
6FreeBSD Journal • July/August 2023

A large amount of fantastic open source software originates from “scratching an itch”.
Such was the case with Firecracker: In 2014, Amazon launched AWS Lambda as a
“serverless” compute platform: Users can provide a function — say, ten lines of Py-

thon code — and Lambda provides all of the infrastructure between an HTTP request arriv-
ing and the function being invoked to process the request and generate the response.

To provide this service efficiently and securely, Amazon needed to be able to launch vir-
tual machines with minimal overhead. Thus was born Firecracker: A Virtual Machine Monitor
which works with Linux KVM to create and manage “microVMs” with minimal overhead.

Why FreeBSD on Firecracker?
In June 2022, I started work on porting FreeBSD to run

on Firecracker. My interest was driven by a few factors.
First, I had been doing a lot of work on speeding up

the FreeBSD boot process and wanted to know the lim-
its that could be reached with a minimal hypervisor.

Second, porting FreeBSD to new platforms always
helps to reveal bugs — both in FreeBSD and on those
platforms.

Third, AWS Lambda only supports Linux at present;
I’m always eager to make FreeBSD more available in
AWS (although adoption in Lambda is out of my control,
Firecracker support would be a necessary precondition).

The largest reason, however, was simply because it’s
there. Firecracker is an interesting platform, and I want-
ed to see if I could make it work.

Launching the FreeBSD Kernel
While Firecracker was designed for Lambda’s needs — launching Linux kernels — there

were patches available from 2020 that added support for the PVH boot mode in addition
to “linuxboot”. FreeBSD had support for PVH booting under Xen, so I decided to see if that
would work.

Here I ran into the first problem: Firecracker could load the FreeBSD kernel into memory

BY COLIN PERCIVAL

1 of 8

FreeBSD
on Firecracker

Porting FreeBSD to

new platforms always

helps to reveal bugs —

both in FreeBSD

and on those platforms.

https://firecracker-microvm.github.io/
https://aws.amazon.com/lambda/

7FreeBSD Journal • July/August 2023

but couldn’t find the address at which to start running the kernel (the “kernel entry point”).
According to the PVH boot protocol, this value is specified in an ELF Note — a piece of spe-
cial metadata stored in ELF (Executable and Linker Format) files. It turned out that there are
two types of ELF Notes: PT_NOTEs and SHT_NOTEs, and FreeBSD wasn’t providing the
one Firecracker was looking for. A small change to the FreeBSD kernel linker script fixed this,
and now Firecracker was able to start executing the FreeBSD kernel.

That lasted for about 1 microsecond.

Early Debugging
FreeBSD has wonderful debugging functionality, but if your kernel crashes before the de-

bugger is initialized or the serial console is set up, you’re not going to get much help. In this
case, the Firecracker process exited, telling me that the FreeBSD guest hit a triple-fault —
but that’s all I knew.

It turned out, however, that this was enough information to get me started, given a bit
of creativity. If the FreeBSD kernel execution reached a hlt instruction, the Firecracker pro-
cess would keep running but use 0% of the host’s CPU time (since it was virtualizing a halt-
ed CPU). As such, I could distinguish between “FreeBSD is crashing before this point” and
“FreeBSD is crashing after this point” by inserting a hlt instruction — if Firecracker exited, I
knew that it was crashing before reaching that instruction. Thus started a process I referred
to as “kernel bisection” — rather than bisecting a list of commits to find one which intro-
duced a bug (as in git bisect) I would do a binary search through the kernel startup code
to find the line of code that was making FreeBSD crash.

Xen Hypercalls
The first thing I discovered in this process was Xen

hypercalls. The PVH boot mode originated as the Xen/
PVH boot mode, and FreeBSD’s PVH entry point was,
in fact, an entry point specifically for booting under Xen
— and the code made the quite reasonable assumption
that it was, indeed, running inside Xen and could thus
make Xen hypercalls. KVM (which provides the kernel
functionality used by Firecracker) is not Xen, of course,
so it doesn’t provide those hypercalls; attempting to use
any of them resulted in the virtual machine crashing. As
an initial workaround, I simply commented out all the
Xen hypercalls; later, I added code to check CPUID for a
Xen signature before making calls e.g., to write debug-
ging output to the Xen debug console.

