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After maintaining the FreeBSD UEFI boot loader for years at Netflix, our hardware de-
signer asked me to improve system booting resilience. After failing to find a solution 
with the stock UEFI firmware, I looked for alternatives. Most alternative firmwares boot 

the OS using a stripped-down Linux kernel, so I implemented LinuxBoot support for FreeBSD. 
I’ll describe how I did that, but first I’ll explain what LinuxBoot is, where it came from, what it 
does, and where it fits in. In a second article, I’ll describe the nuts and bolts of creating Linux-
Boot firmware images that boot FreeBSD.

Over the past five years a new variation on booting has matured and become popular. 
Spurred on by a desire to reduce the attack surface for the boot phase, Linux now boots Li-
nux. This seemingly awkward arrangement has advantages over traditional UEFI booting. 
Some new embedded environments offer only LinuxBoot. Facebook, Google, IBM, Micro-
soft, and Apple have supported these efforts to improve security, reduce boot complexity, 
and provide a common platform largely independent of underlying architecture. FreeBSD 
14.0 offers preliminary support for booting FreeBSD/
aarch64 and FreeBSD/amd64 with a new variation of /
boot/loader, called “loader.kboot,” which uses LinuxBoot.

(A note on terminology: I use “aarch64” and “amd64” 
because they are more visually distinct than “arm64” and 
“amd64,” which are easily confused.)

How We Got Here
Three major themes have led us to the point where 

LinuxBoot is gaining popularity: initial simplicity, uncon-
trolled growth, and a desire to return to a simpler time. 
All three themes have contributed to the complex booting ecosystems that have sprung 
up on both x86 and embedded systems. LinuxBoot attempts to simplify those ecosystems 
somewhat, though having the entire Linux kernel involved usually doesn’t make one imme-
diately think of simplicity.

In the days before the IBM PC, most systems either required a bootstrap to be entered 
manually or the automated boot ROMs were simple enough to load a boot sector and it 
would load the rest of the system with it. This process of using simple loaders to load progres-
sively more complex loaders is called “bootstrapping” the system, from the old saying “pulling 
yourself up by your own bootstraps.” In time, this was shortened to “booting” the system. 

In 1982, IBM’s release of the IBM PC only slightly improved on prior systems by providing 
both the bootstrapping code in its ROMs and other basic I/O. It called these services the 
BIOS from the term used by CP/M systems that preceded it. This is where we get the term 
“BIOS” and why there’s some confusion surrounding whether it means “the firmware used 
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to bootstrap the system” or whether it only refers to the pre-UEFI style of booting on the 
PC platform. Partisans of both stripes are sure they are right, but few recognize the history 
behind this ambiguity. So, I’ll use “CSM” or “CSM booting” to refer to this style of bootstrap. 
The UEFI Standard uses the term “CSM” to describe legacy booting, and it is unambiguous.

In time, all kinds of additional features were added to CSM booting: a partition table for 
disks, the MP Table for processor configuration, APM for power management, SMBIOS for 
metadata about the system, run time services for PCI, PXE network booting, and ACPI to 
unify many of the prior features. The interfaces for these services were tied to x86-specific 
mechanisms. The system evolved into a very complex ecosystem, riddled with quick hacks, 
special cases, and subtly different interpretations. 

When Intel designed the IA-64 CPU architecture in the late 1990s, it quickly discovered 
that the revolutionary architecture couldn’t use the vast majority of techniques from the 
CSM ecosystem. The whole booting ecosystem had to be replaced. This was the genesis of 
Unified Extensible Firmware Interface (UEFI) booting. At first, it was just on the Intel x86 (re-
branded IA-32) and IA-64 architectures. During the early 
2000s, UEFI firmware slowly displaced the legacy sys-
tems on Intel x86 systems, oftentimes being able to do 
either the old CSM booting or the new UEFI booting. By 
2006, Intel had released, via its TianoCore project, the 
EDK2 open source development kit for UEFI firmware 
creation, prompting even more OEMs to adopt UEFI.

