatty,” so it is also 

gentle on mobile device batteries. When there is no traffic, it simply does not transmit/
receive anything. Well supported by all major desktop and server operating systems as 
well as Android and iOS devices.

• Unbound – can make DNS queries directly to root servers, not through forwarders. 
It also allows you to insert block-lists and have a result similar to that of Pi-Hole (i.e., 
ad-blocking).

• SpamHaus lists – to immediately stop connections to and from users on blacklists.
The first step is to activate a VPS and install FreeBSD. On the Hetzner Cloud console, 

there might not be a pre-built FreeBSD image, but only a selection of Linux distributions. 
Don’t worry, just choose any of them and create the VPS. Once done, the FreeBSD ISO im-
age will be available among the “ISO Images.” Just insert the virtual CD, restart the VPS, and 
the FreeBSD installation will appear in the console.

BY STEFANO MARINELLI

Make Your Own VPN —  
FreeBSD, Wireguard, IPv6  
and Ad-blocking Included

I want to highlight some  
of the new features that 
have been brought into  
the base stack. 

https://it-notes.dragas.net/2023/04/03/make-your-own-vpn-wireguard-ipv6-and-ad-blocking-included/
https://my-notes.dragas.net/posts/2023/the-urgency-of-transitioning-to-ipv6/
https://my-notes.dragas.net/posts/2023/the-urgency-of-transitioning-to-ipv6/
https://www.freebsd.org/
https://www.wireguard.com
https://nlnetlabs.nl/projects/unbound/about/
https://www.spamhaus.org/


47FreeBSD Journal • January/February 2024

I won’t go into detail, the operation is simple and straightforward. The only precaution (in 
the case of a Hetzner Cloud VPS) is to use “DHCP” for IPv4 but, for now, do not configure 
IPv6. It will be configured later.

Install all FreeBSD updates (using the freebsd-update fetch install command) 
and reboot.

Wireguard, on FreeBSD, is now available as a kernel module and the userland can be in-
stalled using the pkg install wireguard-tools package manager. This means you can 
easily keep it updated alongside other software on the system.

The first step is to configure IPv6 on the VPS. In the case of Hetzner, unfortunately, they 
only provide a /64, so it will be necessary to segment the assigned network. In this example, 
it will be divided into /72 subnetworks - to find valid subclasses, it will be possible to use a 
calculator.

The /etc/rc.conf file should have entries similar to:

ifconfig_vtnet0=”DHCP” 
ifconfig_vtnet0_ipv6=”inet6 2a01:4f8:cafe:cafe::1 prefixlen 72” 
ipv6_defaultrouter=”fe80::1%vtnet0”

In short, keep the base address assigned by Hetzner, but change the prefix length to 72 - 
thus giving the possibility of having other networks available.

It is now necessary to enable forwarding for IPv4 and IPv6. Add these lines to the  
/etc/sysctl.conf file:

net.inet.ip.forwarding=1 
net.inet6.ip6.forwarding=1

After reboot, test it:

ping6 google.com

If everything has been configured correctly, the ping will be executed and google.com 
will reply.

To configure Wireguard, a few steps will be necessary. First of all, the private key will need 
to be created:

wg genkey | tee /dev/stderr | wg pubkey  | grep --label PUBLIC -H .

You will get a private key and a public key. Take note of the public key — it will be needed 
to configure the clients.

Now create a new file called /usr/local/etc/wireguard/wg0.conf:

[Interface] 
Address = 172.14.0.1/24,2a01:4f8:cafe:cafe:100::1/72 
ListenPort = 51820 
PrivateKey = YUkS6cNTyPbXmtVf/23ppVW3gX2hZIBzlHtXNFRp80w=

A new Wireguard interface called wg0 is being created. Start the Wireguard interface:

service wireguard enable  
sysrc wireguard_interfaces=”wg0”  
service wireguard start

2 of 7

https://subnettingpractice.com/ipv6-subnet-calculator.html
https://subnettingpractice.com/ipv6-subnet-calculator.html


48FreeBSD Journal • January/February 2024

If everything has been entered correctly, the interface should come up. Check its status:

wg

As for the firewall, FreeBSD comes with no `pf` configuration. In my setups, I tend to 
block what is not needed and be permissive with what may be useful. However, I like to keep 
out the “bad guys,” so I use blacklists. pf allows elements to be inserted and removed from 
tables at runtime, so the firewall can be configured accordingly.

To download and apply the Spamhaus lists, I use a simple but effective script found on 
the Internet, but for OpenBSD.

For the Spamhaus lists, continue with the FreeBSD script creation.
Create the script in /usr/local/sbin/spamhaus.sh:

#!/bin/sh 
# 
#this is normally run once per day via cron. 
# 
echo updating Spamhaus DROP lists: 
( 
  { fetch -o - https://www.spamhaus.org/drop/drop.txt && \ 
    fetch -o - https://www.spamhaus.org/drop/edrop.txt && \ 
    fetch -o - https://www.spamhaus.org/drop/dropv6.txt ; \ 
  } 2>/dev/null | sed “s/;/#/” > /var/db/drop.txt 
) 
pfctl -t spamhaus -T replace -f /var/db/drop.txt

Make it executable and run it. Pf isn’t enabled, so you’ll get an error — but this will create 
the /var/db/drop.txt file:

chmod a+rx /usr/local/sbin/spamhaus.sh 
/usr/local/sbin/spamhaus.sh

There are many possibilities to configure pf on FreeBSD. A fairly simple example could 
be this:

ext_if=”vtnet0” 
wg0_if=”wg0” 
wg0_networks=”172.14.0.0/24” 
 
set skip on lo 
 
nat on $ext_if from { $wg0_networks } to any -> ($ext_if) 
 
# Spamhaus DROP list: 
table <spamhaus> persist file “/var/db/drop.txt” 
 
block drop log quick from <spamhaus> 
 
# Pass ICMP on ipv6 

3 of 7

https://daemonforums.org/showthread.php?t=11420
https://daemonforums.org/showthread.php?t=11420