There was one Xen hypercall that provided essential
functionality, however: Retrieving the physical memo-
ry map. (Of course, inside a hypervisor, the “physical”
memory is only virtually physical. It’s turtles all the way down.) Here, we’re saved by the fact
that Xen/PVH was retroactively declared to be version 0 of PVH boot mode: From version 1
onwards, a pointer to the memory map is passed via the PVH start_info page (a pointer
to which is provided in a register when the virtual CPU starts executing). I had to write code
to make use of the PVH version 1 memory map instead of relying on a Xen hypercall to get
the same information, but that was easy enough.

Another related issue arose from how Xen and Firecracker arrange structures in mem-

2 of 8

FreeBSD has wonderful

debugging functionality,

but if your kernel crashes

before the debugger

is initialized or the serial

console is set up,

you’re not going to get

much help.

8FreeBSD Journal • July/August 2023

ory: Whereas Xen loads the kernel first and then places the start_info page at the end,
Firecracker placed the start_info page at a fixed low address and then loaded the kernel
afterwards. This would have been fine but that FreeBSD’s PVH code – having been written
with Xen in mind — assumed that the memory immediately after the start_info page
would be free for use as scratch space. Under Firecracker, that very quickly meant overwrit-
ing the initial kernel stack — not an optimal outcome! A change to FreeBSD’s PVH code
to assign scratch space after all the memory regions initialized by the hypervisor fixed this
problem.

ACPI — or Lack Thereof!
On x86 platforms, FreeBSD normally makes use of ACPI to learn about (and in some cas-

es control) the hardware on which it is running. In addition to discovering things via ACPI
which we might commonly think of as “devices” — disks, network adapters, etc. — FreeBSD
also learns about fundamental things like CPUs and interrupt controllers via ACPI.

Firecracker, being deliberately minimalist, does not implement ACPI, and FreeBSD gets
upset when it can’t figure out how many CPUs it has or where to find their interrupt con-
trollers.

Fortunately, FreeBSD has support for the historic Intel MultiProcessor Specification,
which provides this critical information via an “MPTable” structure; it’s not part of the
GENERIC kernel configuration, but for running in Firecracker, we want to use a stripped-
down kernel configuration anyway, so it was easy
to add device mptable to make use of what Fire-
cracker provides.

Except… it didn’t work. FreeBSD still couldn’t
find the information it needed! It turned out that
Linux has bugs in how it finds and parses the MPT-
able structure — and Firecracker, being designed
to boot Linux, provided the MPTable in a way that
Linux supported but was not in fact compliant with
the standard. FreeBSD, having an implementation
independently written to follow the standard, failed
both to find the (incorrectly located) MPTable and
to parse the (invalid) MPTable once it was found.

So now FreeBSD has a new kernel option: You
can add options MPTABLE_LINUX_BUG_COMPAT
to your kernel configuration if you need bug-for-bug compatibility with Linux’s MPTable
handling — and with that, FreeBSD managed to boot a bit further in Firecracker.

Serial Console
One of the few emulated devices — as opposed to virtualized devices like the Virtio block

and network devices — provided by Firecracker is the serial port. In fact, in a common con-
figuration, when you launch Firecracker, the standard input and output of the Firecracker
process become the serial port input and output of the VM, making it seem like the guest
OS is just another process running inside your shell (which, in a certain sense, it is). At least,
that’s how it’s supposed to work.

By this point in the process of bringing up FreeBSD inside Firecracker I was able to boot

3 of 8

You can add options

MPTABLE_LINUX_BUG_

COMPAT to your kernel

configuration if you need

bug-for-bug compatibility

with Linux’s MPTable

handling.

9FreeBSD Journal • July/August 2023

a FreeBSD kernel with a root disk compiled into the kernel image — I didn’t have the virtual-
ized disk driver working yet — and read all the console output from the kernel. After all the
kernel console output, however, FreeBSD entered the userland portion of the boot process,
and I got 16 characters of console output — and then it stopped.

Funnily enough, I’d seen that exact symptom over ten years earlier, when I was first get-
ting FreeBSD working on EC2 instances. A bug in QEMU resulted in the UART not send-
ing an interrupt when the transmit FIFO emptied; FreeBSD wrote 16 bytes to the UART and
then wouldn’t write anymore because it was waiting for an interrupt which never arrived.
Modern EC2 instances run on Amazon’s “Nitro” platform, but in the early days they used
Xen and devices were emulated using code from QEMU. Somehow, a decade after this bug
was fixed in QEMU, exactly the same bug was implemented in Firecracker; but luckily for
me, the workaround I put into the FreeBSD kernel — hw.broken_txfifo=”1” — was still
available, and adding that loader tunable (which, since Firecracker loads the kernel directly
without going through the boot loader, meant compiling the value into the kernel as an en-
vironment variable) fixed the console output.