Also, during the 1990s and 2000s, another booting 
ecosystem was evolving for embedded systems. Initially, 
the embedded space had dozens of different bootload-
ers, all subtly different in their interface to later stages 
of booting. Mangus Damm and Wolfgang Denk creat-
ed Das U-Boot in 1999, first for PowerPC but later ARM, 
MIPS, and other architectures. U-Boot started out small 
and simple, more flexible than its competitors, and rel-
atively easy to extend because it was open source. It 
quickly became the universal bootloader because of its 
simplicity, support, and rich feature set. It set the standard for booting, and drove many fea-
tures in Linux, including flattened device tree (FDT) support. This boot system had nothing 
in common with either CSM or UEFI. It was so easy to use that all its competitors have fad-
ed into obscurity. Where are redboot, eCos, CFE, yaboot, or YAMON today? Footnotes on a 
Wikipedia page at best.

In 2011, ARM introduced aarch64, its 64-bit version of the ARM platform. Both U-Boot 
and EDK2 vied for dominance to bootstrap the system, while FDT and ACPI vied for dom-
inance to enumerate system devices. Low-end, embedded systems tended to use U-Boot 
with FDT, while higher-end, server-class systems used UEFI and ACPI. Eventually, UEFI boot-
ing started to win out, especially when U-Boot started to ship a minimal UEFI implementa-
tion sufficient to boot Linux via UEFI. ACPI and FDT merged (you can specify ACPI nodes 
now with FDT properties). And through it all, EDK2/UEFI grew more and more complex to 
support SecureBoot, iSCSI, more NICs, RAM disk support, initramfs support, and too many 
other features to list.
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And that doesn’t even count all the bootloaders using a stripped-down version of the Li-
nux kernel, such as coreboot, slimboot, LinuxBIOS, and others, some of which I’ll describe 
below. Nor does it begin to describe the variation between commercial BIOSes. By 2017, 
Google decided to do something about this situation and started project NERF to simplify 
this mess and harden security. The name stands for Non-Extensible Reduced Firmware, 
as opposed to UEFI’s Unified Extensible Firmware Interface. It is also slang from computer 
gaming for a change that downgrades the power or influence of a game element to achieve 
a better balance or improve enjoyment of the game. These efforts would later become  
LinuxBoot. 

Linux Booting
Booting Linux with Linux has a very long history, but space allows only a brief summary. In 

the mid-1990s, when the kexec(2) family of system calls was added to Linux, it was used to 
increase uptime and/or reliability of servers and embedded systems. Ron Minnich and Eric 
Biederman started LinuxBIOS at Los Alamos in the 1990s 
to use a Linux kernel in the Firmware to boot the sys-
tem. This evolved into coreboot, used by Chromebooks 
and several open platform laptops. In the process, core-
boot became modular to allow binary blobs alongside 
the open source components because CPU manufac-
turers have resisted opening up the early processor ini-
tialization code, providing only binary blobs to both open 
and closed source firmware creators. EDK2, U-Boot and 
closed-source firmware have also developed a modular 
system to allow these binary blobs to exist alongside oth-
er components.

Project NERF Becomes LinuxBoot
Google’s NERF project, headed by Ron Minnich, 

evolved into the LinuxBoot project: a series of scripts 
that help create firmware images that boot the final OS with the Linux kernel. The proj-
ect had several bigger-picture goals behind it, however. Google wanted to create an open 
source firmware where every component was freely available. They wanted to simplify the 
UEFI booting environment, which they felt had grown too complex with too many potential 
security vulnerabilities, by replacing it with the hardened Linux kernel. They wanted to create 
a common framework using widely deployed and reviewed code; minimize the unavoidable, 
binary-only, non-source portions of the bootloader; unify booting for the ARM and other 
embedded systems as much as possible; eliminate redundant code, speeding the boot; and 
create a more modular and customizable boot experience than traditional firmware or even 
EDK2 provided. They wanted a reproducible build, which ensures anybody can run the exact 
same binary whether they download it or build it themselves.

