
November/December 2023

Linux Boot: Booting into
FreeBSD from Linux

FreeBSD Container Images

Kick Me Now with Webhooks

Trip Report: Oslo Hackathon
Interview: Joel Bodenmann

FreeBSD 14.0

Nov/Dec 2019 57

November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2024 Editorial Calendar
• Networking

(January-February)

• Development Workflow and CI (March-April)

• Configuration Management Showdown

(May-June)

• Storage and File Systems (July-August)

• To come (September-October)

• To come (November-December)

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
 John Baldwin • Member of the FreeBSD Core Team and
 Chair of FreeBSD Journal Editorial Board

 Tom Jones • FreeBSD Developer, Internet Engineer
 and Researcher at the University of
 Aberdeen

 Ed Maste • Senior Director of Technology,
 FreeBSD Foundation and Member
 of the FreeBSD Core Team

 Benedict Reuschling • FreeBSD Documentation Committer
 and Member of the FreeBSD Core Team

 Mariusz Zaborski • FreeBSD Developer

Advisory Board
 Anne Dickison • Marketing Director, FreeBSD Foundation

 Justin Gibbs • Founder of the FreeBSD Foundation,
 President and Treasurer of the FreeBSD
 Foundation Board

 Allan Jude • CTO at Klara Inc., the global FreeBSD
 Professional Services and Support
 company

 Dru Lavigne • Author of BSD Hacks and
 The Best of FreeBSD Basics

 Michael W Lucas • Author of more than 40 books including
 Absolute FreeBSD, the FreeBSD
 Mastery series, and git commit murder

 Kirk McKusick • Lead author of The Design and
 Implementation book series

 George Neville-Neil • Past President of the FreeBSD Foundation
 Board, and co-author of The Design
 and Implementation of the FreeBSD
 Operating System

 Hiroki Sato • Director of the FreeBSD Foundation
 Board, Chair of AsiaBSDCon,
 and Assistant Professor at Tokyo
 Institute of Technology

 Robert N. M. Watson • Director of the FreeBSD Foundation
 Board, Founder of the TrustedBSD
 Project, and University Senior Lecturer
 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

 Editor-at-Large • James Maurer
 maurer.jim@gmail.com

 Design & Production • Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2023 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written per-

mission from the publisher.

3FreeBSD Journal • September/October 2023

A New Release is On the Way!
Welcome to the September/October issue. As I

write this, FreeBSD is putting the finishing touches
on its next major release: 14.0. Stay tuned, as articles
in the November/December issue will cover many of
14.0’s exciting new features.

In the meantime, the current issue provides some
great reading while you’re waiting for 14.0 to hit a CDN
server near you.

Tom Jones continues with his column aptly named
“Recollections.” In this installment, Tom interviews
Warner Losh, a long-time FreeBSD contributor and
famous for melting laptops--among other stories.

Benedict Reuschling provides readers with a
detailed walkthrough of using poudriere(8) to build
local packages--from setting custom options to
deploying signed package repositories to multiple
client machines. Also, on the packages front, Charlie Li
presents a brief history of packaging extensions in the
Python ecosystem and the work to adapt FreeBSD’s
ports tree to the most recent iteration.

To add jails to the mix, Alonso Cárdenas details the
use of FreeBSD jails as the basis for a cybersecurity
training platform using the existing open source tools
Wazuh and Caldera.

One of the great things about the FreeBSD
community is meeting up with members at events
around the world. This issue contains a trip report
from CCCamp 2023 and the November/December
issue will highlight a report from EuroBSDCon 2023.

We enjoy hearing from readers and benefit from
your communications with us. If you have feedback on
published articles, suggested topics for future articles,
or would like to write for the Journal, please email us at
info@freebsdjournal.com.

John Baldwin
Chair of FreeBSD Journal Editorial Board

mailto:info@freebsdjournal.com

FreeBSD 14.0

4FreeBSD Journal • November/December 2023

November/December 2023

 5 Linux Boot:
Booting into FreeBSD from Linux

 By Warner Losh

 14 FreeBSD Container Images
 By Doug Rabson

 19 Kick Me Now with Webhooks
 By Dave Cottlehuber

 31 Trip Report: Oslo Hackathon
 By Tom Jones and Trenton Schultz

 36 Interview: New Ports Committer:
Joel Bodenmann

 By Tom Jones

 3 Foundation Letter
By John Baldwin

 39 We Get Letters: The .0 Release
 is a Metaphorical Tire Change

By Michael W Lucas

 42 Events Calendar
By Anne Dickison

5FreeBSD Journal • November/December 2023

1 of 9

After maintaining the FreeBSD UEFI boot loader for years at Netflix, our hardware de-
signer asked me to improve system booting resilience. After failing to find a solution
with the stock UEFI firmware, I looked for alternatives. Most alternative firmwares boot

the OS using a stripped-down Linux kernel, so I implemented LinuxBoot support for FreeBSD.
I’ll describe how I did that, but first I’ll explain what LinuxBoot is, where it came from, what it
does, and where it fits in. In a second article, I’ll describe the nuts and bolts of creating Linux-
Boot firmware images that boot FreeBSD.

Over the past five years a new variation on booting has matured and become popular.
Spurred on by a desire to reduce the attack surface for the boot phase, Linux now boots Li-
nux. This seemingly awkward arrangement has advantages over traditional UEFI booting.
Some new embedded environments offer only LinuxBoot. Facebook, Google, IBM, Micro-
soft, and Apple have supported these efforts to improve security, reduce boot complexity,
and provide a common platform largely independent of underlying architecture. FreeBSD
14.0 offers preliminary support for booting FreeBSD/
aarch64 and FreeBSD/amd64 with a new variation of /
boot/loader, called “loader.kboot,” which uses LinuxBoot.

(A note on terminology: I use “aarch64” and “amd64”
because they are more visually distinct than “arm64” and
“amd64,” which are easily confused.)

How We Got Here
Three major themes have led us to the point where

LinuxBoot is gaining popularity: initial simplicity, uncon-
trolled growth, and a desire to return to a simpler time.
All three themes have contributed to the complex booting ecosystems that have sprung
up on both x86 and embedded systems. LinuxBoot attempts to simplify those ecosystems
somewhat, though having the entire Linux kernel involved usually doesn’t make one imme-
diately think of simplicity.

In the days before the IBM PC, most systems either required a bootstrap to be entered
manually or the automated boot ROMs were simple enough to load a boot sector and it
would load the rest of the system with it. This process of using simple loaders to load progres-
sively more complex loaders is called “bootstrapping” the system, from the old saying “pulling
yourself up by your own bootstraps.” In time, this was shortened to “booting” the system.

In 1982, IBM’s release of the IBM PC only slightly improved on prior systems by providing
both the bootstrapping code in its ROMs and other basic I/O. It called these services the
BIOS from the term used by CP/M systems that preceded it. This is where we get the term
“BIOS” and why there’s some confusion surrounding whether it means “the firmware used

BY WARNER LOSH

Three major themes
have led us to the point
where LinuxBoot
is gaining popularity.

LinuxBoot:
Booting FreeBSD from Linux

6FreeBSD Journal • November/December 2023

to bootstrap the system” or whether it only refers to the pre-UEFI style of booting on the
PC platform. Partisans of both stripes are sure they are right, but few recognize the history
behind this ambiguity. So, I’ll use “CSM” or “CSM booting” to refer to this style of bootstrap.
The UEFI Standard uses the term “CSM” to describe legacy booting, and it is unambiguous.

In time, all kinds of additional features were added to CSM booting: a partition table for
disks, the MP Table for processor configuration, APM for power management, SMBIOS for
metadata about the system, run time services for PCI, PXE network booting, and ACPI to
unify many of the prior features. The interfaces for these services were tied to x86-specific
mechanisms. The system evolved into a very complex ecosystem, riddled with quick hacks,
special cases, and subtly different interpretations.

When Intel designed the IA-64 CPU architecture in the late 1990s, it quickly discovered
that the revolutionary architecture couldn’t use the vast majority of techniques from the
CSM ecosystem. The whole booting ecosystem had to be replaced. This was the genesis of
Unified Extensible Firmware Interface (UEFI) booting. At first, it was just on the Intel x86 (re-
branded IA-32) and IA-64 architectures. During the early
2000s, UEFI firmware slowly displaced the legacy sys-
tems on Intel x86 systems, oftentimes being able to do
either the old CSM booting or the new UEFI booting. By
2006, Intel had released, via its TianoCore project, the
EDK2 open source development kit for UEFI firmware
creation, prompting even more OEMs to adopt UEFI.

Also, during the 1990s and 2000s, another booting
ecosystem was evolving for embedded systems. Initially,
the embedded space had dozens of different bootload-
ers, all subtly different in their interface to later stages
of booting. Mangus Damm and Wolfgang Denk creat-
ed Das U-Boot in 1999, first for PowerPC but later ARM,
MIPS, and other architectures. U-Boot started out small
and simple, more flexible than its competitors, and rel-
atively easy to extend because it was open source. It
quickly became the universal bootloader because of its
simplicity, support, and rich feature set. It set the standard for booting, and drove many fea-
tures in Linux, including flattened device tree (FDT) support. This boot system had nothing
in common with either CSM or UEFI. It was so easy to use that all its competitors have fad-
ed into obscurity. Where are redboot, eCos, CFE, yaboot, or YAMON today? Footnotes on a
Wikipedia page at best.

In 2011, ARM introduced aarch64, its 64-bit version of the ARM platform. Both U-Boot
and EDK2 vied for dominance to bootstrap the system, while FDT and ACPI vied for dom-
inance to enumerate system devices. Low-end, embedded systems tended to use U-Boot
with FDT, while higher-end, server-class systems used UEFI and ACPI. Eventually, UEFI boot-
ing started to win out, especially when U-Boot started to ship a minimal UEFI implementa-
tion sufficient to boot Linux via UEFI. ACPI and FDT merged (you can specify ACPI nodes
now with FDT properties). And through it all, EDK2/UEFI grew more and more complex to
support SecureBoot, iSCSI, more NICs, RAM disk support, initramfs support, and too many
other features to list.