I then found that the console input was also broken: FreeBSD didn’t respond to anything
I typed into the console. In fact, tracing the Firecracker process, I found that Firecracker
wasn’t even reading from the console — because Firecracker thought that the receive FIFO
on the emulated UART was full. This turned out to be another bug in Firecracker: While ini-
tializing the UART, FreeBSD fills the receive FIFO with garbage to measure its size and then
flushes the FIFO by writing to the FIFO Control Register. Firecracker didn’t implement the
FIFO Control Register, so it was left with a full FIFO and quite sensibly didn’t try to read any
more characters to put into it. Here, I added another workaround to FreeBSD: If LSR_RXRDY
is still asserted after we try to flush the FIFO via the FIFO Control Register — which is to
say, if the FIFO didn’t empty as requested — we now proceed to read and discard char-
acters one by one until the FIFO empties. With this, Firecracker now recognized that
FreeBSD was ready to read more input from the serial port, and I had a working bidirec-
tional serial console.

Virtio Devices
While a system without disks or network could be useful for some purposes, before we

can do very much with FreeBSD, we’re going to want those devices. Firecracker supports
Virtio block and network devices and exposes them to virtual machines as mmio (memo-
ry-mapped I/O) devices. First step to getting these working in FreeBSD: Add device
virtio_mmio to the Firecracker kernel configuration.

Next up, we need to tell FreeBSD how to find the virtualized devices. FreeBSD expected
mmio devices to be discovered via FDT (Flattened Device Tree), which is a mechanism com-
monly used on embedded systems; but Firecracker passes device parameters via the kernel
command line with directives such as virtio_mmio.device=4K@0x1001e000:5. Second
step to getting these working in FreeBSD: Write code for parsing such directives and creat-
ing virtio_mmio device nodes. (Once we create the device node, FreeBSD’s regular pro-
cess for device probing kicks in and the kernel will automatically determine the type of Vir-
tio device and hook up the appropriate driver.)

If we have multiple devices however — say, a disk device and a network device — another
problem arises: Firecracker passes directives the way Linux expects — as a series of key=val-
ue pairs on the kernel command line — while FreeBSD parses the kernel command line as
environment variables… meaning that if there were two virtio_mmio.device= directives

4 of 8

10FreeBSD Journal • July/August 2023

passed on the command line, only one was retained. To fix this, I rewrote the early kernel
environment parsing code to handle duplicate variables by appending a numbered suffix:
We end up with virtio_mmio.device= for one device and virtio_mmio.device_1= for
the second device.

With this, I finally had FreeBSD booting and discovering all of its devices — but one more
problem arose with disk devices: If I shut down the virtual machine uncleanly, on the next
boot the system would run fsck on the filesystem, and the kernel would panic. It turned
out that fsck is one of very few things in FreeBSD that will cause non-page-aligned disk I/Os,
 and FreeBSD’s Virtio block driver was causing a kernel panic when trying to pass unaligned
I/Os to Firecracker.

When an I/O crosses a page boundary — as will
happen with page-sized I/Os which aren’t aligned
to page boundaries — the physical I/O segments
will typically not be contiguous; most devices can
handle I/O requests which specify a series of seg-
ments of memory to be accessed. Firecracker, be-
ing extremely minimalist, does not do this: Instead,
it accepts only a single data buffer — meaning that
a buffer that crosses a page boundary can’t sim-
ply be split into pieces the way it would with other
Virtio implementations. Fortunately, FreeBSD has
a system in place specifically for taking care of de-
vice complications like this: busdma.

This was probably the hardest part of getting
FreeBSD running in Firecracker, but after sever-
al attempts, I think I finally got it right: I modified
FreeBSD’s Virtio block driver to use busdma, and
now unaligned requests are “bounced” (aka. cop-
ied via a temporary buffer) in order to comply with
the limitations of the Firecracker Virtio implementation.