The result was a modular system that supported many bootloaders. The earliest stages 
of initializing the CPU were handled by CPU-specific and bootloader-specific code. Linux-
Boot defined what parts of the system were initialized there and which parts were deferred 
to the Linux kernel. This setup allowed CPU vendors to continue to ship binary-only blobs 
that initialized the low-level clocks, memory controllers, auxiliary cores, etc. that a modern 
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CPU needs to become functional. EDK2, coreboot, U-Boot, and slim boot all support these 
protocols, so the Linux kernel boots with all of them, without special code for any of them. 
LinuxBoot also provided u-root, a ramfs builder written in go for finding and loading the fi-
nal and a few other tools to manipulate firmware images. I’ll discuss these tools and how to 
use them in the second part of this article.

 
SPI Flash

Source: https://www.linuxboot.org

While not completely successful at replacing the entire bootloader with Linux, LinuxBoot 
minimized the amount retained. For example, with UEFI, only the Pre-EFI Initialization (PEI) 
phase initializing the processor, caches, and RAM, and UEFI’s runtime services remained.  
LinuxBoot eliminated all of the thinly tested UEFI DEX drivers. The Linux kernel takes over 
with the memory and base hardware initialized, but without any of the other things that a 
more traditional firmware might initialize, like resources for PCI devices.

In addition to better security and more control over the firmware, LinuxBoot uses the 
well-tested, highly reviewed Linux drivers required for Linux to run on the platform. With Li-
nuxBoot, SOC vendors and system integrators can optimize their time to market by writ-
ing drivers only for Linux. UEFI DEX drivers need not be created at all. Programmers with 
Linux driver skills are much easier to find than those who can write a UEFI DEX driver. The 
Linux kernel has been audited by thousands of researchers, compared to relatively few who 
have studied the EDK2 UEFI code base. These advantages, however, require other operat-
ing systems supporting UEFI to adapt. Their UEFI bootloaders do not work with the sliver of 
UEFI that remains. This means that to boot at all on these systems, an OS must create a new 
loader to support LinuxBoot.

Some simpler operating systems boot with LinuxBoot using the basic ELF loading that 
Linux’s kexec-tools package has to offer. Very old versions of BSD and Plan9 have been 
booted this way. FreeBSD/powerpc, which runs on a processor from a simpler time with a 
well-defined OpenFirmware interface, also loads this way. Windows, however, cannot boot 
this way, and the LinuxBoot community is researching ways around it. FreeBSD/amd64 and 
FreeBSD/aarch64 cannot boot this way either.

FreeBSD kernels for amd64 and aarch64 require metadata available only to the boot-
loader. On amd64, the bootloader sets the system into long mode after capturing informa-
tion about the system’s memory layout and other data, which can only be accessed before 
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entering long mode. The kernel relies on this data and cannot operate without it. On both 
amd64 and aarch64, the bootloader has to inform the kernel of the address of the UEFI sys-
tem table and other system data. The bootloader tunes the kernel by setting “tuneables.” 
The loader pre-loads dynamic kernel modules and passes things like initial entropy, UUID, 
etc. into the kernel. None of this specialized knowledge is present in the kexec-tools that can 
only load an ELF binary and jump to its start address.

FreeBSD and LinuxBoot
FreeBSD’s history with booting via Linux goes back over a decade. In 2010, the FreeBSD 

PS/3 port used the PS/3’s “another OS” option to start. Nathan Whitehorn, a FreeBSD 
developer, added the necessary glue to the FreeBSD bootloader to set up memory for 
FreeBSD’s kernel. He created a small Linux binary similar 
to Ubuntu’s kboot from their PS/3 support package. This 
Linux binary was statically linked and included the few 
system calls needed to read the FreeBSD kernel off the 
PS/3 disk. It included a small libc (similar to mucl or glibc) 
and command line parsing support. However, the struc-
ture of its sources assumed only PowerPC.