2 of 9

In time, all kinds of
additional features were
added to CSM booting.

7FreeBSD Journal • November/December 2023

And that doesn’t even count all the bootloaders using a stripped-down version of the Li-
nux kernel, such as coreboot, slimboot, LinuxBIOS, and others, some of which I’ll describe
below. Nor does it begin to describe the variation between commercial BIOSes. By 2017,
Google decided to do something about this situation and started project NERF to simplify
this mess and harden security. The name stands for Non-Extensible Reduced Firmware,
as opposed to UEFI’s Unified Extensible Firmware Interface. It is also slang from computer
gaming for a change that downgrades the power or influence of a game element to achieve
a better balance or improve enjoyment of the game. These efforts would later become
LinuxBoot.

Linux Booting
Booting Linux with Linux has a very long history, but space allows only a brief summary. In

the mid-1990s, when the kexec(2) family of system calls was added to Linux, it was used to
increase uptime and/or reliability of servers and embedded systems. Ron Minnich and Eric
Biederman started LinuxBIOS at Los Alamos in the 1990s
to use a Linux kernel in the Firmware to boot the sys-
tem. This evolved into coreboot, used by Chromebooks
and several open platform laptops. In the process, core-
boot became modular to allow binary blobs alongside
the open source components because CPU manufac-
turers have resisted opening up the early processor ini-
tialization code, providing only binary blobs to both open
and closed source firmware creators. EDK2, U-Boot and
closed-source firmware have also developed a modular
system to allow these binary blobs to exist alongside oth-
er components.

Project NERF Becomes LinuxBoot
Google’s NERF project, headed by Ron Minnich,

evolved into the LinuxBoot project: a series of scripts
that help create firmware images that boot the final OS with the Linux kernel. The proj-
ect had several bigger-picture goals behind it, however. Google wanted to create an open
source firmware where every component was freely available. They wanted to simplify the
UEFI booting environment, which they felt had grown too complex with too many potential
security vulnerabilities, by replacing it with the hardened Linux kernel. They wanted to create
a common framework using widely deployed and reviewed code; minimize the unavoidable,
binary-only, non-source portions of the bootloader; unify booting for the ARM and other
embedded systems as much as possible; eliminate redundant code, speeding the boot; and
create a more modular and customizable boot experience than traditional firmware or even
EDK2 provided. They wanted a reproducible build, which ensures anybody can run the exact
same binary whether they download it or build it themselves.

The result was a modular system that supported many bootloaders. The earliest stages
of initializing the CPU were handled by CPU-specific and bootloader-specific code. Linux-
Boot defined what parts of the system were initialized there and which parts were deferred
to the Linux kernel. This setup allowed CPU vendors to continue to ship binary-only blobs
that initialized the low-level clocks, memory controllers, auxiliary cores, etc. that a modern

3 of 9

They wanted to create
a common framework
using widely deployed
and reviewed code.

8FreeBSD Journal • November/December 2023

CPU needs to become functional. EDK2, coreboot, U-Boot, and slim boot all support these
protocols, so the Linux kernel boots with all of them, without special code for any of them.
LinuxBoot also provided u-root, a ramfs builder written in go for finding and loading the fi-
nal and a few other tools to manipulate firmware images. I’ll discuss these tools and how to
use them in the second part of this article.

SPI Flash

Source: https://www.linuxboot.org

While not completely successful at replacing the entire bootloader with Linux, LinuxBoot
minimized the amount retained. For example, with UEFI, only the Pre-EFI Initialization (PEI)
phase initializing the processor, caches, and RAM, and UEFI’s runtime services remained.
LinuxBoot eliminated all of the thinly tested UEFI DEX drivers. The Linux kernel takes over
with the memory and base hardware initialized, but without any of the other things that a
more traditional firmware might initialize, like resources for PCI devices.

In addition to better security and more control over the firmware, LinuxBoot uses the
well-tested, highly reviewed Linux drivers required for Linux to run on the platform. With Li-
nuxBoot, SOC vendors and system integrators can optimize their time to market by writ-
ing drivers only for Linux. UEFI DEX drivers need not be created at all. Programmers with
Linux driver skills are much easier to find than those who can write a UEFI DEX driver. The
Linux kernel has been audited by thousands of researchers, compared to relatively few who
have studied the EDK2 UEFI code base. These advantages, however, require other operat-
ing systems supporting UEFI to adapt. Their UEFI bootloaders do not work with the sliver of
UEFI that remains. This means that to boot at all on these systems, an OS must create a new
loader to support LinuxBoot.

Some simpler operating systems boot with LinuxBoot using the basic ELF loading that
Linux’s kexec-tools package has to offer. Very old versions of BSD and Plan9 have been
booted this way. FreeBSD/powerpc, which runs on a processor from a simpler time with a
well-defined OpenFirmware interface, also loads this way. Windows, however, cannot boot
this way, and the LinuxBoot community is researching ways around it. FreeBSD/amd64 and
FreeBSD/aarch64 cannot boot this way either.

FreeBSD kernels for amd64 and aarch64 require metadata available only to the boot-
loader. On amd64, the bootloader sets the system into long mode after capturing informa-
tion about the system’s memory layout and other data, which can only be accessed before

4 of 9

https://www.linuxboot.org

9FreeBSD Journal • November/December 2023

entering long mode. The kernel relies on this data and cannot operate without it. On both
amd64 and aarch64, the bootloader has to inform the kernel of the address of the UEFI sys-
tem table and other system data. The bootloader tunes the kernel by setting “tuneables.”
The loader pre-loads dynamic kernel modules and passes things like initial entropy, UUID,
etc. into the kernel. None of this specialized knowledge is present in the kexec-tools that can
only load an ELF binary and jump to its start address.

FreeBSD and LinuxBoot
FreeBSD’s history with booting via Linux goes back over a decade. In 2010, the FreeBSD

PS/3 port used the PS/3’s “another OS” option to start. Nathan Whitehorn, a FreeBSD
developer, added the necessary glue to the FreeBSD bootloader to set up memory for
FreeBSD’s kernel. He created a small Linux binary similar
to Ubuntu’s kboot from their PS/3 support package. This
Linux binary was statically linked and included the few
system calls needed to read the FreeBSD kernel off the
PS/3 disk. It included a small libc (similar to mucl or glibc)
and command line parsing support. However, the struc-
ture of its sources assumed only PowerPC.

While working at Netflix, I began experimenting
in 2020 to see how hard it would be to boot FreeBSD
with Linux. Netflix runs a large fleet of servers installed
throughout the world. Through years of constant refine-
ment, Netflix created a very robust system that corrects
common problems automatically. Even after these re-
finements, booting issues caused too many costly RMAs.
Experiments using UEFI scripting to improve boot-time reliability provided only marginal
improvements. Because flash drives contained the scripts, only a few trivial cases improved.
Flash drives can fail read-only, confusing both the UEFI firmware and the scripts into doing
the wrong thing. As long as the scripts remained on the drives, progress was impossible.

LinuxBoot offered an attractive alternative to UEFI because it resided inside the firmware
on the motherboard, eliminating the components most prone to failure. Netflix wanted me
to create a fail-safe environment that could phone home status information about the ma-
chine, reprovision the machine using surviving NVMe drives, and provide a flexible platform
to enable remote debugging, diagnostic images, etc.

I had several goals with booting FreeBSD from Linux:
1. It had to be built within the FreeBSD build system.
2. It had to provide full access to host resources.
3. It had to boot with a stock kernel (if possible).
4. It had to use the UEFI boot interface (i386 CMS booting, and arm U-Boot binary

booting would not be supported).
5. It had to run as init/PID 1.
6. It also had to run well when called from shell scripts to support booting different kinds

of images not necessarily based on FreeBSD.
Getting FreeBSD booting from Linux on modern architectures like amd64 and aarch64

required several changes to the relatively modest PS/3 kboot base. The loader needed four
types of changes: refactoring the existing kboot following the MI/MD model, expanding

5 of 9

Netflix began
experimenting in 2020
to see how hard it would
be to boot FreeBSD
with Linux.

10FreeBSD Journal • November/December 2023

support for accessing host resources, refactoring UEFI boot code to be used by both
the UEFI loader.efi and the LinuxBoot loader.kboot, and retiring technical debt within the
bootloader.

MI/MD Changes
Several areas needed the classic MI/MD split where common MI code interfaces with

per-architecture MD code that implements a common API. Linux has a much larger differ-
ence in system calls between architectures than FreeBSD. Program startup needs slight-
ly different assembler glue between architectures. Different linker scripts are needed. The
loader metadata, while mostly similar, has architectural differences. Finally, the handoff from
the Linux kexec reboot vector to the kernel differs. I’ll cover these last two below in the Re-
factoring UEFI Booting section.

The first three of these changes are needed to create Linux binaries. To create static bi-
naries, I wrote the C runtime support that provides the glue between the Linux kernel hand-
off and a more traditional main routine. I wrote a bit of per-architecture assembly, coupled
with a standard startup routine that calls main. To accomplish this a standard C interface
to the system calls allowed the MD part of FreeBSD’s mini libc for Linux to be small. I creat-
ed a small amount of per-architecture assembler for system calls. I added a framework for
Linux’s per-architecture ABI differences, the largest being in the termios interface. This re-
flects Linux’s complicated history of binary compatibility. A per-architecture linker script pro-
duces a Linux ELF binary. These elements combine to make loader.kboot, Linux ELF binary.
The new libsa drivers (see below) interface to this libc.