Revealed Optimizations
Once I had FreeBSD up and running in Firecracker, it rapidly became clear that there

were some improvements to be made. One of the first things I noticed was that, despite
having 128 MB of RAM in the virtual machine I was testing, the system was barely usable,
with processes being frequently killed due to the system running out of memory. The
top(1) utility showed that almost half of system memory was in the “wired” state, which
seemed odd to me; so I investigated further, and found that busdma had reserved 32 MB of
memory for bounce pages. This was clearly far more than needed — given Firecracker’s lim-
itations and the fact that bounce pages are generally not allocated contiguously, each disk
I/O should use at most a single 4 kB bounce page — and I was able to reduce this memory
consumption to 512 kB with a patch to busdma which limited its bounce page reservations
for devices which supported only a small number of I/O segments.

Once the system was more stable, I started paying attention to the boot process. If
you’re watching a system boot and there’s suddenly a pause in the messages scrolling past,
there’s probably something happening at that point which is slowing down the boot pro-
cess. Simple eyeballing of the boot process — and also the shutdown process — revealed

5 of 8

Once I had FreeBSD

up and running in

Firecracker, it rapidly

became clear that there

were some improvements

to be made.

11FreeBSD Journal • July/August 2023

several improvements:
•	FreeBSD’s kernel random number generator usually obtains entropy from hardware de-

vices, but in virtual machines this may not be an effective source. As a backup source of
entropy, on x86 systems we make use of the RDRAND instruction to obtain random val-
ues from the CPU; but we were only obtaining a very small amount of entropy on each
request and were only requesting entropy once every 100 ms. Changing the entropy
gathering system to request enough entropy to fully seed the Fortuna random number
generator shaved 2.3 seconds off the boot time.

•	When FreeBSD first boots, it records a Host ID for the system. This is typically obtained
from hardware via the smbios.system.uuid environment variable, which the boot
loader sets based on information from BIOS or
UEFI. Under Firecracker, however, there is no
boot loader — and thus no ID being provided.
We had a fallback system in place that would
generate a random ID in software on sys-
tems that didn’t have a valid hardware ID; but
we also printed a warning and waited 2 sec-
onds to allow the user to read it. I changed this
code to print the warning and wait 2 seconds
if the hardware provided an invalid ID, but pro-
ceed silently and quickly if the hardware simply
didn’t provide an ID.

•	IPv6 mandates that systems wait for “Dupli-
cate Address Detection” before using an IPv6
address. In rc.d/netif, after bringing up in-
terfaces, we were waiting for IPv6 DAD if any
of our network interfaces had IPv6 enabled.
There’s just one problem with that: We always
have IPv6 enabled on the loopback interface!
I changed the logic to only waiting for DAD
if we had IPv6 enabled on an interface other
than the loopback interface and sped up the boot process by 2 seconds — if another
system is trying to use the same IPv6 address as us on our lo0, we have bigger prob-
lems than an address collision!

•	When rebooting, FreeBSD printed a message (“Rebooting...”) and then waited 1 sec-
ond “for printf’s to complete and be read”. This seemed minimally useful, since people
can usually tell that the system is rebooting — there is now a kern.reboot_wait_time
sysctl which defaults to zero.

•	When shutting down or rebooting, the FreeBSD BSP (CPU #0) waits for the other CPUs
to signal that they have stopped… and then waited an extra 1 second to make sure that
they had a chance to stop. I removed the extra second of wait time.

Once the low-hanging fruit was out of the way, I pulled out TSLOG and started looking
at flamecharts of the boot process. Firecracker is a great environment for doing this, for two
reasons: First, the minimalist environment eliminates a lot of noise, making it much easier
to see what’s left behind; and second, having Firecracker launch virtual machines extremely
quickly made it possible to test changes to the FreeBSD kernel very rapidly — often well un-

IPv6 mandates that

systems wait for

“Duplicate Address

Detection” before using

an IPv6 address.

6 of 8

https://www.daemonology.net/papers/bootprofiling.pdf

12FreeBSD Journal • July/August 2023

der 30 seconds to build a new kernel, launch it, and generate a new flamechart.
Investigation with TSLOG revealed a number of available optimizations:
•	lapic_init had a 100000-iteration loop to calibrate how long lapic_read_icr_lo

took to execute; cutting this down to 1000 iterations shaved off 10 ms.
•	ns8250_drain called DELAY after each character was read; changing this to check for
LSR_RXRDY and only DELAYing if nothing was already available to be read shaved off 27
ms.

