
14FreeBSD Journal • July/August 2023

C ontainers are a great tool to distribute horizontally scalable applications on many
servers. When the number of applications and their cardinality grows, the number of
containers can easily become hard to manage manually.

Container orchestrators are applications that aim to simplify the management of a large
fleet of containers, hiding the complexity and improving reliability, especially in an environ-
ment made very dynamic by autoscaling and continuous deployment. In this article, we will
talk about a setup based on FreeBSD, using pot, a jail framework that supports jail images,
and nomad, a container agnostic orchestrator developed by HashiCorp.

The System Architecture
To explain how an orchestrator works, we need to introduce a few services and explain

their role.
The nomad client

A nomad client is a server that receives orders from the orchestrator to execute contain-
ers. Nomad clients can also be referred to as nodes, like in kubernetes.

In large installations, the majority of servers are nomad clients, as they are responsible to
execute users’ applications. In the cloud native jargon, nomad clients form the data plane of
the cluster.

Nomad clients can support multiple container drivers: some drivers are operating sys-
tem agnostic, while other drivers, like docker or pot, are available only on specific operat-
ing systems.

To orchestrate FreeBSD jails using pot, we need nomad clients based on FreeBSD.

BY LUCA PIZZAMIGLIO

1 of 7

Jail Orchestration
with pot and nomad

https://github.com/bsdpot/pot
https://www.nomadproject.io/

15FreeBSD Journal • July/August 2023

The nomad server
The nomad servers are the machines that implement the orchestrator. The nomad serv-

er is responsible for keeping the state of the cluster and for scheduling containers to nomad
clients. Multiple instances (3 to 5) are required to provide redundancy and to share the load.
In the cloud native jargon, nomad servers form the control plane of the cluster.

Users are going to interact with nomad servers to deploy applications to the cluster. The
nomad servers are responsible to keep the state of the cluster healthy, and to reschedule
containers in case of client failures.

Nomad servers can run on any supported operating system. To orchestrate jails, at least
one nomad client has to be based on FreeBSD.
The container registry

The orchestrator (nomad servers) is the “brain” of the cluster and it assigns containers to
clients that support the container types. This means that:

• any nomad clients can be selected to run supported containers,
• clients don’t know in advance which containers are going to host,
• a client can execute multiple instances of the same containers.
Every client needs a service to download the image of the container they are assigned

to execute. This requirement is fulfilled by the container registry, a service that provides the
images of containers.

When the orchestrator selects a client to execute a container, that client is going to
download the container image from a registry and then start the container.

In our examples, we are going to use potluck, a pub-
lic container registry maintained by the pot community,
that builds images from an open source catalog of im-
age recipes. However, as container images contain bina-
ries, we strongly encourage everyone to have their own
local registry, for security reasons.

In pot, images are files that are downloaded via
fetch(1), so a registry can be just a simple web server.
The service catalog

A service catalog is a list of services enriched by ad-
ditional information like all the container addresses that
implement those services.

When an orchestrator schedules a container imple-
menting a service, it’s also going to register the contain-
er address to the list of containers implementing that
service.

The service catalog can be also configured to period-
ically check the health status of the service for all con-
tainers, so the list of container addresses only contains
healthy addresses.

The service catalog that we are going to use is based on consul, a service mesh applica-
tion also developed by HashiCorp.
The ingress (optional)

Because of the dynamic nature of the orchestrator, it can be very hard to know where
our services are running. Every time a new deployment occurs, containers are scheduled to

2 of 7

Users are going

to interact with nomad

servers to deploy

applications

to the cluster.

https://www.consul.io/

16FreeBSD Journal • July/August 2023

potentially different nodes on different ports. With ingress, we define a proxy/load balancer
that is configured to provide a fixed entry point to our services.

For instance, we can configure the proxy in a way that the URL path (i.e., https://example.
com/foo) provides information about the targeted service (i.e. redirecting to the containers
implementing the service foo) Another common way is to use the host header.

Ingress proxies dynamically maintain the list of valid container’s addresses, by continuous-
ly interacting with the service catalog.

For our examples, we are using traefik, an ingress proxy implemented by traefix lab.

Nomad-pot-driver
Nomad has been built to support several container technologies and different operating

systems. In fact, a nomad package is available and HashiCorp also provides binary blobs for
FreeBSD.

Nomad has a plugin architecture that allows it to extend it to support new container
technologies. Esteban Barrios wrote and opensourced the nomad-pot-driver plugin. This
plugin works as an interface between a nomad client and pot, to provide the features need-
ed to orchestrate jails.