49FreeBSD Journal • January/February 2024

pass quick proto ipv6-icmp 
# Block from ipv6 to wg0 network 
block in quick on $ext_if inet6 to { 2a01:4f8:cafe:cafe:100::/72 } 
# Pass Wireguard traffic - in and out 
pass quick on $wg0_if 
 
# default deny 
block in 
block out 
 
pass in on $ext_if proto tcp to port ssh 
pass in on $ext_if proto udp to port 51820 
 
pass out on $ext_if

This is a very simple configuration: it blocks everything that is present in the list down-
loaded from Spamhaus, allows NAT from the Wireguard network to the public interface, al-
lows ICMP traffic in IPv6 (necessary for the network to function properly) while blocking in-
coming traffic to the Wireguard IPv6 LAN (remember that the IPs will be public and directly 
reachable, so we don’t want to expose our devices by default). All traffic on the Wireguard 
interface will be allowed to pass. Then everything will be blocked and exceptions will be 
specified, i.e., allowing SSH and Wireguard connections (of course). Authorization will also be 
granted to allow traffic to exit from the public network interface.

Save this configuration to /etc/pf.conf.
Enable and start pf:

service pf enable  
service pf start

You will probably be kicked out of the system. Don’t worry, just reconnect. pf is doing its 
job.

If everything went correctly, the firewall should have loaded the new rules.
To obtain caching of DNS queries and the related ad-block, it is now time to configure 

Unbound. Let’s install it with:

pkg install unbound

A while ago, I found a script which I slightly adapted. I don’t remember where I got it, so 
I’ll paste it here without citing the original creator.

Create a script to update the unbound ad-block, in /usr/local/sbin/unbound-ad-
hosts.sh:

#!/bin/sh 
# 
# Using blacklist from pi-hole project https://github.com/pi-hole/ 
# to enable AD blocking in unbound(8) 
# 
PATH=”/bin:/sbin:/usr/bin:/usr/sbin:/usr/local/bin:/usr/local/sbin” 
 

4 of 7



50FreeBSD Journal • January/February 2024

# Available blocklists - comment line to disable blocklist 
_disconad=”https://s3.amazonaws.com/lists.disconnect.me/simple_ad.txt” 
_discontrack=”https://s3.amazonaws.com/lists.disconnect.me/simple_tracking.
txt” 
_stevenblack=”https://raw.githubusercontent.com/StevenBlack/hosts/master/
hosts” 
 
# Global variables 
_tmpfile=”$(mktemp)” && echo '' > $_tmpfile 
_unboundconf=”/usr/local/etc/unbound/unbound-adhosts.conf” 
 
# Remove comments from blocklist 
simpleParse() { 
  fetch -o - $1 | \ 
  sed -e ‘s/#.*$//’ -e ‘/^[[:space:]]*$/d’ >> $2 
} 
 
# Parse DisconTrack 
[ -n “${_discontrack}” ] && simpleParse $_discontrack $_tmpfile 
 
# Parse DisconAD 
[ -n “${_disconad}” ] && simpleParse $_disconad $_tmpfile 
 
# Parse StevenBlack 
[ -n “${_stevenblack}” ] && \ 
  fetch -o - $_stevenblack | \ 
  sed -n '/Start/,$p' | \ 
  sed -e 's/#.*$//' -e '/^[[:space:]]*$/d' | \ 
  awk '/^0.0.0.0/ { print $2 }' >> $_tmpfile 
 
# Create unbound(8) local zone file 
sort -fu $_tmpfile | grep -v “^[[:space:]]*$” | \ 
awk '{ 
  print “local-zone: \”” $1 “\” redirect” 
  print “local-data: \”” $1 “ A 0.0.0.0\”” 
}' > $_unboundconf && rm -f $_tmpfile 
 
service unbound reload 1>/dev/null 
 
exit 0

After saving the script, make it executable and run it:

chmod a+rx /usr/local/sbin/unbound-adhosts.sh 
/usr/local/sbin/unbound-adhosts.sh

5 of 7



51FreeBSD Journal • January/February 2024

Now, the Unbound configuration file in /usr/local/etc/unbound/unbound.conf can 
be modified as follows:

server: 
        verbosity: 1 
        log-queries: no 
        num-threads: 4 
        num-queries-per-thread: 1024 
        interface: 127.0.0.1 
        interface: 172.14.0.1 
        interface: 2a01:4f8:cafe:cafe:100::1 
        interface: ::1 
        outgoing-range: 64 
        chroot: “” 
         
        access-control: 0.0.0.0/0 refuse 
        access-control: 127.0.0.0/8 allow 
        access-control: ::0/0 refuse 
        access-control: ::1 allow 
        access-control: 172.14.0.0/24 allow 
        access-control: 2a01:4f8:cafe:cafe:100::/72 allow 
 
        hide-identity: yes 
        hide-version: yes 
        auto-trust-anchor-file: “/usr/local/etc/unbound/root.key” 
        val-log-level: 2 
        aggressive-nsec: yes 
        prefetch: yes 
        username: “unbound” 
        directory: “/usr/local/etc/unbound” 
        logfile: “/var/log/unbound.log” 
        use-syslog: no 
        pidfile: “/var/run/unbound.pid” 
        include: /usr/local/etc/unbound/unbound-adhosts.conf 
 
remote-control: 
        control-enable: yes 
        control-interface: /var/run/unbound.sock

Now, enable and start unbound:

service unbound enable 
service unbound start

If everything has been set up correctly, unbound will be able to respond to DNS requests 
made on 172.14.0.1 and 2a01:4f8:cafe:cafe:100::1.