Accessing Host Resources
The original loader.kboot code accessed some host resources, but it was incomplete. I

wanted to boot either off of a raw device, or via a kernel or loader residing in the filesys-
tem of the host system. The bootloader has always supported a number of different ways
to specify where files come from but before refactoring, adding new one was hard. With
some changes to refactor the existing code, I added the ability to access any block device
from its Linux name. The name “/dev/sda4:/boot/loader” reads the file /boot/loader that’s
within the fourth partition on the sda disk, for example. In addition, “lsdev” now lists all of
the eligible Linux block devices. The bootloader discovers zpools. For example, “zfs:zroot/
kboot-example/boot/kernel” specifies a kernel to boot. Finally, it can be convenient to put
the kernel and/or bootloader directly in the Linux initrd. The bootloader itself uses this fea-
ture to get necessary data from the /sys and /proc filesystems. Any mounted filesystem can
be accessed with “host:<path-to-file>”. So, you could boot from “host:/freebsd/boot/kernel”
or read the Linux memory usage with “more host:/proc/iomem.” The loader also supports
mapping the “/sys/” or “/proc/” prefixes to the host’s /sys and /proc filesystems, regardless of
active device.

Loader.kboot can replace /sbin/init inside the Linux initrd. Init is the first program to run
and must do extra steps to prepare the system. Loader.kboot will notice when it is running
as init and do these extra steps before starting: mounting all the initial filesystems (/dev, /sys,
/proc, /tmp, /var), creating a number of expected symbolic links, and opening stdin, stdout
and stderr. The loader runs either in this environment or as a process launched from one of
the standard Linux startup scripts. At present, loader.kboot is unable to fork and execute
Linux commands.

6 of 9

11FreeBSD Journal • November/December 2023

Refactoring UEFI Booting
Reflecting the long history of booting in general, FreeBSD’s boot process had co-evolved

with its kernel for the past 30 years in the case of amd64 and for the past 20 years or so in
the case of aarch64. Neither of these architectures has been around for this entire time, of
course, but amd64 inherited many of the idiosyncrasies of i386, and aarch64’s boot, while
vastly cleaner, is the product of 20 years of embedded FreeBSD systems. To boot success-
fully in this complex environment, loader.kboot needed to recreate all these quirks. It follows
the UEFI protocols by creating the same metadata structures that loader.efi, our UEFI boot-
loader, creates.

These efforts started with amd64 since it was more
readily available for experimentation. I selected the UEFI
+ ACPI boot environment to emulate. UEFI was the
newer, more flexible interface and seemed to have few-
er special cases. While theoretically the FreeBSD ker-
nel could boot from either UEFI or CSM and not know
which one it booted from, the practical reality differed.
The kernel expected to get UEFI-derived data in certain
ways, and BIOS-derived data in slightly different ways.
It became clear early on that trying to support both
was limiting progress as oftentimes two different paths
needed to be written and debugged. Since UEFI will be
with us for a long time (even though with LinuxBoot only
a tiny sliver of UEFI survives), and CSM might not be, I
decided to limit my support to UEFI on amd64.

Despite this simplification, progress was still too slow
as I had to discover via trial and error all the quirks the
amd64 kernel depended on from the bootloader. Fel-
low FreeBSD developer Mark Johnston suggested that
aarch64 would be easier to get working, since that had
a simpler set of interfaces. This proved to be true. Once I had the basic translation from the
UEFI data structures to FreeBSD’s loader metadata working, I got much further booting
aarch64. There were only a couple of bugs that I will talk about later. I’m planning on getting
amd64 working next now that aarch64 works.

The loader needs a few hundred lines of code to set up the metadata from UEFI. This
code, unsurprisingly, expects to run in a UEFI runtime. It allocates memory using UEFI APIs,
gets memory information from UEFI, and fetches the ACPI tables in ways specific to UEFI.
I needed to refactor this code so that it could create the proper metadata structures from
the /sys and /proc filesystems on Linux. In addition, Linux provides both FDT and ACPI data
with device descriptions in ACPI only. This tricked FreeBSD into thinking no devices are pres-
ent, however, since it favored FDT for device enumeration when both are present. Linux
only provides data necessary to do another kexec via FDT, but no device data.

In addition to the normal UEFI data structures and booting, after the kexec, Linux leaves
the hardware in a state subtly different from either a cold or warm boot from the firmware.
So the system is not quite in a fully reset state. Normally, this doesn’t matter—we can boot
from that state and put all hardware into its correct state. But there were problems.

7 of 9

The efforts started with
amd64 since it was more
readily available for
experimentation.

12FreeBSD Journal • November/December 2023

UEFI Boot Services was my first problem. When Linux exits UEFI’s “boot services,” it cre-
ates memory mappings where the virtual address (VA) does not match the physical address
(PA). FreeBSD’s loader.efi always creates 1:1 mappings where PA is equal to VA (so called PA =
VA). Since the memory mapping may only be set once, FreeBSD’s kernel must use the map
Linux creates. The kernel would panic because the mapping was not PA = VA. Fortunately,
the panics were due to restrictive assertions left over from debugging loader.efi. Removing
the assertions exposed a bug where PA was used instead of VA, but the kernel booted after
I fixed that bug.

The second problem I encountered was the “gicv3“ issue, where “almost reset” coupled
with a device erratum spelled big trouble. There is a design flaw with the gicv3 interrupt
router: once it has been started (and Linux starts it fully when booting), it can’t be stopped
short of a full system reset and initialization (which kexec
cannot do). To work around this problem, the FreeBSD
kernel had to reuse this memory. Linux passes the gicv3
state data via the UEFI system table structure. This ta-
ble contains a list of physical addresses reserved for
gicv3 use. FreeBSD parses this table, ensures it matches
what the gicv3 is using, and marks them as reserved so
FreeBSD’s memory allocation code doesn’t hand them
out. Everything worked with QEMU; however, when we
tried to run in an aarch64 machine, I was very surprised
to discover this problem. Thankfully, the Linux communi-
ty had previously discovered this problem and had a set
of patches that I could use to fix FreeBSD in a similar way.

Retiring Technical Debt
One not so surprising thing that I discovered during

this project was that the bootloader had a lot of cop-
ied and pasted code to implement path and device
name parsing. Copies of this code differed in non-ob-
vious ways. Sometimes the changes were bug fixes, but
software archaeology showed other copies retained
the bugs. Other times, new bugs were introduced in
the copies. It’s understandable that this would be the fate of the loader. When porting to a
new platform, it’s easy just to copy code from a working loader and tweak it a little for the
new environment. Little thought was given to the long-term effects of lack of refactoring.
Once the loader could boot a kernel, why spend more time on the loader? Turns out that
this strategy and these attitudes were harmful. The filename parsing code, for example, had
been copied from environment to environment so that there were about 10 copies when
I started. A common routine was needed for them all—well, all but one, which had a legiti-
mate reason for differing since its device specification varied from the usual “diskXpY:” used
elsewhere. Bugs in parsing led me to refactor all this code into one location (so I could fix
bugs once). This allowed the novel use of “/dev/XXXX” to work for the “device name” when
accessing raw devices. It also lets “host” prefix work without needing a unit number. The
loader’s filename parser is way more flexible than I’d ever known.

8 of 9

One not so surprising thing
that I discovered during
this project was that the
bootloader had a lot of
copied and pasted code to
implement path and device
name parsing.

13FreeBSD Journal • November/December 2023

Conclusion
Adapting the FreeBSD bootloader and kernel to boot in this new environment proved to

be straightforward. The large number of small tasks for Linux host integration, coupled with
FreeBSD’s undocumented bootloader-to-kernel handoff, provided the biggest challenges
for this phase of the project. The unexpected hardware erratum added to the excitement
and caused the largest change needed to the kernel. With FreeBSD/aarch64 successful-
ly booting on real hardware, we can proceed to the next phase of the project: creating our
own firmware and finding the remaining FreeBSD/amd64 bugs. Even with these limitations,
we have used loader.kboot to download an installer ramdisk to provision a system and re-
boot the result. It has also been incorporated into last summer’s loader continuous integra-
tion GSoC project.

Next Up
In the next article, we’ll create a LinuxBoot firmware image that boots FreeBSD. I’ll explain

how firmware images are packaged, the tools used to create and manipulate them, and how
to reflash your firmware images if you are brave enough. I’ll help you select the right tools
from the many options Linux provides for creating an initrd, and give a sample script to find
and boot your FreeBSD system. With luck, you’ll have a simpler, faster, more secure firm-
ware by the end.

WARNER LOSH has been contributing to the FreeBSD project for many years. He’s con-
tributed many features and fixes to the bootloader. His interest in Unix history extends to
how bootstrapping evolved alongside Unix and its many derivatives. He lives in Colorado
with his wife Lindy, who loves drawing cats and dogs, and his daughter, who plays an assort-
ment of brass instruments. He can often be found walking dachshunds.

9 of 9

14FreeBSD Journal • November/December 2023

1 of 5

OCI container engines such as containerd or podman need images. A contain-
er image is a read-only directory tree which typically contains an applica-
tion with supporting files and libraries. Running this image on a container

engine makes a writable clone of the image and executes the application in some kind of
isolation environment such as a jail.

Images are distributed via registries which store the image data and provide a simple
REST API to access images and their metadata. The registry
APIs, image formats and metadata are standardised by the
Open Container Initiative which largely replaces earlier dock-
er formats.

OCI Images
Images are represented as a sequence of layers, each of

which is stored as a compressed tar file. To unpack the im-
age, we start with an empty directory and then unpack each
layer in sequence, allowing later layers to add files or change
files from an earlier layer. Typically, the result of this process is
cached by the container engine.

In addition to the layer data, two additional metadata ob-
jects are used. The manifest lists the layers and can contain
annotations to describe the image. The image config
describes the target operating system and architecture and
allows a default command to be used for running the image.