While working at Netflix, I began experimenting 
in 2020 to see how hard it would be to boot FreeBSD 
with Linux. Netflix runs a large fleet of servers installed 
throughout the world. Through years of constant refine-
ment, Netflix created a very robust system that corrects 
common problems automatically. Even after these re-
finements, booting issues caused too many costly RMAs. 
Experiments using UEFI scripting to improve boot-time reliability provided only marginal 
improvements. Because flash drives contained the scripts, only a few trivial cases improved. 
Flash drives can fail read-only, confusing both the UEFI firmware and the scripts into doing 
the wrong thing. As long as the scripts remained on the drives, progress was impossible.

LinuxBoot offered an attractive alternative to UEFI because it resided inside the firmware 
on the motherboard, eliminating the components most prone to failure. Netflix wanted me 
to create a fail-safe environment that could phone home status information about the ma-
chine, reprovision the machine using surviving NVMe drives, and provide a flexible platform 
to enable remote debugging, diagnostic images, etc.

I had several goals with booting FreeBSD from Linux:
1.	 It had to be built within the FreeBSD build system.
2.	 It had to provide full access to host resources.
3.	 It had to boot with a stock kernel (if possible).
4.	 It had to use the UEFI boot interface (i386 CMS booting, and arm U-Boot binary 

booting would not be supported).
5.	 It had to run as init/PID 1.
6.	 It also had to run well when called from shell scripts to support booting different kinds 

of images not necessarily based on FreeBSD.
Getting FreeBSD booting from Linux on modern architectures like amd64 and aarch64 

required several changes to the relatively modest PS/3 kboot base. The loader needed four 
types of changes: refactoring the existing kboot following the MI/MD model, expanding 
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support for accessing host resources, refactoring UEFI boot code to be used by both 
the UEFI loader.efi and the LinuxBoot loader.kboot, and retiring technical debt within the 
bootloader.

MI/MD Changes
Several areas needed the classic MI/MD split where common MI code interfaces with 

per-architecture MD code that implements a common API. Linux has a much larger differ-
ence in system calls between architectures than FreeBSD. Program startup needs slight-
ly different assembler glue between architectures. Different linker scripts are needed. The 
loader metadata, while mostly similar, has architectural differences. Finally, the handoff from 
the Linux kexec reboot vector to the kernel differs. I’ll cover these last two below in the Re-
factoring UEFI Booting section.

The first three of these changes are needed to create Linux binaries. To create static bi-
naries, I wrote the C runtime support that provides the glue between the Linux kernel hand-
off and a more traditional main routine. I wrote a bit of per-architecture assembly, coupled 
with a standard startup routine that calls main. To accomplish this a standard C interface 
to the system calls allowed the MD part of FreeBSD’s mini libc for Linux to be small. I creat-
ed a small amount of per-architecture assembler for system calls. I added a framework for 
Linux’s per-architecture ABI differences, the largest being in the termios interface. This re-
flects Linux’s complicated history of binary compatibility. A per-architecture linker script pro-
duces a Linux ELF binary. These elements combine to make loader.kboot, Linux ELF binary. 
The new libsa drivers (see below) interface to this libc.

Accessing Host Resources
The original loader.kboot code accessed some host resources, but it was incomplete. I 

wanted to boot either off of a raw device, or via a kernel or loader residing in the filesys-
tem of the host system. The bootloader has always supported a number of different ways 
to specify where files come from but before refactoring, adding new one was hard. With 
some changes to refactor the existing code, I added the ability to access any block device 
from its Linux name. The name “/dev/sda4:/boot/loader” reads the file /boot/loader that’s 
within the fourth partition on the sda disk, for example. In addition, “lsdev” now lists all of 
the eligible Linux block devices. The bootloader discovers zpools. For example, “zfs:zroot/
kboot-example/boot/kernel” specifies a kernel to boot. Finally, it can be convenient to put 
the kernel and/or bootloader directly in the Linux initrd. The bootloader itself uses this fea-
ture to get necessary data from the /sys and /proc filesystems. Any mounted filesystem can 
be accessed with “host:<path-to-file>”. So, you could boot from “host:/freebsd/boot/kernel” 
or read the Linux memory usage with “more host:/proc/iomem.” The loader also supports 
mapping the “/sys/” or “/proc/” prefixes to the host’s /sys and /proc filesystems, regardless of 
active device.