Now it is possible to configure the Wireguard client. Create a new configuration by in-
serting “172.14.0.2/32, 2a01:4f8:cafe:cafe:100::2/128” (the ones that will later be entered in the 
peer configuration of the server) in the local IP addresses. Set the DNS server address to 

6 of 7



52FreeBSD Journal • January/February 2024

“172.14.0.1” and/or its corresponding IPv6 address (in the example, 2a01:4f8:cafe:cafe:100::1 - 
yours will be different). In the peer section, insert the server’s data, including its public key, 
IP address:port (in the example, the port is 51820), and allowed addresses (setting “0.0.0.0/0, 
::0/0” means “all connections will be sent via Wireguard” — all the traffic will pass through 
the VPN for both IPv4 and IPv6).Each implementation has its own procedure (Android, iOS, 
MikroTik, Linux, etc.) but essentially it is sufficient to create the right configuration both on 
the server and on the client.

Reopen the Wireguard configuration file /usr/local/etc/wireguard/wg0.conf and add:

[Interface] 
Address = 172.14.0.1/24,2a01:4f8:cafe:cafe:100::1/72 
ListenPort = 51820 
PrivateKey = YUkS6cNTyPbXmtVf/23ppVW3gX2hZIBzlHtXNFRp80w= 
 
[Peer] 
PublicKey = *client's public key* 
AllowedIPs = 172.14.0.2/32, 2a01:4f8:cafe:cafe:100::2/128

The client’s public key will be shown by the client itself.
Reload the Wireguard configuration:

service wireguard restart

It is also possible to use the VPN only as an ad-blocker, by only routing DNS traffic 
through it. To achieve this result, configure the client so that the only allowed address is 
the one of the just-configured unbound (in this example, 172.14.0.1 and/or 2a01:4f8:cafe:ca-
fe:100::1) — DNS resolution will occur via VPN, but browsing will continue to work through 
the main provider.

To automatically update the spamhaus and ad-block lists, we will use cron.First, create a 
script, for example, /usr/local/sbin/update-blocklists.sh:

#!/bin/sh 
 
/usr/local/sbin/unbound-adhosts.sh 
/usr/local/sbin/spamhaus.sh

Make it executable:

chmod +x /usr/local/sbin/update-blocklists.sh

Then, add it to the crontab to run daily:

echo “@daily /usr/local/sbin/update-blocklists.sh” >> /etc/crontab

This approach benefits from both update management and security perspectives.

STEFANO MARINELLI is an IT Consultant with over two decades of experience in the 
realms of IT consulting, training, research, and publishing. His expertise spans across oper-
ating systems, with a special emphasis on *BSD systems — FreeBSD, NetBSD, OpenBSD, 
DragonFlyBSD - and Linux. Stefano is also the barista at BSD Cafe, a vibrant community hub 
for *BSD enthusiasts, and has led the FreeOsZoo project at the University of Bologna, mak-
ing open-source operating system images accessible for virtual machines.

7 of 7



53FreeBSD Journal • January/February 2024

I’d like to know what’s going on, especially on the servers and machines that I am respon-
sible for. Monitoring those systems has become a good practice for me. There are sim-
ply too many to check on a daily basis, and most of the time, there’s nothing crazy going 

on. But when there is something going on, I want to know about it, even when it happened 
while I was asleep or otherwise away from a terminal. Monitoring also gives me an overview 
of my fleet of machines. I sometimes discover a host that has served its purpose but has 
not been recycled yet. I’ve even had cases where I could move new services to an underuti-
lized machine, rather than spin up another host 
or jail.

Graphs serve me well in displaying what the 
machine has been doing over a period of time. 
Was last week’s system load unusual or did lab 
groups in the university start? That disk is slowly 
filling up, I better do something about it. Ques-
tions like these come up and graphs over the col-
lected machine metrics help answer them.

Any good sysadmin will sleep better knowing 
that their systems are up and running. Monitoring 
software can tell you they are, and you can even 
give management an uptime report for each in-
dividual machine to fill PowerPoint slides.

A monitoring system that can do all these things is called Zabbix. It is an open source 
solution to monitor your IT infrastructure, developed by a company that can even provide 
professional support if needed. The fully featured solution I am using is running on a long-
term support cycle and I found the installation to be well documented. A central server col-
lects the data from the systems running an agent. The server provides a web UI with dash-
boards, graphs, alerts about certain events, and much more. Another bonus for me was that 
FreeBSD is not an unknown operating system, and Zabbix has machine templates available 
to monitor important metrics like CPU, RAM, and even ZFS.

I run Zabbix from a jail and do not have any major problems with it. The PHP-based solu-
tion requires a database for storing the metrics. Postgres, MySQL/MariaDB, SQLite and even 
commercial DB2 from IBM and Oracle database servers can be used. The monitoring itself 
happens via SNMP/IPMI, ssh or a simple ping to check availability. For active monitoring (col-

BY BENEDICT REUSCHLING

1 of  8

Monitor Your Hosts  
with Zabbix

PRACTICAL

Any good sysadmin  
will sleep better knowing 
that their systems 
are up and running.



54FreeBSD Journal • January/February 2024

lecting live machine metrics), an agent needs to be installed on those hosts. There are even 
functionalities in place to monitor whole subnets for new hosts and add them to monitor-
ing as they appear There are even functionalities in place to monitor whole subnets for new 
hosts and automatically add them to monitoring when they first appear. Triggers set on cer-
tain hosts for specific situations (for example, disk full) are configurable via the web interface. 
Alerts about these events are sent via email, Jabber, SMS, or via custom script actions. 

Zabbix Setup
Let’s see how we can install this monitoring solution. I’m starting out with a fresh 

FreeBSD 14.0 jail that is connected to the network that I’m monitoring and that downloads 
required packages from the web or a separate Poudriere server. Note that I configured the 
port from using the default MySQL to use PostgreSQL by running “make config” in the net/
mgmt/zabbix64-server ports directory.