The orchestrator schedules workloads to the client that uses the plugin to interface with pot.

Control �ow

Job start

Developer

register

sc
hedule

ch
ec

k

ch
ec

k

get catalog

Data �ow

Users

nomad
server

consul
server

proxy
load balancer

nomad client

nomad
pot

driver

pot 1

pot 2

Overview of the architecture and the foles of the different services.

Minipot
Minipot is a package that installs and configures all the aforementioned services on a sin-

gle FreeBSD machine and is the reference installation that we are going to use to show our
examples.

Minipot is a configuration useful for testing, but not for professional installation, as it’s
going to concentrate all service on one machine only, reducing a cluster to a single node
that does it all.

In particular, it is going to install and configure consul, traefik, and nomad. Nomad is go-
ing to run as client and as server, playing the dual role of orchestrator and executor.

There is a detailed guide on how to install minipot on this blog post on the Klara website.

Schedule a Job
Once minipot is initialized and all services are running, we can use the following job de-

scription file to start a job in nomad

1 job “nginx-minipot” {
2 datacenters = [“minipot”]
3 type = “service”

3 of 7

https://traefik.io/traefik/
https://github.com/bsdpot/nomad-pot-driver/
https://klarasystems.com/articles/cluster-provisioning-with-nomad-and-pot-on-freebsd/

17FreeBSD Journal • July/August 2023

4 group “group1” {
5 count = 1
6 network {
7 port “http” {}
8 }

9 task “www1” {
10 driver = “pot”

11 service {
12 tags = [“nginx”, “www”]
13 name = “hello-web”
14 port = “http”

15 check {
16 type = “tcp”
17 name = “tcp”
18 interval = “5s”
19 timeout = “2s”
20 }
21 }

22 config {
23 image = “https://potluck.honeyguide.net/nginx-nomad”
24 pot = “nginx-nomad-amd64-13_1”
25 tag = “1.1.13”
26 command = “nginx”
27 args = [“-g”,”’daemon off;’”]

28 port_map = {
29 http = “80”
30 }
31 }

32 resources {
33 cpu = 200
34 memory = 64
35 }
36 }
37 }
38 }

The job stanza describes all the details nomad needs to schedule the job.
The job “nginx-minipot” (1) has one group named “group1” (4), that has one task called

“www1” (9).
The task “www1” is a pot container (10), the image registry is potluck (23), the pot image is

nginx (24) and the version is 1.1.13 (25). By specifying that the task is based on the pot driver,
the orchestrator is going to schedule this job on a client with pot support. In our example,
server and client are the same machine.

Compared to the common use of jails, where the bootstrap happens using rc script, we
are going to run nginx directly (26), without any other additional services. The args parame-

4 of 7

18FreeBSD Journal • July/August 2023

ter (27) is important to allow nomad to properly follow the container lifecycle and to capture
its logs. Pot is going to take care of initializing the network and everything that is needed.

The port_map stanza (28) and the network stanza (6) are saying that nginx is going to lis-
ten to port 80 in the jail, but the nomad client will use a different port (“http”), dynamically
assigned by the nomad server.

The service stanza (11) provides the information that nomad is going to use to register
the service to consul. In our example, the task “www1” implements the service “hello-web”
(11) and it will be registered to consul, using the port “http” (14), assigned by the nomad serv-
er. For the IP address, the nomad server is going to use the nomad client IP address, defined
during the scheduling operation.

In our example, the job is also configuring a tcp health check that consul is going to run
every 5 seconds to determine the health status of the instance.

This job description needs to be stored in a file (i.e., nginx.job) and any user can launch
the service via

$ nomad job nginx.job

NOTE: The first deployment can take some time as the client needs to download the im-
age. On slow connections, the first deployment can even fail because of deployment time-
outs. Once the fetch is completed, it is safe to re-run the deployment that will be executed
in few seconds.
Check on nomad

Once the job is scheduled, it is possible to check the status of the deployment via com-
mand line:

$ nomad jobs allocs nginx-minipot
ID Node ID Task Group Version Desired Status Created Modified
636d3241 c375b833 group1 3 run running 28m43s ago 28m27s ago
$ nomad alloc status 636d3241
[...]
Allocation Addresses:
Label Dynamic Address
*http yes 2003:f1:c709:de00:faac:65ff:fe86:9458:22854
[...]
$ curl “[2003:f1:c709:de00:faac:65ff:fe86:9458]:22854”

“Allocation” is the name used by nomad to identify a container, an instance of the task.
The IPv6 address is the nomad client one.
The port 22854 is the port nomad chose to direct the nomad client to the port 80 of the

container.
To see the port redirection setup, we can use the command:

$ sudo pot show

An alternative of the CLI, the nomad server is configured to also provide a powerful web
UI reachable at localhost:4646

From there, we can see the “nginx-minipot” job and navigate to see all information about
the cluster, allocations, clients, and so on.