•	FreeBSD makes use of a CPUID leaf which most hypervisors use to advertise the TSC
and local APIC clock frequencies; Firecracker, unlike VMWare, QEMU, and EC2, did not
implement this. Adding support for this CPUID leaf to Firecracker shaved 20 ms off the
FreeBSD boot time.

•	FreeBSD was setting kern.nswbuf (which controls the number of buffers allocated for
a variety of temporary purposes) to 256 regardless of the size of the system; changing
this to 32 * mp_ncpus shaved 5 ms off the boot time on a small (1 CPU) virtual ma-
chine.

•	FreeBSD’s mi_startup function, which kicks off machine-independent system initial-
ization routines, was using a bubblesort to order the functions it called; while this was
reasonable in the 90s given the small number of routines needing to be ordered at that
point, there are now over 1000 such routines and the bubblesort was getting slow. Re-
placing it with a quicksort will save 2 ms. (Not yet committed at press time.)

•	FreeBSD’s vm_mem initialization routine was initializing vm_page structures for all avail-
able physical memory. Even on a relatively small VM with 128 MB of RAM, this meant
initializing 32768 such structures — and took a few ms. Changing this code to initialize
vm_page structures “lazily” as the memory is allocated for use will save 2 ms. (Not yet
committed at press time.)

•	Firecracker was allocating VM guest memory via an anonymous mmap, but Linux was
not setting up the paging structures for the entire VM guest address space. As a result,
the first time any page was read, a fault would occur taking roughly 20,000 CPU cycles
to be resolved while Linux mapped in a page of memory. Adding the MAP_POPULATE
flag to Firecracker’s mmap call will save 2 ms. (Not yet committed at press time.)

Current Status
FreeBSD boots under Firecracker — and does so extremely quickly. Including uncommit-

ted patches (to FreeBSD and also to Firecracker), on a virtual machine with 1 CPU and 128
MB of RAM, the FreeBSD kernel can boot in under 20 ms; a flame chart of the boot process
appears below.

14.0-CURRENT boot
19496 us

Reset Zoom

reloc.. DEV..

link_.. _..

pmap..

hammer_time
SYSINIT con..

reloc..
SYSINIT cpu vfs_mountr..

kva_..

kernel
mi_startup

kva_..

DEVICE_ATT..vm_ks.. THREAD..
_sleep

start_init

DE..

SY..

There is still work to be done: In addition to committing the patches mentioned above
and getting PVH boot mode support merged to “mainline” Firecracker, there’s a signifi-

7 of 8

13FreeBSD Journal • July/August 2023

cant amount of “cleanup” work to be done. Due to the history of PVH boot mode originat-
ing from Xen, the code used for PVH booting is still mixed up with Xen support; separating
those will simplify things significantly. Similarly, it’s currently impossible to build a FreeBSD
arm64 kernel without PCI or ACPI support; finding the bogus dependencies and remov-
ing them will allow for a smaller FreeBSD/Firecracker kernel (and also shave off a few more
microseconds from the boot time – we spend 25 us checking to see if we need to reserve
memory for Intel GPUs).

More aspirationally, it would be great to see if Firecracker could be ported to run on
FreeBSD — at a certain point, a virtual machine is a virtual machine, and while Firecracker
was written to use Linux KVM, there’s no fundamental reason why it shouldn’t be possible
to make it use the kernel portion of FreeBSD’s bhyve hypervisor instead.

Anyone wanting to experiment with FreeBSD in Firecracker can build a FreeBSD 14.0
kernel with the amd64 FIRECRACKER kernel configuration, and check out the feature/pvh
branch from the Firecracker project; or if that branch no longer exists it means the code has
been merged into the mainline Firecracker tree.

If you try out FreeBSD on Firecracker — especially if you end up using it in production —
please let me know! I started this project mainly out of interest, but I’d love to hear if it ends
up being useful.

COLIN PERCIVAL has been a FreeBSD developer since 2004 and was the project’s
Security Officer from 2005 to 2012. In 2006, he founded the Tarsnap online backup
service, which he continues to run. In 2019, in recognition of his work bringing FreeBSD
to EC2, he was named an Amazon Web Services Hero.

8 of 8

Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write Write
For Us!For Us!

Contact Jim Maurer
with your article ideas.
(maurer.jim@gmail.com)

Write

https://github.com/firecracker-microvm/firecracker/tree/feature/pvh
https://github.com/firecracker-microvm/firecracker/tree/feature/pvh
https://github.com/firecracker-microvm/firecracker