These are the packages that we need:

# pkg install zabbix64-server zabbix64-frontend-php82 postgresql15-server nginx

In an earlier attempt, I was using zabbix6-server and frontend, because I thought version 
6.4 would eventually become version 6.5. But the release schedule for Zabbix is a bit differ-
ent. The long-term support versions are the major versions (6 in this case), whereas the mi-
nor release versions (6.4) have a shorter support cycle. I switched to the long-term support 
version, as I didn’t want to be on the bleeding edge of monitoring and can run with the cur-
rent feature set for a while. Stability is what I want as a primary goal. You don’t want to fix 
your monitoring every time a new version comes out, when you rely on monitoring your 
critical systems with it.

Activate services to run when the monitoring host (or jail) starts using sysrc:

# sysrc zabbix_server_enable=yes 
# sysrc zabbix_agentd_enable=yes 
# sysrc postgresql_enable=yes 
# sysrc nginx_enable=yes 
# sysrc php_fpm_enable=yes

2 of  8



55FreeBSD Journal • January/February 2024

I don’t use SNMP in my setup (that may change in the future), but the pkg-message has 
details about how to enable the SNMP daemon if you do. Our first task after the package 
installation is to set up the zabbix database. I love Postgres, so I use that in my setup here. As 
mentioned, other databases are supported, so pick your favorite data storage solution here.

Database Setup
First, I change to the postgres user, which was installed as part of the package.

# su postgres

After switching to /var/db/postgres (which is the postgres home directory), I run the 
initdb command to initialize the database cluster. Then I start the database using the pg_ctl 
command since we need a running database to import the Zabbix base tables.

$ cd /var/db/postgres 
$ initdb data 
$ pg_ctl -D ./data start

Once the database is running, I switch to

/usr/local/share/zabbix64/server/database/postgresql/

where the database templates for the tables, triggers, and everything else resides.

$ cd /usr/local/share/zabbix64/server/database/postgresql/

Then I run PostgreSQL’s interactive shell called psql. In there, I create a new database for 
zabbix, a user with the same name and give it a password. After granting that user permis-
sions on the zabbix database, I need to log out from psql to switch to the zabbix user we just 
created.

psql -d template1 
psql> create database zabbix; 
psql> CREATE USER zabbix WITH password 'yourZabbixPassword’; 
psql> GRANT ALL PRIVILEGES ON DATABASE zabbix to zabbix; 
psql> exit

Use psql again to log in as the new zabbix user into the empty zabbix database. We load 
three files that contain table definitions for zabbix (and some other database objects) in that 
order: schema.sql, images.sql, and finally data.sql from the local directory we changed 
into earlier. Once we’re done, we can log out of the database again.

$ psql -U zabbix zabbix 
psql> \i schema.sql 
psql> \i images.sql 
psql> \i data.sql 
psql> exit

That is all that is needed for the database. Let’s move on to configuring Zabbix itself.

Zabbix Configuration
Zabbix needs to know which database to use to store metrics, machines to monitor, and 

a whole lot of other information. The main Zabbix configuration is located in /usr/local/
etc/zabbix64/zabbix_server.conf as a straightforward key = value file. Comments de-

3 of  8



56FreeBSD Journal • January/February 2024

scribe what the values do and most of them are commented out. After I made the neces-
sary changes, my file looks like this:

SourceIP=IP.address.of.monitoring-host 
LogFile=/var/log/zabbix/zabbix_server.log 
DBHost= 
DBName=zabbix 
DBUser=zabbix 
DBPassword=yourZabbixPassword 
Timeout=4 
LogSlowQueries=3000 
StatsAllowedIP=127.0.0.1

The first thing that I defined is the SourceIP address of the central Zabbix server that 
collects the metrics. Note that the frontend (the web UI) does not have to reside on the 
same host, but I keep things central here. I define where Zabbix should log any events that 
happen during its runtime (LogFile). Create that path and file if it does not exist as yet and 
set the owner to the Zabbix user (this is the one that came with the package installation).

No, I did not forget to set a value for the DBHost parameter. When running on Postgres, 
this needs to be empty. One day, when you have to define your own config file, you may 
think back about this and may do things differently. Less typing for me, and remember, oth-
er databases may require a value here, so adapt your setup if you don’t use Postgres.  
DBName, DBUser, and DBPassword (in clear text) are the ones that we created earlier in the 
database setup. This connects Zabbix to the database instance to store and retrieve values 
during monitoring. Both Timeout and LogSlowQueries are default values I kept. I had no 
need to adjust them yet, but I can imagine resource constraints would be a good reason to 
do just that. Internal statistics for Zabbix itself are collected as well and the StatsAllowed-
IP parameter defines from where to accept those. Localhost is totally fine for my use case. 
Another Zabbix instance may want to access those as well, which is why you can define mul-
tiple addresses here if you have several Zabbix servers monitoring each other.

That’s it for the server configuration file, at least for the basics. I’m using Agent monitor-
ing for both the clients and the server itself. When using SNMP, there may be additional val-
ues required. Check the documentation for Zabbix for details.

Zabbix Agent Configuration
The gent is aptly named Zabbix Agentd (good old Unix daemons) and it should run when 

the server jail starts. The entry for /etc/rc.conf is done using sysrc and looks like this:

# sysrc zabbix_agentd_enable=yes

Located next to the server configuration file is the one for the agent, too. The filename 
is zabbix_agentd.conf in /usr/local/etc/zabbix64/zabbix_agentd.conf. My own 
changes make this file look like the following:

LogFile=/var/log/zabbix/zabbix_agentd.log 
SourceIP=IP.address.of.host-to-monitor 
Server=IP.address.of.monitoring-host 
ServerActive=127.0.0.1 
Hostname=Zabbix server

4 of  8



57FreeBSD Journal • January/February 2024

We find familiar lines in this file. The LogFile should be a different one to distinguish 
messages from the server and the client, especially for the server. The machines that are 
monitored typically don’t run the server parts, so there is no mixing them up on those sys-
tems. The directory should exist by now, but the file needs a manual nudge via touch(1) to 
come into existence. SourceIP is exactly the same as the monitoring host sends its own 
metrics to itself. For other clients, set this to the IP or DNS address of that host in question. 
ServerIP stays the same on all systems, as we are using a central system to collect the 
metrics. ServerActive has been discussed above and Hostname is an identifier that Zab-
bix uses internally to keep systems distinct.