Loader.kboot can replace /sbin/init inside the Linux initrd. Init is the first program to run 
and must do extra steps to prepare the system. Loader.kboot will notice when it is running 
as init and do these extra steps before starting: mounting all the initial filesystems (/dev, /sys, 
/proc, /tmp, /var), creating a number of expected symbolic links, and opening stdin, stdout 
and stderr. The loader runs either in this environment or as a process launched from one of 
the standard Linux startup scripts. At present, loader.kboot is unable to fork and execute  
Linux commands.
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Refactoring UEFI Booting
Reflecting the long history of booting in general, FreeBSD’s boot process had co-evolved 

with its kernel for the past 30 years in the case of amd64 and for the past 20 years or so in 
the case of aarch64. Neither of these architectures has been around for this entire time, of 
course, but amd64 inherited many of the idiosyncrasies of i386, and aarch64’s boot, while 
vastly cleaner, is the product of 20 years of embedded FreeBSD systems. To boot success-
fully in this complex environment, loader.kboot needed to recreate all these quirks. It follows 
the UEFI protocols by creating the same metadata structures that loader.efi, our UEFI boot-
loader, creates.

These efforts started with amd64 since it was more 
readily available for experimentation. I selected the UEFI 
+ ACPI boot environment to emulate. UEFI was the 
newer, more flexible interface and seemed to have few-
er special cases. While theoretically the FreeBSD ker-
nel could boot from either UEFI or CSM and not know 
which one it booted from, the practical reality differed. 
The kernel expected to get UEFI-derived data in certain 
ways, and BIOS-derived data in slightly different ways. 
It became clear early on that trying to support both 
was limiting progress as oftentimes two different paths 
needed to be written and debugged. Since UEFI will be 
with us for a long time (even though with LinuxBoot only 
a tiny sliver of UEFI survives), and CSM might not be, I 
decided to limit my support to UEFI on amd64.

Despite this simplification, progress was still too slow 
as I had to discover via trial and error all the quirks the 
amd64 kernel depended on from the bootloader. Fel-
low FreeBSD developer Mark Johnston suggested that 
aarch64 would be easier to get working, since that had 
a simpler set of interfaces. This proved to be true. Once I had the basic translation from the 
UEFI data structures to FreeBSD’s loader metadata working, I got much further booting 
aarch64. There were only a couple of bugs that I will talk about later. I’m planning on getting 
amd64 working next now that aarch64 works.

The loader needs a few hundred lines of code to set up the metadata from UEFI. This 
code, unsurprisingly, expects to run in a UEFI runtime. It allocates memory using UEFI APIs, 
gets memory information from UEFI, and fetches the ACPI tables in ways specific to UEFI. 
I needed to refactor this code so that it could create the proper metadata structures from 
the /sys and /proc filesystems on Linux. In addition, Linux provides both FDT and ACPI data 
with device descriptions in ACPI only. This tricked FreeBSD into thinking no devices are pres-
ent, however, since it favored FDT for device enumeration when both are present. Linux 
only provides data necessary to do another kexec via FDT, but no device data.

In addition to the normal UEFI data structures and booting, after the kexec, Linux leaves 
the hardware in a state subtly different from either a cold or warm boot from the firmware. 
So the system is not quite in a fully reset state. Normally, this doesn’t matter—we can boot 
from that state and put all hardware into its correct state. But there were problems. 
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UEFI Boot Services was my first problem. When Linux exits UEFI’s “boot services,” it cre-
ates memory mappings where the virtual address (VA) does not match the physical address 
(PA). FreeBSD’s loader.efi always creates 1:1 mappings where PA is equal to VA (so called PA = 
VA). Since the memory mapping may only be set once, FreeBSD’s kernel must use the map 
Linux creates. The kernel would panic because the mapping was not PA = VA. Fortunately, 
the panics were due to restrictive assertions left over from debugging loader.efi. Removing 
the assertions exposed a bug where PA was used instead of VA, but the kernel booted after 
I fixed that bug.

