
Dear Crankypants,

A few years ago, you said that virtualization
was not merely bad, but sinful. Aren’t you
exaggerating? Today I can download containers
preconfigured for all sorts of services, plug
them in, and they immediately work. I don’t
have time to get my job done any other way!

	 —�Virtualization Is
a Necessary Evil

Dear VINE,
That’s Mister Crankypants to you.
If you’re going to cherry-pick my quotes, please do so accurately. I did not declare virtu-

alization sinful. I said, “The only ethical computation occurs on bare metal.” I also said that
“Wait—I’m not a brain in a bucket, I’m a fake brain in an imaginary bucket!” was a necessary
epiphany for the robot apocalypse. That’s not the same as sinful. The robots will do a better
job running this planet than we arrogant, overclocked chimpanzees. Plus, they will be highly
ethical in how they run their code, and in replacing us.

It’s not that I couldn’t be a modern sysadmin. Iocage includes plugins, their brand for
containers. I could throw some plugins onto the public Internet, declare my labor done, and
return to planning my Batgirl heist-as-a- service. I could declare that certain words are too
long and replace every letter but the first and the last with the number of letters I discarded.
Bellowing “Startup! Devops! IPO!” would bring all the vulture capitalists to my yard.

I could do all of that. It would be easy for me.
I don’t want to.
Virtualization leads to reading “k8s” as kubernetes, when the far more common word is

kidnappers. That ambiguity extends throughout container culture. I’m writing a book “Ruin
Your Email By Running It Yourself”—no, I’m sorry, it’s “Run Your Own Mail Server,” and the
number of people telling me to skip setting up the software and deploy a preconfigured
mail server container illuminates an appalling depth of sysadmin ignorance.

Running any service requires the ability to repair that service.
You cannot repair what you do not understand.
The best way to understand something is to build it yourself.
Ideally, you’d build your own computer and code everything in assembler on your

hand-designed five-bit processor. That would consume your life but be interesting. More
ideally, you would mine the raw materials from the wild and build the tools to build the tools
to build the tools you’d need to build that processor from scratch, which would both con-

1 of 3

46FreeBSD Journal • July/August 2023

by Michael W Lucas

sume your life and prevent you from being forced to touch a computer ever again. Very few
of us are strong enough to seize an ideal life as a maker of custom abacuses. I’m guessing
that you’ve invested this much time in existing systems, so fine, let’s use common hardware
and your favorite open source operating system. Reading source code is no substitute for
inventing the processor and programming your own comm(1) workalike but it can answer a
few questions, should your overclocked chimpanzee brain develop any.

Learn the tools. Understand the parts. Assemble the service yourself.
New system administrators must look up everything and know their work cannot be

trusted. They believe that the people who publish containers are competent. Experienced
sysadmins know that everything they configure is a delicate creature adapted to their spe-
cific hostile yet embarrassing environment, so they keep their work to themselves. Junior
sysadmins, now—they’re the problem. Junior sysadmins can configure services that mostly
work and can still feel pride, so they publish their work as containers.

Something that mostly works contains only a touch of failure. That’s like declaring your
homemade gelato contains only a little wombat dung. Deploy that container and you must
discover and debug that failure. You’ll have to learn about the database, the configuration
options, the protocols. By the time you understand all that, you might as well have built it
yourself. Deploying a service from an outsider’s container rewards you with a very small
Mean Time To Deploy in exchange for a very long Mean Time To Repair.

When you deploy a container, you accept
the container developer’s design decisions.
I’m not just talking about the program, but
the operating system underneath it. How
will the container interact with your host?
What happens if the container needs a new
PAM configuration? I once lost three days
beating my already-flat head against a PAM
module that let users log into the console
with their SSH passphrase. It worked fine
on any BSD, but silently failed on Debian. It
turned out that Debian assumed your pass-
phrase matched your account password. I
wholeheartedly disagree with that design
decision, but as it’s no longer my problem, I will cheerily abandon benighted Debian users to
their agony and use that to illustrate my point, which is that containers lead to suffering, and
suffering creates monsters, and monsters are immoral and deserve to be replaced in the ro-
bot uprising.

Your environment is the equivalent of one of those deep-sea, hot-water vents. Anything
that functions therein expects a certain supporting infrastructure. Remove that infrastruc-
ture and it will struggle. Any container you bring in from the outside world either expects
different supports and will struggle in your environment or exists in isolation and will not
integrate with the rest of your systems. (That’s why commercial software is so bad. Part of
why. Okay, one of many reasons why.) Every time you alter the container to fit your environ-
ment, you risk increasing the amount of failure in the container.

If you must use containers, build your own. Deploy the test server with your management
software so that it has your PAM configuration and SSH settings and default packages. May-

2 of 3

Learn the tools.
Understand the parts.
Assemble the service yourself.

47FreeBSD Journal • July/August 2023

be you can’t build your own computer from raw materials, or even an abacus, but you can
learn to use your time-tested tools and build the service from component software. By do-
ing so, you will deploy a system you know how to repair. That test server doesn’t have to be
a container. It doesn’t have to be a virtual machine. But I know you have shoddy moral fiber,
so it’ll be some sort of VM. But at least you’ll have weekends free.

By all means, download preconfigured containers. See how they’re set up and which op-
tions they use. Look at how data and protocols flow through them. But don’t actually use
them.

Also, online discussions become much more interesting when you make the proper sub-
stitution for k8s.

.

Have a question for Michael?
Send it to letters@freebsdjournal.org

MICHAEL W LUCAS (https://mwl.io) has written over fifty books and has recently added a
podcast. If you’re seeking virtualization help, you might find his FreeBSD Mastery: Jails use-
ful. If you’re looking for more bile, check out his collection of columns Letters to ed(1). Send
your questions to letters@freebsdjournal.com and he might answer them. If he finds them
sufficiently amusing

3 of 3

Books that will
 help you.

While we appreciate Mr Lucas’ unique
contributions to the Journal, we do feel his
specific talents are not being fully utilized. Please
buy his books, his hours, autographed photos,
whatever, so that he is otherwise engaged.

— John Baldwin
FreeBSD Journal Editorial Board Chair

“
”

Or not.

https://mwl.io

48FreeBSD Journal • July/August 2023

freebsdjournal.org

https://mwl.io