Zabbix Frontend
The Zabbix frontend requires a running webserver with PHP enabled and its own config-

uration file. The front-end needs to know how to get metrics and other data from the back-
end, which is why another configuration file requires the database credentials. The file in 
question is located in /usr/local/www/zabbix64/conf/zabbix.conf.php, right where 
the rest of the website files reside that make up Zabbix. A few comments will guide you to 
the lines that need to be filled with the proper values. Mine look like this:

<?php 
  // Zabbix GUI configuration file. 
  $DB[‘TYPE’]    = 'POSTGRESQL’; 
  $DB[‘SERVER’]    = 'localhost'; 
  $DB[‘PORT’]    = '0'; 
  $DB[‘DATABASE’]    = 'zabbix'; 
  $DB[‘USER’]    = 'zabbix'; 
  $DB[‘PASSWORD’]    = 'yourZabbixPassword'; 
  $DB[‘SCHEMA’]    = '';

Additional settings about TLS encryption are left as an exercise to the reader. Definite-
ly consider implementing that or someone listening on the wire may be able to determine 
a lot of information about the hosts sending their metrics to the central server on a regu-
lar basis. I omitted it here to keep the tutorial focused on the most important parts to make 
Zabbix run in the first place.

My webserver of choice is nginx, but any other will do just fine. The main nginx.conf af-
ter the changes had these lines in it:

worker_processes  1; 
events { 
  worker_connections  1024; 
} 
http { 
  include            mime.types; 
  default_type       application/octet-stream; 
  sendfile           on; 
  keepalive_timeout  65; 
  server { 
    listen           80; 
    server_name      localhost; 
    root /usr/local/www/zabbix64; 
    index index.php index.html index.htm; 

5 of  8



58FreeBSD Journal • January/February 2024

    location / { 
      try_files $uri $uri/ =404; 
    } 
    location ~ .php$ { 
      fastcgi_split_path_info ^(.+\.php)(/.+)$; 
      fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_script_name; 
      fastcgi_param PATH_INFO $fastcgi_path_info; 
      fastcgi_param REMOTE_USER $remote_user; 
      fastcgi_pass unix:/var/run/php-fpm.sock; 
      fastcgi_index index.php; 
      include fastcgi_params; 
    } 
    error_page   500 502 503 504  /50x.html; 
    location = /50x.html { 
      root   /usr/local/www/nginx-dist; 
    } 
}

Note that this also misses the SSL/TLS setup that is now ubiquitous on the web. I was us-
ing an SSL proxy for the requests, but a Let’s encrypt solution is cheap and easy to imple-
ment. Again, I focus on Zabbix here.

For PHP itself, the configuration is a few lines away from production use. Edit /usr/ 
local/etc/php-fpm.d/www.conf and change these settings to the values shown:

listen = “/var/run/php-fpm.sock”

Uncomment the following:

listen.owner 
listen.group 
listen.mode

The file /usr/local/etc/php.ini should use production values, so copy and rename  
/usr/local/etc/php.ini-production to that filename. We are not quite done yet, 
as the setup will check for certain PHP values later and complain about lower (or outright 
wrong) values. Change these to have a smooth experience (and change the time zone to 
yours):

date.timezone = Europe/Berlin 
post_max_size = 16M 
max_execution_time = 300 
max_input_time = 300

I saved those files, ran sysrc nginx_enable=yes followed by starting all services that 
are part of the Zabbix stack:

service postgresql restart 
service php-fpm start 
service nginx start 
zabbix_server start 
zabbix_agentd start

6 of  8



59FreeBSD Journal • January/February 2024

Website Woes
That went fine and I saw a couple of lines appear in the log file for Zabbix (both the serv-

er and agent). Excited as I was, I went to my browser of choice and entered the URL for 
Zabbix. Nothing happened. A white screen with nothing on it greeted me. I restarted the 
services, checked the logs, and re-checked the configuration files. No effect, still the same 
white page. I tried a different browser, just to rule out any peculiarities. The white page was 
staring in my face, just the same.

Whenever you meet me at a BSD conference (which is a likely event), you’ll notice how 
little hair is left on my scalp. I could blame bad genes or environmental factors, but working 
in IT is a big contributor to why I pull my hair out in situations like this. This is supposed to 
work according to the documentation, so why is there nothing to see on the website?

This article would reach an unsatisfying end here if luck had not pointed me in the right 
direction. I had opened the Zabbix FAQ to read about other things when my eyes caught 
this section:

If “opcache” is enabled in the PHP 7.3 configuration, Zabbix frontend may show a blank 
screen when loaded for the first time. This is a registered PHP bug. To work around 
this, please set the “opcache.optimization_level” parameter to 0x7FFFBFDF in the PHP 
configuration (/usr/local/etc/php.ini file).  
https://www.zabbix.com/documentation/current/en/manual/installation/known_issues

Solution
OK, so I went back to /usr/local/etc/php.ini and set the opcache.optimization_

level like this:

opcache.optimization_level=0x7FFFBFDF

Obscure value as it may be, this setting may or may not be required when you, dear read-
er implements this. I kept it in there to avoid another round of hair pulling. Restarting the 
services one more time, I was greeted by the Zabbix web configuration. The setup itself is 
main confirming the PHP settings and values for the backend database. Set a password for 
the web frontend and then log in for the first time.