From nomad, we can see directly the status of all containers.
By reaching the allocation page, we can click on the “exec” button to run a /bin/sh shell

into the running containers.

5 of 7

19FreeBSD Journal • July/August 2023

Check on consul
Via CLI, we can see the list of services in the consul catalog (consul catalog services), but

not the details. However, we can check the status of the “hello-web” service, by reaching the
web UI interface at

localhost:8500

From here, we can navigate to check the status of the service “hello-web” and its check
“tcp”.
Check on traefik

The proxy traefix is configured to route traffic on port 8080, but provides a web-ui to
monitor the status at port 9200 (localhost:9200). Traefik is also configured to sync the
service catalog from consul.

By selecting the http services, we can see our “hello-web” service (marked as
hello-web@consulcatalog).

By clicking on the service, we can see the service details and the routing options.
The configuration is based on the host header, in our case “hello-web.minipot”.
Now we can reach the service hello-web via the ingress:

 $ curl -H Host:hello-web.minipot http://127.0.0.1:8080

Alternatively, we can add the entry

 127.0.0.1 hello-web.minipot

to /etc/hosts and then use the hostname directly:

$ curl http://hello-web.minipot:8080

We will obtain the same output as we had by point curl directly to the jail.
Horizontal scaling

To see the orchestrator in action, we can now simply change the count from 1 to 2 in the
job file (row 5) and re-submit the job via

$ nomad run nginx.job

Once scheduled, the running nomad allocations are now 2, the service “hello-web” in
consul has two instances, as the servers in traefik.

• To verify the round-robin distribution of the ingress, we can
• Tail the logs of one container ($ nomad alloc logs -f allocation1)
• Tail the logs of the other container ($ nomad alloc logs -f allocation2)
• Execute curl on the ingress ($ curl -H Host:hello-web.minipot
http://127.0.0.1:8080)

At every execution of curl, the proxy distributes the requests between the containers as is
possible to see from their logs.
Tear down everything

To stop our examples, we suggest this tear down operation:
• Stop the nomad jobs ($ nomad stop nginx-minipot)
• Stop traefik ($ sudo service traefik stop)
• Stop nomad ($ sudo service nomad stop)
• Stop consul ($ sudo service consul stop)

6 of 7

20FreeBSD Journal • July/August 2023

From playground to production
Minipot is a single node installation useful as a playground, to learn or to test things locally.
A production environment should be shaped in a different way:
• 3 or 5 distinct consul servers
• 3 or 5 distinct nomad servers
• 2 ingress proxy servers (HA configuration)
Several nomad client servers (depends on the expected workload and reliability require-

ments like the overprovision factor)
It is worth mentioning that the aforementioned set-

up can mix different operating systems: the only servers
that have to run FreeBSD are the nomad clients target-
ing jail/pot workloads.

Nomad or consul servers can run on Linux or Solaris,
allowing you to reuse pieces of infrastructure that may
already be available to you.

As ingress proxy, we used traefik, which natively syncs
with consul. However, it’s possible to use other services,
like nginx or ha-proxy, together with consul-template,
to achieve the same result. In such a configuration, con-
sul-template is responsible for detecting changes in
consul,to render the proxy configuration template, and
to notify the proxy of the new configuration.

Additionally, the configuration of all services would
need improvements, like adding authentication to
nomad.

Credits
I want to highlight the community effort needed

to reach this point, from Esteban Barrios, the first developer of the nomad-pot-driver, to
Michael Gmelin (grembo@), who really helped a lot to increase the reliability and the sta-
bility of this solutions. I also want to mention Stephan Lichtenauer and Bretton Vine, who
worked on Potluck, the public image registry, and on numerous other projects like the An-
sible playbook and blog posts dedicated to pot and nomad use cases.

LUCA PIZZAMIGLIO is a port committer in the FreeBSD project and a member of the
port manager team (portmgr). In 2017, he started the pot project, with the goal of un-
derstanding how containers on FreeBSD could look.

7 of 7

Minipot is a single node

installation useful

as a playground,

to learn or to

test things locally.

https://honeyguide.eu/tags/pot