All of this is stored in a ‘content addressable’ structure where the hash of a component is
used to name it. For example, a small base image I use for statically linked applications looks
like this:

BY DOUG RABSON

FreeBSD FreeBSD
Container Container
ImagesImages

Running this image on a
container engine makes
a writable clone of the
image and executes the
application in some kind
of isolation environment
such as a jail.

https://containerd.io
https://podman.io
https://opencontainers.org

15FreeBSD Journal • November/December 2023

$ ls -lR
total 6
drwxr-xr-x 3 root dfr 3 Sep 8 10:36 blobs
-rw-r--r-- 1 root dfr 275 Sep 8 10:36 index.json
-rw-r--r-- 1 root dfr 31 Sep 8 10:36 oci-layout

./blobs:
total 25
drwxr-xr-x 2 root dfr 6 Sep 8 10:36 sha256

./blobs/sha256:
total 950
-rw-r--r-- 1 root dfr 1143 Sep 8 10:36
190e4f8bf39f4cc03bf0f723607e58ac40e916a1c15bd212486b6bb0a8c30676
-rw-r--r-- 1 root dfr 496 Sep 8 10:36
5657eb844c0c0142aa262395125099ae065e791157eaa1e1d9f5516531f4fe30
-rw-r--r-- 1 root dfr 34916 Sep 8 10:36
5af368a2a6078dc912135caed94a6375229a5a952355f5fea60dad1daf516f78
-rw-r--r-- 1 root dfr 911102 Sep 8 10:36
fdb4ee0a131a70df2aae5c022b677c5afbacb5ec19aa24480f9b9f5e8f30fd18

All the metadata files in this bundle are in json format as described here. The top-level
index.json file links to the manifest using its hash:

$ cat index.json | jq
{
 “schemaVersion”: 2,
 “manifests”: [
 {
 “mediaType”: “application/vnd.oci.image.manifest.v1+json”,
 “digest”: “sha256:190e4f8bf39f4cc03bf0f723607e58ac40e916a1c15bd212486b6bb0a8c30676”,
 …
 }
]
}

This manifest describes two data layers, one with just the FreeBSD standard directory
structure and one containing minimal support files such as /etc/passwd and ssl certificates.
It also links to the config which has the target operating system and architecture.

Using a content-addressable format like this makes it easier to share storage space and
reduce the amount of data downloaded when using multiple images derived from the same
base.

The OCI image specification also allows for multi-architecture images which are just lists
of manifests:

2 of 5

16FreeBSD Journal • November/December 2023

{
 “schemaVersion”: 2,
 “mediaType”: “application/vnd.docker.distribution.manifest.list.v2+json”,
 “manifests”: [
 {
 “mediaType”: “application/vnd.oci.image.manifest.v1+json”,
 “size”: 1116,
 “digest”:
“sha256:598b927b8ddc9155e6d64f88ef9f9d657067a5204d3d480a1b1484da154e7c4”,
 “platform”: {
 “architecture”: “amd64”,
 “os”: “freebsd”
 }
 },
 {
 “mediaType”: “application/vnd.oci.image.manifest.v1+json”,
 “size”: 1118,
 “digest”:
“sha256:ac732db0f4788d5282a8d16fefbea360d937049749c83891367abd02801b582”,
 “platform”: {
 “architecture”: “arm64”,
 “os”: “freebsd”
 }
 }
]
}

FreeBSD Base Images
To make it easier to work with containers on FreeBSD,

there is a need for suitable base images. The traditional
FreeBSD release process generates a small number of pack-
ages intended for installing a fully featured FreeBSD OS on a
physical or virtual host. We could use the base.txz package to
build our base image but this results in a gigabyte sized im-
age, more than 90% of which is not needed by most applica-
tions. Most Linux distributions offer much smaller base imag-
es — the official Ubuntu image, for instance, is about 80MB.

Fortunately, the pkgbase project has been working to
make a fine-grained package set which subdivides the tradi-
tional base.txz tarball into hundreds of much smaller packag-
es. Currently, this consists of many packages for individual libraries and utilities along with
two larger packages, FreeBSD-runtime which contains the shell along with a selection of
core utilities and FreeBSD-utilities which has a larger set of commonly used utilities.

Early on, I created a “minimal” image using pkgbase which included FreeBSD-runtime,
plus SSL certificates and pkg. This is about 80MB and contains enough functionality for sim-

3 of 5

Most Linux distributions
offer much smaller base
images — the official
Ubuntu image, for
instance, is about 80MB.

17FreeBSD Journal • November/December 2023

ple shell scripts as well as the ability to install packages. This compares favourably with simi-
lar Linux images although it doesn’t come close to the busybox-based alpine image which is
just 7.5MB.

Since then, I made a small family of images, partly inspired by the distroless project:
• “static” which contains just SSL certificates and timezone data. This can be used as a

basis for statically linked applications.
• “base” which extends “static” by adding a selection of shared libraries to support a wide

variety of dynamically linked applications.
• “minimal” which adds the FreeBSD-runtime package and package management as

before
• “small” which adds FreeBSD-utilities for broader support of shell-based applications.
To support a variety of FreeBSD versions, I embed the version into the image name,

e.g., “freebsd13.2-minimal:latest” includes packages from
the most recent version of the releng/13.2 branch while
“freebsd13-minimal:latest” is built from stable/13. I build all
these images with support for amd64 and arm64 architec-
tures and the container engine will automatically select the
correct image from the manifest list.

Security
It is important that container images can be verified that

they have a trusted origin and have not been tampered with
while they are being transferred to the container engine.

An image’s manifest typically contains the SHA256 hash-
es of the image’s data layers as well as the hash of the corre-
sponding image config. This means that the hash of the man-
ifest can be used to uniquely identify the image. This can be
used to verify the image, e.g., by listing trusted image hashes in a trustable location.

Alternatively, the hash can be used to create a signature which can prove that the image
is trusted by the owner of some public key. Two common mechanisms are in use for this —
the sigstore facility used by podman uses PGP to create an image signature and provides
a mechanism to associate a set of images with a signature store which can either be a lo-
cal directory or a trusted website. This can be used when an image is pulled to verify that it
matches the signature. An alternative to sigstore is cosign which stores the signatures along-
side the images in the image repository.

Limitations and Future Work
While these images are useful, they contain a fairly arbitrary choice of which packages

are installed. Initially, I included support for the alpha.pkgbase.live package repository which
simplified extending an image by installing extra packages. Unfortunately, this project lost
its funding and for a while, there was no publicly available pkgbase repository. Thankfully,
this has been resolved with pkgbase packages available from the standard FreeBSD package
repository.

The current mechanism for building images uses pkg to install pkgbase packages into im-
age layers. This is convenient and keeps a record of what was installed into the image. Un-
fortunately, the pkg metadata is stored in a sqlite database and this does not support

4 of 5

Alternatively, the hash
can be used to create
a signature which can
prove that the image is
trusted by the owner of
some public key.

https://github.com/GoogleContainerTools/distroless
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/8/html/building_running_and_managing_containers/assembly_signing-container-images_building-running-and-managing-containers
https://github.com/sigstore/cosign

18FreeBSD Journal • November/December 2023

reproducible builds. The sqlite database includes the timestamp a package was
installed — this can be overridden to some suitable constant time but even then,
the sqlite database is not reproducible.

A larger issue is credibility — I host these images in my own personal reposi-
tories at docker.io and quay.io but from the perspective of potential users, there
is no reason to trust that the images are trustworthy. Even though I can build im-
ages using packages from the FreeBSD package repository these images are not
signed or supported by the FreeBSD project.

In my opinion, this is a significant barrier for potential users of FreeBSD con-
tainer engines and blocks moving these projects from their current ‘experimen-
tal’ state to something which can be considered for production. This has been
confirmed with several recent conversations about supporting FreeBSD as a plat-
form for open source projects which build and use images.

Ideally, as well as hosting pkgbase package sets, the FreeBSD project should
build FreeBSD container images, either hosting an image registry or making
these images available on a public repository such as docker.io. I plan to proto-
type additions to the release building infrastructure to integrate container image
building into the existing pkgbase framework which may help to move this for-
ward.

DOUG RABSON is a Software Engineer with more than thirty years of ex-
perience ranging from 8-bit text adventure games back in the 1980s to tera-
byte-per-second distributed long aggregation systems in the 2020s. He has been
a FreeBSD project member and committer since 1994 and is currently working on
improving FreeBSD support for modern container orchestration systems such as
podman and kubernetes.

5 of 5

19FreeBSD Journal • November/December 2023

1 of 12

What Is a Webhook And Why Would I Want One?
A webhook is an event-driven remote callback protocol over HTTP allowing scripts and

tasks to be trivially invoked from almost any programming language or tool.
What’s great about webhooks is their prevalence and their simplicity. With a simple HTTP

URL, you can request a remote server to dim the lights, deploy code, or run an arbitrary
command on your behalf.

The simplest of webhooks can just be a bookmarked link in a smart phone web browser,
or a more complicated version might require strong authentication and authorization.

While larger automation toolsets exist, such as Ansible
and Puppet, sometimes something simpler is sufficient.
Webhooks are just such a thing, allowing you to run a
task on a remote computer, on request, securely. Invok-
ing a webhook can be considered “kicking,” hence the
article title.

Integrations
There are no official standards yet, however com-

monly, webhooks are sent via POST with a JSON object
body, using TLS encryption, often secured with signa-
tures against tampering, network forgery, and replay at-
tacks.

Common integrations include Chat services such as
Mattermost, Slack, and IRC, software forges like Github
and Gitlab, generic hosted services like Zapier or IFTT,
and many home automation suites like Home Assistant as well. The sky’s the limit, as web-
hooks are sent and received almost everywhere.

While you could write a minimal webhook client or server in an hour, there are many op-
tions already available in almost every programming language today. Chat software often
provides inbuilt webhook triggers that can be invoked by users, often by a /command style
syntax. IRC servers are not forgotten either, mostly via daemons or plugins.

One less obvious advantage for webhooks is the ability to demarcate security and privi-
leges. A low-privileged user can call a webhook on a remote system. The remote webhook
servce can run also at a low privilege, managing validation and basic syntax checking, before

BY DAVE COTTLEHUBER

Kick Me Now Kick Me Now
with Webhookswith Webhooks

With a simple HTTP URL,
you can request a remote
server to dim the lights,
deploy code, or run
an arbitrary command
on your behalf.