The second problem I encountered was the “gicv3“ issue, where “almost reset” coupled 
with a device erratum spelled big trouble. There is a design flaw with the gicv3 interrupt 
router: once it has been started (and Linux starts it fully when booting), it can’t be stopped 
short of a full system reset and initialization (which kexec 
cannot do). To work around this problem, the FreeBSD 
kernel had to reuse this memory. Linux passes the gicv3 
state data via the UEFI system table structure. This ta-
ble contains a list of physical addresses reserved for 
gicv3 use. FreeBSD parses this table, ensures it matches 
what the gicv3 is using, and marks them as reserved so 
FreeBSD’s memory allocation code doesn’t hand them 
out. Everything worked with QEMU; however, when we 
tried to run in an aarch64 machine, I was very surprised 
to discover this problem. Thankfully, the Linux communi-
ty had previously discovered this problem and had a set 
of patches that I could use to fix FreeBSD in a similar way.

Retiring Technical Debt
One not so surprising thing that I discovered during 

this project was that the bootloader had a lot of cop-
ied and pasted code to implement path and device 
name parsing. Copies of this code differed in non-ob-
vious ways. Sometimes the changes were bug fixes, but 
software archaeology showed other copies retained 
the bugs. Other times, new bugs were introduced in 
the copies. It’s understandable that this would be the fate of the loader. When porting to a 
new platform, it’s easy just to copy code from a working loader and tweak it a little for the 
new environment. Little thought was given to the long-term effects of lack of refactoring. 
Once the loader could boot a kernel, why spend more time on the loader? Turns out that 
this strategy and these attitudes were harmful. The filename parsing code, for example, had 
been copied from environment to environment so that there were about 10 copies when 
I started. A common routine was needed for them all—well, all but one, which had a legiti-
mate reason for differing since its device specification varied from the usual “diskXpY:” used 
elsewhere. Bugs in parsing led me to refactor all this code into one location (so I could fix 
bugs once). This allowed the novel use of “/dev/XXXX” to work for the “device name” when 
accessing raw devices. It also lets “host” prefix work without needing a unit number. The 
loader’s filename parser is way more flexible than I’d ever known.
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Conclusion
Adapting the FreeBSD bootloader and kernel to boot in this new environment proved to 

be straightforward. The large number of small tasks for Linux host integration, coupled with 
FreeBSD’s undocumented bootloader-to-kernel handoff, provided the biggest challenges 
for this phase of the project. The unexpected hardware erratum added to the excitement 
and caused the largest change needed to the kernel. With FreeBSD/aarch64 successful-
ly booting on real hardware, we can proceed to the next phase of the project: creating our 
own firmware and finding the remaining FreeBSD/amd64 bugs. Even with these limitations, 
we have used loader.kboot to download an installer ramdisk to provision a system and re-
boot the result. It has also been incorporated into last summer’s loader continuous integra-
tion GSoC project.

Next Up
In the next article, we’ll create a LinuxBoot firmware image that boots FreeBSD. I’ll explain 

how firmware images are packaged, the tools used to create and manipulate them, and how 
to reflash your firmware images if you are brave enough. I’ll help you select the right tools 
from the many options Linux provides for creating an initrd, and give a sample script to find 
and boot your FreeBSD system. With luck, you’ll have a simpler, faster, more secure firm-
ware by the end.

WARNER LOSH has been contributing to the FreeBSD project for many years. He’s con-
tributed many features and fixes to the bootloader. His interest in Unix history extends to 
how bootstrapping evolved alongside Unix and its many derivatives. He lives in Colorado 
with his wife Lindy, who loves drawing cats and dogs, and his daughter, who plays an assort-
ment of brass instruments. He can often be found walking dachshunds.
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