You probably do not see a host on a fresh installation. To see at least your own monitor-
ing server, click on the left side (big eye icon) on Monitoring, and then Hosts. On the new 
page, click the “Create Host” button in the upper right corner. A form will appear where you 
can enter information about the host like name, IP address, and what kind of monitoring to 
use (zabbix agent in our case). The templates field holds presets for certain kinds of hosts, 
and we will find one for FreeBSD in there when we start typing that operating system name. 
Groups logically combine hosts that have similar characteristics (you can create as many 
groups as you need). This makes filtering easier, and if an outage occurs, may tell you what 
other systems need looking after. In the interfaces section, click “Add” and select Agent. 
New input fields will appear where you enter the IP address and/or DNS name. The port 
10050 is the default for the agent, so check if any firewall rules prevent access. A description 
is optional, but with the growing number of servers, it’s good to remind yourself about a sys-
tems purpose. Click the blue “Add” button to create the host. It will appear in your host list, 
and if all went well, should have data collected by the agent as well as some graphs show up 
soon after. The dashboard will display any problems detected over the monitoring period.

7 of  8



60FreeBSD Journal • January/February 2024

Check the Zabbix documentation for monitoring a whole subnet, how to use SNMP 
monitoring, and how to automatically add hosts without having to click through each one of 
them in the Zabbix documentation. Explore the rest of the Zabbix UI for cool features that 
you never knew you missed but definitely want to regularly revisit to see if something is out 
of the ordinary. Happy monitoring!

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project 
and member of the documentation engineering team. In the past, he served on the 
FreeBSD core team for two terms. He administers a big data cluster at the University of 
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

8 of  8

Write 
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write 

https://www.bsdnow.tv/
mailto:maurer.jim@gmail.com


61FreeBSD Journal • January/February 2024

1 of 2

A CROSSWORD BY TOM JONES

10 Years of  
the FreeBSD Journal

Answers on next page

ACROSS
1. Makes your stackoverflow useless
4. It’s Hammer time
5. Progentitor OS
7.  Frequently phonetically confused 

conference
8.  Without them there would be nothing 

about which to write
11.  Knows what your functions are thinking
12. King of the photocopies
13. Waiting for Godot events

DOWN
2. Futuristic Tier 1
3. The Journal’s thread safe Chair
6. Complete Packaging
7. Universal home of open source
9. Friendly Version Control
10. Zed’s dead baby
14. The standard editor



62FreeBSD Journal • January/February 2024

2 of 2

A decade ago, we unveiled the inaugural issue, 
spotlighting the release of FreeBSD 10.0 and fea-
turing discussions on pivotal topics such as the 

transition to clang as the base system C and C++ com-
piler, and ZFS. Over the past ten years, the Journal has 
showcased a wealth of content, with more than 250 ar-
ticles, accompanied by numerous book reviews and en-
gaging trip reports. None of this would have been pos-
sible without the invaluable contributions from authors 
across the FreeBSD community, both past and present 
members of the Editorial Board, and, of course, our 
dedicated readers. A heartfelt thank you to all!



63FreeBSD Journal • January/February 2024

1 of 5

I am sitting here amazed at how quickly 2023 flew by, but I’m also looking forward to kick-
ing off the new year with rejuvenated energy to take on an exciting array of opportunities 
for FreeBSD. I hope you had a chance to slow down a bit over the holiday season, spend 

time with friends and family, and pursue activities that bring you joy. If you’re like me, you 
probably thought about what you would like to do dif-
ferently in the new year: Be more active, eat better, get 
out more, spend more time using and contributing to 
your favorite operating system. I hope all of those, but 
especially that last one. Our sole purpose is to support 
the FreeBSD Project and community, and if you are 
reading this, you are part of our amazing community!

As I reflect on what we did to support FreeBSD in 
2023, I would like to share some of the highlights while 
pointing out areas we will focus on in 2024. We’ve set 
our sights high with some lofty goals, including:

• Improving the desktop experience, to make it eas-
ier for those wanting to use FreeBSD as their daily 
driver or even those who want to try out FreeBSD.

• Supporting specific features and technologies to ensure FreeBSD is the operating sys-
tem of choice when organizations are looking at options

• Increasing the visibility of FreeBSD to individuals and organizations, not only to inform 
them that FreeBSD is an option, but why they should choose FreeBSD.

I’d like to start out by expressing my gratitude to everyone in this remarkable commu-
nity for their support and contributions. Whether you write code, produce informative and 
engaging FreeBSD videos on YouTube, improve the documentation, support our infrastruc-
ture, submit bug reports or fix bugs, provide answers on Reddit, give FreeBSD presentations 
or represent FreeBSD at conferences, you are playing a crucial role in advancing FreeBSD. 
Thank you all.

At the end of last year, we published blog posts highlighting the main areas we support. 
In my recap, I’m summarizing those highlights for you while providing links so you can read 
in more depth the topics you are more interested in.

Grab some coffee, tea, Kombucha or a beer, sit back, and continue reading to see some 
of the highlights of how we supported FreeBSD this past year. I included links within each 
area to more detailed year-end reports.

Software Development Work to Improve FreeBSD
Did you know that over 60% of our budget is dedicated to funding software develop-

ment work to improve the operating system? This includes keeping a small staff of software 
developers who can quickly step in to fix bugs, review changes, and implement features and 

BY DEB GOODKIN

As I reflect on what we 
did to support FreeBSD in 
2023, I would like to share 
some of the highlights 
while pointing out areas  
we will focus on in 2024.

FreeBSD Foundation  
2023 Recap



64FreeBSD Journal • January/February 2024

functionality in FreeBSD. We also have a handful of contractors working on specific fund-
ed projects that align with our long-term goals and longer-term projects like supporting wifi 
and specific architectures. 

Key Highlights in this area include:
• Sponsored 1082 of the 7060 commits to the src repository.
• We heard you! We added the necessary resources to accelerate the wifi efforts by  

continuing to fund Bjoern and bringing on two more contractors to focus solely on  
this area.

• Imported OpenSSL v3 into our base system in preparation for FreeBSD 14.0 RELEASE
• Hired six students for summer internships! They had opportunities to make impactful 

contributions to FreeBSD, including areas like wifi, DTrace, Capsicum, and more. Our 
internship program highlights the incredible opportunity for students interested in 
systems programming to gain real-world skills while making significant contributions  
to FreeBSD.