20FreeBSD Journal • November/December 2023

invoking a higher privilege task once the requirements have been verified. Perhaps the final
task has access to a privileged token that allows rebooting a service, deploying new code, or
letting the kids have another hour of screen time.

Common software forges such as GitHub, GitLab, and self hosted options also pro-
vide these such that they can be triggered including
the name of the branch, the commit, and the user who
made the change.

This allows, with relative ease, constructing tools that
update sites, reboot systems, or trigger more complicat-
ed toolchains as required.

The Architecture
The typical arrangement comprises a server listening

for incoming requests and a client that submits requests
along with some parameters, possibly including some
authentication and authorization.

The Server
First up, let’s discuss the server side. Typically, this will

be a daemon listening for an HTTP request that match-
es certain conditions for it to be processed. If these
conditions are not met, the request is rejected with the
appropriate HTTP status codes, and for a successful sub-
mission, parameters can be extracted from the approved request and then custom actions
are invoked as required.

The Client
As the server uses HTTP, almost any client can be used. cURL is a very popular choice,

but we will use a slightly more pleasant one called gurl which has built-in support for HMAC
signatures.

The Message
The message is typically a JSON object. For those who care about replay or timing at-

tacks, you should include a timestamp in the body, and validate it before further process-
ing. If your webhook toolkit can sign and validate specific headers, that’s an option also, but
most don’t.

The Security
The body of the HTTP request can be signed with a shared secret key, and this resulting

signature then provided as a message header. This provides both a means of authentication
and also proof that the request has not been altered in transit. It relies on a shared key to
enable both ends to verify the message signature independently using the additional HTTP
header with the body of the message.

The most common signature method is HMAC-SHA256. This is a combination of two
cryptographic algorithms — the familiar SHA256 hash algorithm that gives a secure digest

2 of 12

The body of the HTTP
request can be signed
with a shared secret key,
and this resulting
signature then provided
as a message header.

https://curl.se/
https://github.com/skunkwerks/gurl

21FreeBSD Journal • November/December 2023

of a larger message, in our case the HTTP body, and the HMAC method, which takes a se-
cret key and mixes it with a message to produce a unique code, a digital signature, if you like.

These functions are combined to produce a high-integrity check if the message has
been tampered with. It’s like a digital seal over the contents and confirms that the message
must have been sent from a party that knows the shared secret.

Note that using both TLS encryption and a signature provides both confidentiality and
integrity of the enclosed message, but not availability. A well-positioned attacker could in-
terrupt or flood the intervening network and messages would be lost without notification.

Common practice is to include a timestamp in the body of the webhook, and as this is
covered by the HMAC signature, timing and replay attacks can be mitigated.

Note that a non-timestamped body will always have the same signature. This can be use-
ful. For example, this allows pre-calculation of the HMAC signature, and using an unchang-
ing HTTP request to trigger remote actions, without needing to make the HMAC secret
available on the system issuing the webhook request.

Putting it Together
We’ll install a few packages to help, a webhook server, the well-known tool curl, and finally

gurl, a tool that makes signing webhooks easy.

$ sudo pkg install -r FreeBSD www/webhook ftp/curl www/gurl

Let’s get our server up and running, with this minimal example, save it as webhooks.yaml.
It will use the logger(1) command to write a short entry into /var/log/messages with

the HTTP User-Agent header of the successful webhook.
Note that there is a trigger-rule key that ensures the HTTP query parameter, secret,

matches the word squirrel.
Currently we have no TLS security and no HMAC signature either, so this is not a very

secure system yet.

- id: logger
 execute-command: /usr/bin/logger
 pass-arguments-to-command:
 - source: string
 name: -t
 - source: string
 name: webhook
 - source: string
 name: invoked with HTTP User Agent:
 - source: header
 name: user-agent
 response-message: |
 webhook executed
 trigger-rule-mismatch-http-response-code: 400
 trigger-rule:
 match:
 type: value

3 of 12

https://github.com/adnanh/webhook
https://github.com/skunkwerks/gurl

22FreeBSD Journal • November/December 2023

 value: squirrel
 parameter:
 source: url
 name: secret

And run webhook -debug -hotreload -hooks webhook.yaml in a terminal. The
flags used should be self-explanatory.

In another terminal, run tail -qF /var/log/messages | grep webhook so that we
can see the results in real time.

Finally, let’s kick the webhook using curl, first without the query parameter, and then
again, with it:

$ curl -4v http://localhost:9000/hooks/logger
* Trying 127.0.0.1:9000...
* Connected to localhost (127.0.0.1) port 9000
> GET /hooks/logger HTTP/1.1
> Host: localhost:9000
> User-Agent: curl/8.3.0
> Accept: */*
>
< HTTP/1.1 400 Bad Request
< Date: Fri, 20 Oct 2023 12:50:35 GMT|
< Content-Length: 30
< Content-Type: text/plain; charset=utf-8
<
* Connection #0 to host localhost left intact
Hook rules were not satisfied.

Note how the failed request is rejected using the HTTP status specified in the
webhooks.yaml config file and the returned HTTP body explains why.

Providing the required query and secret paramter:

$ curl -4v http://localhost:9000/hooks/logger?secret=squirrel
* Trying 127.0.0.1:9000...
* Connected to localhost (127.0.0.1) port 9000
> GET /hooks/logger?secret=squirrel HTTP/1.1
> Host: localhost:9000
> User-Agent: curl/8.3.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Date: Fri, 20 Oct 2023 12:50:39 GMT
< Content-Length: 17
< Content-Type: text/plain; charset=utf-8
<
webhook executed
* Connection #0 to host localhost left intact

4 of 12

23FreeBSD Journal • November/December 2023

The hook is executed and we can see the result in syslog output.

Oct 20 12:50:39 akai webhook[67758]: invoked with HTTP User Agent: curl/8.3.0

Using HMACs to Secure Webhooks
The HMAC signature described earlier, when applied over the HTTP body and sent as a

signature, is tamper-proof, providing authentication and integrity, but only of the body, not
of headers. Let’s implement that. Our first step is to generate a short secret and modify
webhook.yaml to require verification.

$ export HMAC_SECRET=$(head /dev/random | sha256)

We’ll use a more memorable secret of n0decaf one for this article, but you should use a
nice strong one.

Replace the webhook.yml file with this one, which will extract two JSON values from the
payload (which is signed, and therefore trusted), and pass them to our command for execu-
tion.

- id: echo
 execute-command: /bin/echo
 include-command-output-in-response: true
 trigger-rule-mismatch-http-response-code: 400
 trigger-rule:
 and:
 # ensures payload is secure -- headers are not trusted
 - match:
 type: payload-hmac-sha256
 secret: n0decaf
 parameter:
 source: header
 name: x-hmac-sig
 pass-arguments-to-command:
 - source: ‘payload’
 name: ‘os’
 - source: ‘payload’
 name: ‘town’

And use openssl dgst to calculate the signature over the body:

$ echo -n ‘{“os”:”freebsd”,”town”:”vienna”}’ \
 | openssl dgst -sha256 -hmac n0decaf
SHA2-256(stdin)= f8cb13e906bcb2592a13f5d4b80d521a894e0f422a9e697bc68bc34554394032

5 of 12

24FreeBSD Journal • November/December 2023

With the body and the signature, now let’s make the first signed request:

$ curl -v http://localhost:9000/hooks/echo \
 --json {“os”:”freebsd”,”town”:”vienna”} \
 -Hx-hmac-sig:sha256=f8cb13e906bcb2592a13f5d4b80d521a894e0f422a9e697bc68bc34554394032

* Trying [::1]:9000...
* Connected to localhost (::1) port 9000
> POST /hooks/echo HTTP/1.1
> Host: localhost:9000
> User-Agent: curl/8.3.0
> x-hmac-sig:sha256=f8cb13e906bcb2592a13f5d4b80d521a894e0f422a9e697bc68bc34554394032
> Content-Type: application/json
> Accept: application/json
> Content-Length: 32
>
< HTTP/1.1 200 OK
< Date: Sat, 21 Oct 2023 00:41:57 GMT
< Content-Length: 15
< Content-Type: text/plain; charset=utf-8
<
freebsd vienna
* Connection #0 to host localhost left intact

On the server side with -debug mode running:

[webhook] 2023/10/21 00:41:57 [9d5040] incoming HTTP POST request from [::1]:11747
[webhook] 2023/10/21 00:41:57 [9d5040] echo got matched
[webhook] 2023/10/21 00:41:57 [9d5040] echo hook triggered successfully
[webhook] 2023/10/21 00:41:57 [9d5040] executing /bin/echo (/bin/echo) with arguments [“/
bin/echo” “freebsd” “vienna”] and environment [] using as cwd
[webhook] 2023/10/21 00:41:57 [9d5040] command output: freebsd vienna

[webhook] 2023/10/21 00:41:57 [9d5040] finished handling echo
< [9d5040] 0
< [9d5040]
< [9d5040] freebsd vienna
[webhook] 2023/10/21 00:41:57 [9d5040] 200 | 15 B | 1.277959ms | localhost:9000 | POST /
hooks/echo

Separately calculating the signature each time is error-prone. gurl is a fork of an earlier
project and adds automatic HMAC generation as well as some niceties around handling and
processing JSON.

The signature type, and the signature header name are prepended to the secret and
joined by :. This is exported as an environment variable so that its not directly visible in shell
history.

6 of 12

https://github.com/skunkwerks/gurl

25FreeBSD Journal • November/December 2023

$ export HMAC_SECRET=sha256:x-hmac-sig:n0decaf
$ gurl -json=true -hmac HMAC_SECRET \
 POST http://localhost:9000/hooks/echo \
 os=freebsd town=otutahi

POST /hooks/echo HTTP/1.1
Host: localhost:9000
Accept: application/json
Accept-Encoding: gzip, deflate
Content-Type: application/json
User-Agent: gurl/0.2.3
X-Hmac-Sig: sha256=f634363faff03deed8fbcef8b10952592d43c8abbb6b4a540ef16af0acaff172

{“os”:”freebsd”,”town”:”otutahi”}

As we can see above, the signature is generated for us, and adding JSON key=value pairs
is straightforward without needing quoting and escaping.

Back comes the response, pretty-printed for us: the HMAC has been verified by the serv-
er, the values of the two keys extracted and passed as parameters to our echo command,
and the results captured and returned in the HTTP response body.

HTTP/1.1 200 OK
Date : Sat, 21 Oct 2023 00:50:25 GMT
Content-Length : 16
Content-Type : text/plain; charset=utf-8

freebsd otutahi

More complex examples are provided in the port’s sample webhook.yaml or the exten-
sive documentation.

Securing Webhook Contents
While using HMACs prevents tampering with the message body, it’s still visible in plain

text to those dastardly hackers.
Let’s add some transport-layer security, using a self-signed TLS key and certificate, for

the webhooks server on localhost and relaunch the webhook server:

$ openssl req -newkey rsa:2048 -keyout hooks.key \
 -x509 -days 365 -nodes -subj ‘/CN=localhost’ -out hooks.crt

$ webhook -debug -hotreload \
 -secure -cert hooks.crt -key hooks.key \
 -hooks webhook.yaml

The curl command will need an additional -k parameter to ignore our self-signed certif-
icate, but otherwise things proceed as before:

7 of 12

https://cgit.freebsd.org/ports/tree/www/webhook/files/webhook.yaml
https://github.com/adnanh/webhook/tree/master/docs
https://github.com/adnanh/webhook/tree/master/docs

26FreeBSD Journal • November/December 2023

curl -4vk https://localhost:9000/hooks/logger?secret=squirrel

* Trying 127.0.0.1:9000...
* Connected to localhost (127.0.0.1) port 9000
* ALPN: curl offers h2,http/1.1
* TLSv1.3 (OUT), TLS handshake, Client hello (1):
* TLSv1.3 (IN), TLS handshake, Server hello (2):
* TLSv1.3 (OUT), TLS change cipher, Change cipher spec (1):
* TLSv1.3 (OUT), TLS handshake, Client hello (1):
* TLSv1.3 (IN), TLS handshake, Server hello (2):
* TLSv1.3 (IN), TLS handshake, Encrypted Extensions (8):
* TLSv1.3 (IN), TLS handshake, Certificate (11):
* TLSv1.3 (IN), TLS handshake, CERT verify (15):
* TLSv1.3 (IN), TLS handshake, Finished (20):
* TLSv1.3 (OUT), TLS handshake, Finished (20):
* SSL connection using TLSv1.3 / TLS_AES_128_GCM_SHA256
* ALPN: server accepted http/1.1
* Server certificate:
* subject: CN=localhost
* start date: Oct 20 13:05:09 2023 GMT
* expire date: Oct 19 13:05:09 2024 GMT
* issuer: CN=localhost
* SSL certificate verify result: self-signed certificate (18), continuing anyway.
* using HTTP/1.1
> GET /hooks/logger?secret=squirrel HTTP/1.1
> Host: localhost:9000
> User-Agent: curl/8.3.0
> Accept: */*
>
* TLSv1.3 (IN), TLS handshake, Newsession Ticket (4):
< HTTP/1.1 200 OK
< Date: Fri, 20 Oct 2023 13:12:07 GMT
< Content-Length: 17
< Content-Type: text/plain; charset=utf-8
<
webhook executed
* Connection #0 to host localhost left intact

gurl has no such option and expects you to do things properly. For production usage, it is
much better to use a reverse proxy such as nginx or haproxy to provide robust TLS termina-
tion, and allows using public TLS certificates, via Let’s Encrypt and similar services.

8 of 12

https://github.com/skunkwerks/gurl
https://nginx.org/
https://haproxy.org/

27FreeBSD Journal • November/December 2023

Updating a Website with Github and Webhooks
For this to work successfully, you’ll need both to have your own domain, and a small serv-

er or virtual machine to host the daemon on.
While this article can’t cover the full details for setting up your own website, TLS encryp-

tion certificates, and DNS, the steps below will largely be similar for any software forge.
You will need to setup a proxy server, such as Caddy, nginx, haproxy, or similar, with working

TLS. A great choice is to use the ACME protocol, via Let’s Encrypt, to maintain this for you.
You’ll need to adjust your proxy server to route appropriate requests to the webhook

daemon. Consider restricting IP addresses that can access it, and restricting HTTP methods,
as well. Github’s API has a /meta endpoint to retrieve their IP addresses, but you’ll need to
keep this up to date, however.

Enable the webhook service as follows, using the same options we used before, and start
your daemon via sudo service webhook start

/etc/rc.conf.d/webhook
webhook_enable=YES
webhook_facility=daemon
webhook_user=www
webhook_conf=/usr/local/etc/webhook/webhooks.yml
webhook_options=” \
 -verbose \
 -hotreload \
 -nopanic \
 -ip 127.0.0.1 \
 -http-methods POST \
 -port 1999 \
 -logfile /var/log/webhooks.log \
 “

You’ll need to validate from outside, that the URL and webhook daemon are accessible.
On your software forge side, create a new JSON format webhook, with the shared

HMAC secret, to be invoked on every push to your repository.
For example, using Github you must provide a:
• payload URL, pointing to the external URL for your proxied internal webhook daemon
• content-type application/json
• the shared secret, such as n0decaf in the examples

9 of 12

https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/about-githubs-ip-addresses
https://docs.github.com/en/webhooks/using-webhooks/creating-webhooks

28FreeBSD Journal • November/December 2023

Once the webhook has been created on the GitHub side, you should be able to confirm
that a successful event was received, and then on your next push of code, you can check on
the Github website for the request that GitHub sent, and the response your daemon provided.

10 of 12

29FreeBSD Journal • November/December 2023

Handling Secrets for Webhook Scripts
Often, you will need to run some script that requires access to various secrets. There

are many possibilities, but one simple one is to add a webhook_env_file path entry to the
rc.conf settings. This file is a shell-quoted list of key=value parameters, that are included
into the environment of the webhook daemon, by the FreeBSD rc.d system, and thus avail-
able to any and all webhook scripts that are invoked.

/usr/local/etc/webhook/environment
CI=true
CI_SECRET=”b@dw0lf”

Add webhook_env_file=”/usr/local/etc/webhook/environment” to your rc.conf
settings, and restart the daemon, to make these available to subsequent webhook invo-
cations.

Running Scripts
A simple website update script could be as small as:

#!/bin/sh -eu
set -o pipefail
cd /var/www/my-awesome-website
git reset --hard
git clean -fdx
git pull --ff-only --tags

Or as complicated as your imagination, using validated parameters extracted from the
JSON body of the signed webhook request.

Let me know what interesting webhook kicks you invent!

11 of 12

30FreeBSD Journal • November/December 2023

DAVE COTTLEHUBER has spent the last 2 decades trying to stay at least 1 step ahead of
The Bad Actors on the internet, starting off with OpenBSD 2.8, and the last 9 years with
FreeBSD since 9.3, where he has a ports commit bit, and a prediliction for using jails, and ob-
scure functional programming languages that align with his enjoyment of distributed sys-
tems, and power tools with very sharp edges.

• Professional Yak Herder, shaving BSD-coloured yaks since ~ 2000
• FreeBSD ports@ committer
• Ansible DevOops master
• Elixir developer
• Building distributed systems with RabbitMQ and Apache CouchDB
• Enjoys telemark skiing, and playing celtic folk music on a variety of instruments

12 of 12

all the storage; we use ZFS to replicate the data between cluster nodes; we use
compression and snapshots. And we heavily use Capsicum to make it all secure.

We want to be sure that even if someone breaks into a single session, he can-
not access other sessions. He cannot actually access anything, because if he
breaks in before authentication, he won't be granted access to connect to the
server. Only after successful authentication will we provide a connection to the
destination server.

And Capsicum makes it really clean and very efficient actually.
Al lan: You don't have to enumerate all the things you can't do. You're saying
you're only allowed to do these things?

• Pawel: Yes. This is capability ideology. You only grant the exact rights or access
to resources that the process requires. Which is not UNIX ideology because, of
course, if you are running a UNIX program, it has access to everything.
Al lan: Was there anything else you wanted to talk about?

• Pawel: Not really. •

Sept/Oct 2019 23

FreeBSD is internationally recognized as an innovative
leader in providing a high-performance, secure, and stable
operating system.
Not only is FreeBSD easy to install, but it runs a huge number

full source code.

The FreeBSD Community is proudly supported by

T

Help Create the Future.
Join the FreeBSD Project!

The FreeBSD Project is looking for

Find out more by

Checking out our website

Downloading the Software

for people like you to help continue
developing this robust operating system.
Join us!

Already involved?

Don�t forget to check out the latest
grant opportunities at
freebsdfoundation.org

31FreeBSD Journal • November/December 2023

Oslo in October
BY TOM JONES

1 of 4

Hackathon’s are a small-scale event where hackers (or developers) get together and
conduct a marathon hacking session. Many parts of a hackathon track a marathon,
a dedicated group come together and at an arranged time, they act separately, but

towards a common goal. Like a foot marathon, a hackathon has lots of snack breaks, and
at the end we all join for a party.

Unlike a foot race we are focused on our computers. Eirik from Mo-
dirum joined us for a hackathon in Aberdeen in 2022 and so enjoyed
the idea that he demanded to host a hackathon from Modirum’s of-
fices in Oslo. It took some arranging, and I missed the April goal by
about 6 months. We met in October 2023 in Oslo, Norway to have a
ports focused hackathon.