Go here to learn more about our software development work and accomplishments: 
https://freebsdfoundation.org/blog/2023-in-review-software-development/

Advocating for FreeBSD and the Community
Part of our effort in supporting FreeBSD is ensuring the Project gets the visibility it needs 

and deserves. We are here to be a lighthouse for this 30+ year-old project that continues 
to grow and innovate while recruiting others to do the same.  We do this by promoting 
FreeBSD at computing and open source conferences worldwide, writing blogs and articles 
highlighting the benefits and features of FreeBSD, 
and producing the professionally published FreeBSD 
Journal filled with informative and interesting technical 
articles. 

Key highlights in this area include:
• Organizing, presenting, and sponsoring 16 events, 

including running Getting Started with FreeBSD 
workshops, resuming our Bay Area Vendor Summit 
at an amazing venue (provided by NetApp) with 
some incredible talks and organizing the BSDCan 
FreeBSD Developer Summit that included cele-
brating 30 years of FreeBSD (yes, there was cake!).

• Expanding the coverage of FreeBSD in the media 
by participating in interviews, writing articles, and 
working with a public relations firm. 

• Getting your input on FreeBSD. You have ideas, and we’re helping to get your voices 
heard. In partnership with the Core team, we produced an in-depth community survey 
to get your feedback and help inform how the Core Team and FreeBSD Foundation can 
better support you and FreeBSD going forward.

• Producing the FreeBSD Journal for 10 years! This is a major collaborative effort between 
the Foundation and FreeBSD community members who volunteer their time to help 
produce high-quality articles highlighting FreeBSD features and technologies.

• Creating How-to guides to help newer folks quickly get started with FreeBSD.
• Expanding our What is FreeBSD page so that it can better be used by individuals and 

2 of 5

Part of our effort in 
supporting FreeBSD  
is ensuring the Project  
gets the visibility it needs 
and deserves.

https://freebsdfoundation.org/blog/2023-in-review-software-development/
https://youtube.com/playlist?list=PLugwS7L7NMXzSalaF4l_78sfRa2l8xvag&feature=shared


65FreeBSD Journal • January/February 2024

companies as a resource to sell to their own leadership, vendors, and customers on the 
benefits of FreeBSD. We’re still fine tuning the content, but you can check it out here:  
https://freebsdfoundation.org/freebsd-project/what-is-freebsd/

Go here to learn more about how we’re advocating for FreeBSD and helping with com-
munity engagement: https://freebsdfoundation.org/blog/2023-in-review-advocacy/

Building and Strengthening Partnerships
This section could be called fundraising, but it’s so much more than that! Yes, we rely 

100% on donations, sponsorships, and grants to fund our work. However, we created a new 
role to work with our current and prospective partners. The role is not only about secur-
ing funding, but also educating them on the importance of contributing back and engag-
ing with the community. It’s about reminding them of why FreeBSD is or continues to be 
the right choice for their organization, and about the importance of shining a light (being 
a lighthouse) on their use of FreeBSD. We hired Greg Wallace in April to take on this role, 
bringing many years of open source, business, and marketing experience to concentrate on 
building and strengthening partnerships

Greg stepped into this role running, gently nudging us to accelerate our efforts in hiring 
more developers, producing more content, and connecting with more companies to under-
stand their use cases and challenges.

Key highlights in this area include:
• Identifying many dark users – companies using FreeBSD that we weren’t aware of
• Engagement by the numbers:

50 - Number of companies reached out to
33 - Number of companies talked to
05 - Number of companies with outstanding partnership proposals
11 - Total corporate partners 
03 - Total first-time corporate partners

• Identifying and applying for new grant opportunities to fund security efforts
• Participating and identifying government security guidelines and mandates to ensure 

our voice is included in these discussions, plus doing the due diligence that FreeBSD will 
incorporate these requirements to keep FreeBSD secure for the Project and partners. 

• Developing consistent messaging and pitches that are helping to inform companies 
why they should invest in and use FreeBSD - Just look at the # of companies with out-
standing partnership proposals above!

• Organizing and running the new Enterprise Working Group that has helped bring the 
community and enterprise customers together, identifying gaps and opportunities in 
FreeBSD, while providing opportunities for participants to get more involved in some of 
these areas.

And, Research too!
This new role also consists of a research component, which includes researching and 

identifying key markets for FreeBSD, emerging markets like AI and how FreeBSD fits in, and 
where we should invest to make the biggest impacts in FreeBSD.

Go here to learn more about what we did in partnerships and research and what some of 
our plans for 2024 are: https://freebsdfoundation.org/blog/2023-in-review-partnerships-and-
research/

3 of 5

https://freebsdfoundation.org/freebsd-project/what-is-freebsd/
https://freebsdfoundation.org/blog/2023-in-review-advocacy/
https://freebsdfoundation.org/blog/2023-in-review-partnerships-and-research/
https://freebsdfoundation.org/blog/2023-in-review-partnerships-and-research/


66FreeBSD Journal • January/February 2024

FreeBSD Infrastructure
We approved over $100,000 for a cluster refresh that began in 2023 and will carry over 

into this year by purchasing and shipping 15 new servers to a new NYI Chicago facility. We’re 
excited to collaborate with the clusteradm team to provide the funding, resources, and co-
ordination efforts to stand up the new hardware, taking advantage of NYI’s generous dona-
tion of 4 racks in their newer colocation facility. 

We have one staff member on the clusteradm team and another who helps facili-
tate the efforts between the team and the Foundation. Go here to learn more about 
how we’ve been supporting the Project’s infrastructure: https://freebsdfoundation.org/
blog/2023-in-review-infrastructure/

Continuous Integration
One full-time staff member is dedicated to improving the Project’s continuous integra-

tion system and test infrastructure. 
Some of the highlights include:
• Adding more testing jobs for ARM64 architectures 

like testing with Kernel Address Sanitizer and build-
ing tests for non-standard compilers like GCC 12 
and 13.

• Making great progress running the workflow work-
ing group, designing and implementing systems to 
support the pull-request based workflow.  