This is the first focused hackathon I have run. In the past, people
have always asked me “what is the theme?” I gave in this time and
agreed that we would focus on Ports and Infrastructure. I was a little

sneakily keeping a wide enough topic that anyone could come and join us and still be on
theme if asked.

The call went out for FreeBSD hackers interested in three
days working on ports from the beautiful city of Oslo.

Modirum kindly hosted us from their offices that were well
situated to be easy to reach for the hackathon with lots of
places nearby for the of the most important meals. The offic-
es are are a mixture between office and hackerspace with a
collection of fascinating toys for Operating System nerds.
A first for me was the bookcase filled with 286 and 386
motherboards. Eirik’s collection has a home in Modirum’s of-
fices and featured running 386s on which we watched old

demos one evening after the pub, and
a Mac SE connected to the internet via
some ESP powered WiFi magic.

In total we were 6 FreeBSD project
members, two from outside FreeBSD,
and Eirik and varying members of his
team. This was a great size to keep things fluid, but small enough to
make going out for dinner easy.

Hackathons are better when they are smaller, fewer attendees than
a DevSummit. It is great to get a lot of people together, but as the size of the group grows,
conversations amplify, and the balance between rare insights and focused quiet time to do

Hackathon

The call went out
for FreeBSD hackers
interested in three days
working on ports
from the beautiful
 city of Oslo.

32FreeBSD Journal • November/December 2023

work shifts.
Beyond the FreeBSD project members that joined us, we also

were joined by Trenton (who wrote his own report that follows
this one) and Harold from the NetBSD project. Adding some
more hackers outside of FreeBSD developers allowed our conver-
sations to cover ground which might sometimes be unspoken by
those who have been in the project for a long time. Sometimes
you have been involved too long to ask ‘stupid’ questions, but
new people have no such built-in fear.

Harold was quickly given an old Sun server from Eirik’s vintage computing collection to
play with - NetBSD does claim to run everywhere after all - but this one will need some work

to get going.
The hackathon ran over three days, Wednesday to Friday, and some

of us also stayed in Oslo through the weekend and enjoyed an out-
ing to Oslo’s outdoor building Museum accessed by an excellent ferry
across the harbor.

Hackathons are great small events, and as the organizer of this one,
I have to admit that I skimped on the organization this time. Rather
than see that as a bad thing, I want you to take away that all a hack-
athon needs is a room and some hackers. I still dream of there being

a FreeBSD development meetup somewhere in the world every month of the year. If you
would like that, too, you can help by organizing one.

I’m happy to help remotely, for advice you can email me thj@freebsd.org and I’ll share
the few secrets to running a successful hackathon that I know. And now, here’s Trenton
Schulz’s take on the event.

Oslo in October Too
BY TRENTON SCHULZ

During the summer, I was going through Vermaden’s valuable
news looking for interesting tidbits of FreeBSD-related news.
Then, I saw “FreeBSD Hackathon Oslo.” Here it was, a FreeBSD

hackathon right in my backyard. I should try to attend this.
Looking at the wiki page, I saw that it was primarily targeted at

FreeBSD developers (people I associated with a @freebsd.org email
address), but I did maintain some ports and I had a couple of other
ideas that I could work on, and I might be able to get some guidance
on those projects too. I could at least ask and see if I could be a guest.

So, I put the dates on my calendar, and then I made a to-do item to “consider the
FreeBSD hackathon.” I would revisit this item in my to-do list and think that, “yes, I should
make a final decision.” But it wasn’t until the weekend before the hackathon when I tuned
into the BSD Now podcast and heard Benedict and Tom talk about how the hackathon

2 of 4

33FreeBSD Journal • November/December 2023

would focus on ports infrastructure that I made up my mind that “yes, why haven’t I asked
yet?” I double-checked my calendar and saw that I needed to lecture and lead meetings
for some of the hackathon days, but Friday was open. Yes! I emailed Tom Jones and he was

very welcoming. I put up a vacation day, a vacation hacking on
FreeBSD.

On the Friday, I arrived at the nice offices of Modirum, the
host for the hackathon, in Youngstorget in Oslo. Olivier let me
in and after greetings were exchanged with all the other partic-
ipants, I got on with hacking. For me, this was mostly updating
ports that I maintain. This included the Jotta CLI port (net/jot-

ta-cli), which I use as a tertiary backup solution at home. I tested it out locally, and it worked
well, but forgot to test the i386 version and put the wrong checksum in. But after a review
from Olivier, it was committed. One port updated.

Then, I saw that there was an upstream update for JuliaMo-
no (x11-fonts/juliamono); the monospace font that I use. So, I
went through the steps and updated the port. That was also
committed after lunch. Even though these were low-hang-
ing fruit, it felt good to get them committed and out for oth-
ers as well. Then I decided to scratch some more challenging
itches.

I’ve recently started using Beeper, a unified messaging cli-
ent. They have a Linux client, so I thought I would try to see
if I could run it on FreeBSD and build it into a port. The Linux
client is an appimage, so I unpacked it and tried to run it. Un-
fortunately, the executable had problems resolving libraries
inside the unpacked appimage. I tried to trace, but it seemed
to find the actual library, so something more was happening.
Realizing that this might be a bit more in-depth problem than
I could solve in a couple of hours, I put it aside to look at later.
I have since found out that there is a web interface to Beeper and one can use a Matrix cli-
ent, so creating a port may not be as exciting.

Having put aside Beeper, I looked at a port that I had adopted, audio/logitechmediaserv-
er. I had a bug report where the build had failed, but the port had signaled all was well until it
came to packaging when it identified many missing files. This led me to diving deep into the
port infrastructure makefiles, where I learned that the port had done a clever thing in rede-
fining a target since the port itself uses perl for building. I then spent some time trying to
figure out how to rework the target so that it would throw an error. I didn’t finish this before

we went out for dinner.
One of the benefits of being at a hackathon is all the spon-

taneous conversations that show up around the table. One
gets a nice collection of history, news, funny stories, techni-
cal information, advice, and even some gossip. Not just about
FreeBSD internals, but on a variety of subjects including elec-
tronics, travel, Norway, and world events. You are soaked in all

this information as you look through source code. A lot of camaraderie naturally shows up
during the hackathon.

3 of 4

One of the benefits
of being at a hackathon
is all the spontaneous
conversations
that show up around
the table.

34FreeBSD Journal • November/December 2023

One can also get great advice and wisdom in a quick side discussion. For example, I had a
quick discussion with Olivier about my logitechmediaserver conundrums which yielded ad-

ditional philosophy about testing and maintaining ports that I found
very helpful: given that one is the maintainer of a port, you are likely
to encounter the biggest build issues first. I need to weigh the advan-
tages and disadvantages of how easy it needs to be to diagnose port
issues for others versus the extra work to flag these corner cases. The
3-minute conversation gave me a lot to think about.

Overall, even though I was only at the hackathon for one day, I
found it wonderful to focus only on solving FreeBSD problems for
many hours. I was also surprised how quick the time went and was fur-

ther surprised when I had to catch my bus home. There were so many
additional things I wanted to work on. Thank you to everyone at the
hackathon for being so welcoming and helpful and to Modirum for
being excellent hosts!

The whole experience made me realize that attending a hackathon
was helpful even if I was not an “official” FreeBSD developer. If you are
a person who is hacking on FreeBSD and you see a FreeBSD hack-
athon in your area, reach out those attending and find out if you can
attend. You will have a great experience.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

TRENTON SCHULZ is a senior research scientist at the Norwegian Computing Center. His
research interests include human-computer interaction, human-robot interaction, and uni-
versal design of ICT. He is very happy when he can combine his research interests with using
FreeBSD.

4 of 4

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

36FreeBSD Journal • November/December 2023

New Ports Committer:
Joel Bodenmann (jbo@freebsd.org)
INTERVIEWED BY TOM JONES

1 of 3

TJ: Hi Joel, welcome to the project. Could you give me a little background on yourself and
the sort of technology projects you enjoy working on?

JBO: I’m an electronics engineer mainly focusing on embedded sys-
tems. Usually I like working with systems that are designed to perform
a specific task rather than generic computation.

TJ: FreeBSD isn’t famously a great platform for embedded systems
development, have you tried to work or do work style projects on
FreeBSD?

JBO: I think I have to disagree with your statement. The reason why
I got to FreeBSD is exactly to use it as a platform for embedded sys-
tems development. Although the world of “embedded” has changed drastically the past few
years, the embedded systems I usually work with are comparably low-resource, real-time
systems (i.e., your typical microcontroller based systems with < 120MHz CPU, < 128kB RAM).
As such, these systems are not designed to run FreeBSD themselves, but they also wouldn’t
run Linux in any practical sense (nor would the requirements allow for that).

You still need a (desktop) host system for the actual development as well as surround-
ing support infrastructure tho. These embedded projects I usually work on can take several
years from first-meeting to deployed product. One of my mood points with using Linux as
a development platform is that the Linux ecosystem is in a constant state of flux. You setup
your development workflow and environment on Linux based systems only to be forced to
upgrade a few months later which requires to revalidate your entire workflow.

FreeBSD is well known for it’s stability and coherence. Rather than implementing a new
system or component from scratch because the previous one is not “good enough” any-
more, FreeBSD tries to design those systems and tooling to be maintainable and expand-
able, vastly reducing development system management overhead.

For some projects, I do need a non-microcontroller-based system to which the micro-
controller-based systems talk (i.e., for long-term data logging, orchestration etc.). In those
scenarios the same benefits of FreeBSD apply: You setup and validate your system once and
then just perform smaller maintenance tasks over the years, whereas with Linux-based sys-
tems I never knew what I would wake up to the next day.

A crude summary would basically state that I like to spend my time working on the actu-
al development/engineering of the system I am working with rather than updating, debug-
ging and revalidating my development platform just because the underlying init system, au-
dio subsystem, hypervisor or most popular container system or similar changed three times
in two years. FreeBSD checks all the boxes here. Since I migrated all of my servers, network

INTERVIEW

37FreeBSD Journal • November/December 2023

2 of 3

So far, I have been mainly focused
on handling the “low-hanging
fruits” with the idea that this allows
me to familiarize myself with
the basics of the ports system

infrastructure and workstations to FreeBSD, I never had to guess whether my development
infrastructure still boots and works when I enter the office the next day. It’s just rock solid.

TJ: Have you taken on a particular area of focus in the ports tree?

JBO: So far, I have been mainly focused on handling the “low-hanging fruits” with the idea
that this allows me to familiarize myself with the basics of the ports system as well as the
workflows and infrastructure. At the same time, this frees up resources of the more experi-
enced ports committers so they can spend their efforts on more complex matters.

As I am getting more comfortable with this, I hope to take on more involved tasks in the
coming year such as updating ports of libraries with many consumers.

As such, my answer to your question is: No, I try to help wherever I can. I have no doubt
that with increased experience I will soon find something larger to work on :)

TJ: The ports collection is massive and a lot of small tools can do heavy lifting. What are
some of the low-hanging ports you’ve worked on so far?

Do you have any suggestions for others to find low-hanging fruit and easier first ports?

JBO: Personally, I considered two scenarios to be low-hanging fruits so far:
1. PRs with patches that already have maintainer approval, where the patch updates an ex-

isting port to a new upstream minor version. Here
I’d recommend to stay clear of “fundamental”
ports with a high number of consuming ports in
the beginning to reduce the risk of triggering mas-
sive fall-outs.
 My reasoning here is that comparably little can
go wrong with simple upstream minor version
bumps and maintainers tend to be careful not to
break their ports and already have the experience
in what to watch out for specifically with regard to
their upstream.

2. PRs which introduce a new port. These PRs tend to
be “low priority” so there’s comparably little pres-
sure to get them landed quickly. Furthermore, I
identified these as a great way of learning about the different systems and mechanisms
that the ports framework provides that I might not have been in contact with yet.
As for what I have worked on so far: I intentionally tried to touch various ports from var-

ious domains. I am not focusing on a particular category or type of port. Instead, I try to
handle PRs of ports I know rely on something I have not yet worked with. This is a great way
of getting comfortable with the various Mk/Uses/* scripts.

TJ: When you look to the future of FreeBSD what do you think the main priorities of the
project should be from a porters perspective?

JBO: I think that a big part of what makes FreeBSD such an attractive OS to a variety of us-
ers is the fact that we usually follow more old-school principles. The FreeBSD project tends

”
“

38FreeBSD Journal • November/December 2023

3 of 3

to take the “slow but steady” approach rather than constantly jumping on the latest hype
train re-inventing things constantly. There are, of course, drawbacks to this approach as well.
For example, the ports framework lacks some features that might be considered “basic” by
modern standards such as sub-packages, suggesting optional installs and similar. But I’d ar-
gue that exactly because these things are not rushed, we end up with a much more stable
and easier to maintain system.

As such, rather than answering your question with a concrete list of steps or goals that
need to be accomplished, my main recommendation is to stay true to this approach. Any-
thing that ends up proving to be necessary will happen eventually, but it will usually do so in
a non-forced way allowing for proper design, implementation and testing resulting in effi-
cient use of our limited man power.

 There are many bullets that one can dodge by simply not rushing or forcing progress.
The expression “slow is smooth; smooth is fast” applies here in my opinion.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

The Journal received a tsunami of letters this month. Once we composted the complaints
about the We Get Letters columnist, that left two. Yes, your complaints are composted. This
is a highly responsible publication, so I insist that all derogatory emails are printed for my
personal meticulous perusal, edification, and education. I have reserved space on my office
wall for mounting the most creative, well-reasoned complaints so that they may remind me
to “do better.” Only one complaint letter has received that honor, however, and I had to write
it myself. You don’t know enough about me to insult me effectively or eloquently.

Anyway. The two surviving letters both fretted about the freshly hatched FreeBSD 14. It’s
a brand-new release that you should have
already been running for months in produc-
tion, because open-source Unix is a com-
munity effort and if you touch the software,
you catch community and must contribute,
except you won’t will you, no—you’ve wait-
ed for a .0 release and expect your appli-
cation stack to work just fine atop it with-
out a shudder or shiver. I won’t retread that
ground, partly because I previously ranted
about it in this very column, but also be-
cause you didn’t listen to it then, so you cer-
tainly won’t listen to it now. Fear of a dot-0
release means you misunderstand modern
system administration.

System administration in a modern en-
terprise is like performing an oil change on
a vehicle doing a hundred and twenty down
the freeway. 120 miles an hour, or kilometers, you might ask? When you’re lying on your
back on one of those oversized mechanic’s skateboards, clenching the oil wrench in your
teeth and wishing you’d worn shoes with wheels on the heels so you wouldn’t have to work
quite so hard holding your legs up, it doesn’t matter. Occasionally the driver gets bored with
weaving between the desktop users guilty of the unspeakable crime of Using The Road
While Obeying The Speed Limit Even Though I’m A CEO, so he sideswipes a pothole just to
hear your skull bounce off the transmission housing. Wear a helmet. When the oil change is
complete, you get to change the spark plugs and flush the coolant. From below, of course.
Raising the hood would impair the driver’s vision, and you can’t possibly interfere with the
corporate mission, whatever that is.

1 of 3

The .0 Release is
a Metaphorical Tire Change
BY MICHAEL W LUCAS

This is a highly responsible
publication, so I insist that
all derogatory emails
are printed for my personal
meticulous perusal, edification,
and education.

39FreeBSD Journal • November/December 2023

by Michael W Lucas

The .0 release is a metaphorical tire change, that’s all. The trick is to wait until the driv-
er claims there’s a stretch of smooth road ahead and to place the jack snugly between your
knees.

Doing any of this successfully means understanding your operating system. I don’t mean
the configuration files. Configurations change. You need to understand what the operat-
ing system is doing. That means you need a knowledge of DNS and the shell and virtual-
ization and filesystems and debugging. If you want to truly learn this stuff, go read some of
Julia Evans’ zines. She knows what she’s writing about and can communicate it clearly and
simply, unlike certain bloviating tech authors staggering around this joint who confuse wor-
thiness with word count and believe that artsy book covers can compensate for the insip-
idness beneath said cover. Copying a log message into a search engine cannot replace an
understanding of how the software works. You still won’t understand the error message,
mind you, but the discussions around that error will make sense and that comprehension
will guide you into making the problem less agonizing. Yes, less agonizing. In systems admin-
istration we don’t fix problems, we patch around them. Everything is connected to every-
thing in a churning pot of boiling spaghetti logic, and straightening out one section further
tangles other sections. Fortunately, we’re
well along the way to replacing the operat-
ing system with the web browser, a course
of action that will unquestionably benefit us
all—us being system administrators, that is.
Web developers will be the new system ad-
ministrators, and as they’re charging fierce-
ly towards achieving “serverless” they won’t
know who we are other than “the people
you must pay for no reason or our app stops
working.” It’s a win all around.

It’s not all bad news. Not entirely. Your
view of the potholes can be described only
as splendid. You will accumulate complex
traumas incomprehensible to the passen-
gers, other drivers. This will drive you to de-
velop eccentric coping strategies that render
you wholly unsuitable for mainstream society. That might seem like bad news, at least until
you meet people. The camaraderie amongst those who exchange pothole stories cannot
be exceeded—if you can make yourself interact with them, that is. Plus, you can occasionally
tweak something hydraulic to make the driver’s seat shoot six inches straight up so the CEO
bonks his head. “It’s a known Oracle bug. Feel free to come down here and see for yourself.”

Do try not to snigger when saying that.
The truth is, what would you be doing if you weren’t a system administrator? We all

know you’d go home, lie on your oversized skateboard, and roll beneath your own system
to change its oil, wishing someone would drive it. Someone will. One day, someone will see
your work and say “Hey, if I take that and destroy all that makes it clever or worthwhile, it will
make my extremely niche problem less agonizing.” Keep working!

In its purest form, systems administration is a disorder that benefits civilization, meaning
that society has no interest in alleviating it or even developing a vaccine. Besides, your cop-

2 of 3

Copying a log message into
a search engine cannot replace
an understanding of how the
software works.

40FreeBSD Journal • November/December 2023

ing strategies are flat-out weird and make everyone else uncomfortable. They blame the re-
peated knocks to your head, illustrating yet again how people leap eagerly at explanations
that are simple, elegant, and wrong. Everyone’s happiest if you remain quarantined with
your computers, separate from the uncontaminated population who are all busy anyway
playing the latest phone game even though we know it’s nothing but a knock-off of Civiliza-
tion or Doom or Solitaire. Maybe Spacewar, if they consider themselves sophisticated.

Given all this, why are you worrying about a .0 release?
.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS is author of over fifty books, including the forthcoming Run Your
Own Mail Server. He wants to quit all this and become a pencil smuggler, but his defective
coping strategies won’t permit it. Learn more at https://mwl.io.

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

41FreeBSD Journal • November/December 2023

freebsdjournal.org

https://mwl.io

BSD Events taking place through March 2024
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

42FreeBSD Journal • November/December 2023

State of Open Con 2024
February 6-7, 2024
London, UK
https://stateofopencon.com/

SOOCon24 is the UK’s Open Technology Conference that focuses on community in Open
Source Software, Open Hardware & Open Data. It has set itself up to be one of the most in-
clusive community open source events to date.

SCALE 21X
March 14-17, 2024
Pasadena, CA
https://www.socallinuxexpo.org/scale/21x

SCaLE is the largest community-run open-source and free software conference in North
America. It is held annually in the greater Los Angeles area. Drew Gurkowski will also be host-
ing a FreeBSD workshop during the conference.

mailto:freebsd-doc@FreeBSD.org
https://stateofopencon.com/
https://www.socallinuxexpo.org/scale/21x