• Implementing Pre-commit CI changes that will be 
available soon!

• Publishing git hooks used for the Project’s git re-
pository and now producing semi-official release 
snapshots from the CI system. 

• Updating the “Tinderbox View” (https://tinderbox.
freebsd.org) of the CI result dashboard, which now 
provides more details of the test results and the possible breakage point.

Cloud Support
The Foundation also supports our full-time staff member’s efforts to work with the engi-

neers from Microsoft to help them implement support for new features in Azure and pro-
vide more FreeBSD features in Azure. This includes ARM64 VM support, Gen2 VM support 
and ZFS images provided. All these changes are included in 14.0-RELEASE and published to 
the Azure Marketplace.

Go here to learn more about how we’ve been supporting the Project’s testing and CI ef-
forts: https://freebsdfoundation.org/blog/continuous-integration-and-workflow-improve-
ment/

Legal
The Foundation owns the FreeBSD trademarks, and it is our responsibility to protect 

them. We review a handful of trademark permission requests per month and make sure our 
registrations haven’t expired. Go here https://freebsdfoundation.org/legal/trademark-us-
age-terms-and-conditions/ to find out more information about the FreeBSD trademarks. 

4 of 5

We approved over $100,000 
for a cluster refresh that 
began in 2023.

https://freebsdfoundation.org/blog/2023-in-review-infrastructure/
https://freebsdfoundation.org/blog/2023-in-review-infrastructure/
https://tinderbox.freebsd.org
https://tinderbox.freebsd.org
https://freebsdfoundation.org/blog/continuous-integration-and-workflow-improvement/
https://freebsdfoundation.org/blog/continuous-integration-and-workflow-improvement/
https://freebsdfoundation.org/legal/trademark-usage-terms-and-conditions/
https://freebsdfoundation.org/legal/trademark-usage-terms-and-conditions/


67FreeBSD Journal • January/February 2024

We also provide legal support for the core team to investigate questions that arise. We en-
gaged in multiple NDAs this year, which allows us to understand the commercial user’s 
FreeBSD needs.

Going Forward
We are excited about the future of FreeBSD and the increased interest in individuals and 

companies using our favorite open source operating system! We’ve identified areas within 
the Project, where we can make impactful investments to ensure FreeBSD is the operating 
system of choice going forward.

We are finalizing our 2024 plans, and will share them soon. But, here’s a little preview of 
what we are planning:

• Improving the desktop and developer experience
• Strengthening and increasing our partnerships
• Increasing the visibility of FreeBSD by providing more content and articles on the ben-

efits and features of FreeBSD, working with more companies to share their stories and 
use cases, and increasing media exposure. In a nutshell, getting the word out there 
about FreeBSD and why everyone should use it!

• Implementing key features to keep FreeBSD innovative and the platform of choice for 
commercial entities.

In a nutshell, we will be implementing soon-to-be-announced features and technologies 
in the operating system, and increasing the visibility of the Project, while continuing to inves-
tigate key markets and opportunities for FreeBSD. We’re also going to increase our advoca-
cy efforts, especially in the area of technical content, so watch for an announcement about 
that soon!

We’re looking forward to the opportunities ahead for FreeBSD and will continue and in-
crease our support. If you are a software developer looking for full-time or contract work, 
keep an eye on our jobs page https://freebsdfoundation.org/open-positions/. 

With the number of start-ups using FreeBSD, and companies switching to FreeBSD, the 
future truly looks bright for us! We will be here supporting the Project, community, and us-
ers to ensure FreeBSD stands out as a compelling choice for individuals and businesses.

DEB GOODKIN is the Executive Director of the FreeBSD Foundation. She’s thrilled to be in 
her 19th year at the Foundation and is proud of her hardworking and dedicated team. She 
spent over 20 years in the data storage industry in engineering development, applications 
engineering, and technical marketing. When not working, you’ll find her road or trail run-
ning, playing with her dogs, cycling the backroads of Colorado, or reading a good book.

5 of 5

https://freebsdfoundation.org/open-positions/


BSD Events taking place through May 2024 
BY ANNE DICKISON
Please send details of any FreeBSD related events or events  
that are of interest for FreeBSD users which are not listed here  
to freebsd-doc@FreeBSD.org.

68FreeBSD Journal • January/February  2024

SCALE 21X
March 14-17, 2024
Pasadena, CA
https://www.socallinuxexpo.org/scale/21x

SCaLE is the largest community-run open-source and free software conference in North 
America. It is held annually in the greater Los Angeles area. Drew Gurkowski will also be 
hosting a FreeBSD workshop during the conference.

AsiaBSDCon 2024
March 21-24, 2024
Taipei, Taiwan
https://2024.asiabsdcon.org/

AsiaBSDCon is for anyone developing, deploying and using systems based on FreeBSD, 
NetBSD, OpenBSD, DragonFlyBSD, Darwin and MacOS X. It is a technical conference and 
aims to collect the best technical papers and presentations available to ensure that the latest 
developments in our open source community are shared with the widest possible audience.

Save the Date: 
May 2024 FreeBSD Developer Summit
May 29-30, 2024
Ottawa, Canada

Join us for the May 2024 FreeBSD Developer Summit, co-located with BSDCan 2024, which 
will take place in Ottawa, Canada. The two-day event takes place May 29-30, 2023, and will 
consist of developer discussion sessions, vendor talks, and working groups. More information 
will be available in March 2024.

BSDCan 2024
May 29 - June 1,  2024
Ottawa, Canada
https://www.bsdcan.org/2024/

BSDCan is a technical conference for people working on and with BSD operating systems 
and related projects. It is a developers conference focusing on emerging technologies, 
research projects, and works in progress. It also features Userland infrastructure projects 
and invites contributions from both free software developers and those from commercial 
vendors.

mailto:freebsd-doc@FreeBSD.org
https://www.socallinuxexpo.org/scale/21x
https://2024.asiabsdcon.org/
https://www.bsdcan.org/2024/



